15-251: Great Theoretical Ideas in Computer Science

Fall 2016 Lecture 29
December 8, 2016

Epilogue:
Interactive Proof for 3SAT and
Couple of open problems

Interactive Proofs

Claimx € L
Verifier
Prover (randomized
(all powertul) _ Polynomial time)
<
>
<

Prover function P(x,c) = what to say next
If C IS conversation so far.

Verifier Is a function
V(X,r,c) = what to say next if ¢ Is conversation
so far (r=verifier's random coins)

P<V(X,r) denotes one conversation.
Total bits in conversation can’'t exceed
some poly(|x|). Verifier must accept/reject
at end of conversation.

A language L belongs to IP Iff

There Is a polynomial time verifier V(x,r), |r|[<poly(|x]);
all P&V(x,r) conversations are poly(|x|) bounded
and accept/reject.

= Completeness

XeL: 3 Prover P, Pr[P<V(X,r) accepts] 2%
= Soundness

xelL: V Provers P, Pr[P<V(Xx,r) accepts] < i

We saw last lecture that graph non-isomorphism
has an interactive proof, even though we don't
know if it is in NP.

What about problems we
, such as complements of 3COLOR,
3SAT, or other NP-complete problems?

In particular, can one (interactively) prove that
a 3SAT formula is NOT satisfiable?

A more general problem: #SAT
How many satisfying assignments
does ¢ have?

3SAT ={o | ¢ is a satisfiable 3-CNF formula. }

#3SAT ={(p,k) | ¢ is a 3CNF formula that has
exactly k satisfying assignments}

#3SAT €1P

| am skeptical.
® has exactly k P
W assignments.
O\

= L
N
‘/

poly(]p|) long conversation.

Verifier

A Great Theoretical Idea

Arithmetization: From Boolean formulae to a
polynomial over a finite field.

= Arth(T) = 1, Arith(F) =0

= Arith(X) = X

= Arith(=0,) = 1-Arith(0,)

= Arith(6, A 6,) = Arith(8,) Arith(6,)

= Arith(0, v 6,) = 1 — (1- Arith(0,))(1-Arith(8,))

Claim (proof by induction): For any Boolean formula 6,
0 and Arith(0) agree on all 0/1 assignments.

Also, degree(Arith(8)) = O(size(0))

Example

Suppose
¢ —_ (xl V _Ixz \/ x3) N (_le V _IXS V X4_) N (—|x2 V _IX4)

Arith(¢) =
(1 — (1 —xq)x(1 - xB)) ' (1 — x1x3(1 — x4)) (1 — x2x4)

Product of m terms if there are m clauses.
Each has degree at most 3 if ¢ Is a 3SAT instance

Claim: ®(x,, X,,..,X,) has
exactly k assignments.

0w

First | choose a prime p>2"
and let us encode
D(X4, X5,..,X,) @S
P= Arith(®) over F, so that
P and ® are identical on all
2" 0/1 assignments.

Prover

I'll now prove that
| P(by,ba,...,by) =k

Let's define some polynomials

., &y) = Arith(¢); n-variate polynomial

P(by,bs,...,b,); To prove Py =k
by,...,.bn €{0,1}

E P(x,bs,...,b,); Univariate polynomial in F, [z
1])3,...,1,),», E{O] }

’rover can send Pj(x) and verifier can check P;

But what if prover sends bogus P,(x) ?

To combat this, Verifier picks randomr; € F,, and
challenges prover to “prove” the value of P,(r,)

Key point: If prover sends polynomial Q,(x) # P,(x),
then Q,(r,) # P,(r,) with prob. > 1- O(size(¢)/p)

The power of polynomials

Two n-variable formulae ¢ and y can differ on just
one out of 2" assignments. So can’t catch their
difference by checking at a random assignment.

Two low-degree polynomials P = Q must
differ on significant fraction of the domain.

This property was very useful for
“error-correction” and is now handy again.

Amazing reach of this simple fact about
polynomials: a nonzero degree d polynomial
has at most d roots over a field.

= Arith(¢); n-variate polynomial

. by,); Univariate polynomial in F},|[x]

Prover asked to send low-degree polynomial P (z) (by listing its coefficients)
verifier checks P;(0) + Py (1) = k, picks random r; € F),
and challenges prover to prove the claimed value of Py (r

Lies beget lies: If prover sends poly Q,(x) = P,(x),
then Q,(r;) # P,(r,) with high probability.

E P(r1,z,bs,...,b,); Univariate poly. in F,[z
1)3 .bnE{O.l}

Prover asked to send polynomial Ps(x) (by listing its coefficients);
erifier checks P5(0) 4+ P>(1) = P;y(r1), picks random ry € F),
and challenges prover to prove the claimed value of Py(rs).

Next round:
P(ri,z,bs...,b,); Univariate poly. in F,|x
Prover sends low-degre polynomial P»(x) (by listing its coefficients);

rerifier checks P5(0) + P»(1) = Py (r1), picks random ry € F),,
and challenges prover to prove the claimed value of Py(r3).

Lies beget more lies: If prover sends polynomial
Q,(X) # P,(X), then Q,(r,) # P,(r,) with high prob.

Round ¢ invariant: Verifier has chosen ry,7o,...,7;_1.
’rover must commit to a polynomial, which for honest behavior should be

Z Pl o5 P8 Biaasasewbn)

bit1,....bn€{0,1}

Verifier checks P;(0) + P;(1) = P;—1(r;—1), picks random r; € F},, and tasks
brover with backing up the claimed value of P;(r;).

: Verifier has chosen ri,79,...,7h—1.
Prover sends a univariate low-degree polynomial, supposedly

Pl) = PP ses o3Pipecisi)

erifier checks P, (0) + P,(1) = P,_1(Tn-1),

picks random r,, € F),,

Verifier rejects if any of its checks across the n
rounds falls; otherwise he accepts.

Completeness: If ®(x,X,,..,X,) has exactly k
assignments, then a prover playing honestly

by the rules will satisfy all checks made by the verifier,
and the verifier will accept with certainty.

Soundness Theorem: If number of satisfying
assignments to ®(x,,X,,..,X,) doesn’'t equal k, then
the verifier accepts with probability < poly(n)/p «1/2

Proof idea: Let Q,(x) be poly. prover sends in round i
Since # sat. assignments to ® = P,(0) + P,(1) # K,

prover must lie about P,(Xx) in round 1, sending Q, # P;.
(otherwise the check Q,(0)+Q,(1)=k will fail)

Now P,(0)+P,(1)=P,(r,) (by defn) & P,(r,) # Q,(r,) w.h.p.
So prover is forced to lie in round 2, sending Q,, # P,
(otherwise the check Q,(0)+Q,(1)=Q,(r,) will fail)

Continuing this argument, unless very lucky in an earlier round,
prover must send Q,(x) # P,(X) in round n.
Verifier can compute P (r,) = P(ry,r, ..., 1)
(as he knows P) & will find P(rq,r,, ..., 1) # Q,(r,) w.h.p.

Probabllity of accepting false claim

For verifier to accept, prover must get lucky
In some round.

Let | be the earliest round where this happens,
l.e., Pi(r;) = Qi(r) even though P;(x) # Q;(X)

As P; and Q, are degree poly(n) polys, this
happens with probability < poly(n)/p

The probability that prover gets lucky in
some round is at most n times bigger,
and thus also < poly(n)/p

Summary

One can prove that a 3SAT formula Is

not satisfiable via an interactive proof!
(Note: verifier Is efficient, prover has to work hard)

Via NP-completeness reductions, same
holds for claim that graph is not 3-colorable, not
Hamiltonian, etc.

In fact, power of interactive proofs extends to all
problems solvable in polynomial space (IP=PSPACE)

Surprising efficacy of polynomials in unexpected places!!

Problem 1: Bin Packing

Given a set A = {a4, a,, ..., a,} of positive integers,
and a positive integer B = maxa;, partition A into
minimum number of subsets such that the sum of the
elements in each subset is at most B.

Midterm 2: Bin Packing is NP-hard
(reduction from PARITITION to telling if two “bins” suffice)

Open: Is there a polytime algo to find a partition
with OPT + 1 subsets, where OPT Is the number
of subsets in an optimal solution?

Best known: (1+¢) OPT + 1, or OPT + O(log OPT)

Problem 2: Graph 3-Coloring
3COLOR ={ <G> | G is 3-colorable} is NP-complete.

So, unless P=NP, there is no polynomial time
algorithm that given as input a 3-colorable graph,
finds a proper 3-coloring of it.

Also known (and harder to prove):
Finding a 4-coloring of a 3-colorable graph is NP-hard.

Open: What about 5-coloring a 3-colorable graph?

Most likely NP-hard, but we can'’t prove it!

Best algorithm uses ~ n®# colors, where n = #vertices

Problem 3: Finding a satisfying assignment
when there is an abundance of them

Suppose we are given a CNF formula ¢ on n variables

that is promised to have > 2"~ satisfying assignments
(.e., at least Y2 the assignments satisfy every clause).

» Trivial to find a satisfying assignment of such an
Instance in randomized polynomial time.

