
15-251: Great Theoretical Ideas in Computer Science

Epilogue:

Interactive Proof for 𝟑𝑺𝑨𝑻 and 

Couple of open problems  

Fall 2016   Lecture 29

December 8, 2016



Interactive Proofs

Claim 𝑥 ∈ 𝐿

Prover

(all powerful)

Verifier

(randomized 

polynomial time)

Accept or 

reject

poly( 𝑥 ) long

conversation



Prover any function P(x,c) = what to say next 

if c is conversation so far. 

Verifier is a poly-time function 

V(x,r,c) = what to say next if c is conversation 

so far (r=verifier’s random coins)

P↔V(x,r)  denotes one conversation.

Total bits in conversation can’t exceed 

some poly(|x|). Verifier must accept/reject 

at end of conversation.



There is a polynomial time verifier V(x,r), |r|<poly(|x|); 

all P↔V(x,r) conversations are poly(|x|) bounded 

and accept/reject.

 Completeness

 xL:  Prover P,  Prr[PV(x,r) accepts] ≥
3

4
 Soundness

 xL:   Provers P,  Prr[PV(x,r) accepts] ≤
1

4

A language L belongs to IP iff



We saw last lecture that graph non-isomorphism

has an interactive proof, even though we don’t 

know if it is in NP.

What about problems we surely believe to not 

be in NP, such as complements of 3COLOR, 

3SAT, or other NP-complete problems?

In particular, can one (interactively) prove that 

a 3SAT formula is NOT satisfiable?



A more general problem: #SAT

How many satisfying assignments 

does φ have?

3SAT = {φ | φ is a satisfiable 3-CNF formula. }

#3SAT = {(φ,k) | φ is a 3CNF formula that has 

exactly k satisfying assignments}



Prover

Verifier

Φ has exactly k 

assignments.

Blah blah

blah

I am skeptical.

Blah blah

poly(|φ|) long conversation.

#3SAT ∈ IP



Arithmetization: From Boolean formulae to a 

polynomial over a finite field.  

 Arith(T) = 1, Arith(F) = 0

 Arith(x) = x

 Arith(¬θ1) = 1-Arith(θ1)

 Arith(θ1 ∧ θ2) = Arith(θ1) Arith(θ2) 

 Arith(θ1 ∨ θ2) = 1 – (1- Arith(θ1))(1-Arith(θ2)) 

Also, degree(Arith(θ)) = O(size(θ))

Claim (proof by induction): For any Boolean formula θ, 

θ and Arith(θ) agree on all 0/1 assignments. 

A Great Theoretical Idea



Example
Suppose 

𝜙 = 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ∧ ¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4 ∧ (¬𝑥2 ∨ ¬𝑥4)

Arith(𝜙) =

1 − 1 − 𝑥1 𝑥2 1 − 𝑥3 ⋅ 1 − 𝑥1𝑥3 1 − 𝑥4 ⋅ 1 − 𝑥2𝑥4

Product of m terms if there are m clauses.

Each has degree at most 3 if 𝜙 is a 3SAT instance



Claim: Φ(x1, x2,..,xn) has 

exactly k assignments.

First I choose a prime p>2n

and let us encode 

Φ(x1, x2,..,xn) as 

P= Arith(Φ) over Fp so that 

P and Φ are identical on all 

2n 0/1 assignments. 

Prover

I’ll now prove that



Let’s define some polynomials

But what if prover sends bogus P1(x) ?

To combat this, Verifier picks random r1  Fp, and

challenges prover to “prove” the value of P1(r1)

Key point: If prover sends polynomial Q1(x)  P1(x), 

then Q1(r1)  P1(r1) with prob.  1- O(size()/p)



The power of polynomials

Two n-variable formulae  and  can differ on just 

one out of 2n assignments. So can’t catch their 

difference by checking at a random assignment.

Two low-degree polynomials P  Q must 

differ on significant fraction of the domain.

This property was very useful for 

“error-correction” and is now handy again.

Amazing reach of this simple fact about

polynomials: a nonzero degree d polynomial

has at most d roots over a field.



Lies beget lies: If prover sends poly Q1(x)  P1(x), 

then Q1(r1)  P1(r1) with high probability.



Lies beget more lies: If prover sends polynomial 

Q2(x)  P2(x),  then Q2(r2)  P2(r2) with high prob.



Verifier rejects if any of its checks across the n 

rounds fails; otherwise he accepts.

Completeness: If Φ(x1,x2,..,xn) has exactly k 

assignments, then a prover playing honestly 

by the rules will satisfy all checks made by the verifier,

and the verifier will accept with certainty.



Soundness Theorem: If number of satisfying 

assignments to Φ(x1,x2,..,xn) doesn’t equal k,  then 

the verifier accepts with probability  poly(n)/p ≪1/2

Proof idea: Let Qi(x) be poly. prover sends in round i

Since # sat. assignments to Φ = P1(0) + P1(1)  k, 

prover must lie about P1(x) in round 1, sending Q1  P1.
(otherwise the check Q1(0)+Q1(1)=k will fail)

Now P2(0)+P2(1)=P1(r1) (by defn) & P1(r1)  Q1(r1) w.h.p.

So prover is forced to lie in round 2, sending Q2  P2

(otherwise the check Q2(0)+Q2(1)=Q1(r1) will fail) 

Continuing this argument, unless very lucky in an earlier round, 

prover must send Qn(x)  Pn(x) in round n. 

Verifier can compute Pn(rn) = P(r1,r2, …, rn)

(as he knows P) & will find P(r1,r2, …, rn)  Qn(rn) w.h.p.



Probability of accepting false claim

For verifier to accept, prover must get lucky 

in some round.

Let i be the earliest round where this happens,

i.e., Pi(ri) = Qi(ri) even though Pi(x)  Qi(x)

As Pi and Qi are degree poly(n) polys, this

happens with probability  poly(n)/p

The probability that prover gets lucky in 

some round is at most n times bigger, 

and thus also  poly(n)/p



Summary

One can prove that a 3SAT formula is

not satisfiable via an interactive proof!
(Note: verifier is efficient, prover has to work hard)

Via NP-completeness reductions, same

holds for claim that graph is not 3-colorable, not 

Hamiltonian, etc.

In fact, power of interactive proofs extends to all 

problems solvable in polynomial space (IP=PSPACE)

Surprising efficacy of polynomials in unexpected places!!



Problem 1: Bin Packing

Given a set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} of positive integers,

and a positive integer 𝐵 ≥ max 𝑎𝑖 , partition 𝐴 into 

minimum number of subsets such that the sum of the

elements in each subset is at most 𝐵.

Midterm 2: Bin Packing is NP-hard 
(reduction from PARITITION to telling if two “bins” suffice)

Open: Is there a polytime algo to find a partition 

with OPT + 1 subsets, where OPT is the number

of subsets in an optimal solution?

Best known: (1+𝜖) OPT + 1, or OPT + O(log OPT) 



Problem 2: Graph 3-Coloring

3COLOR = { <G> | G is 3-colorable} is NP-complete.

So, unless P=NP, there is no polynomial time 

algorithm that given as input a 3-colorable graph, 

finds a proper 3-coloring of it.

Also known (and harder to prove): 

Finding a 4-coloring of a 3-colorable graph is NP-hard.

Open: What about 5-coloring a 3-colorable graph?

Most likely NP-hard, but we can’t prove it!

Best algorithm uses ≈ 𝑛0.2 colors, where 𝑛 = #vertices



Problem 3: Finding a satisfying assignment 

when there is an abundance of them 

Suppose we are given a CNF formula 𝜙 on 𝑛 variables

that is promised to have ≥ 2𝑛−1 satisfying assignments
(i.e., at least ½ the assignments satisfy every clause).

 Trivial to find a satisfying assignment of such an

instance in randomized polynomial time.

Open: Is there a deterministic polynomial time

algorithm for finding a satisfying assignment given

such an instance of SAT?

Best known runtime: n^{𝑂((log log n)2)}   (2016)


