15-251: Great Theoretical Ideas in Computer Science
Fall 2016 Lecture 29
December 8, 2016

Epilogue:
 Interactive Proof for $\overline{3 S A T}$ and Couple of open problems

Interactive Proofs

Claim $x \in L$
Prover
(all powerful)

Verifier
 (randomized polynomial time)

poly($|x|$) long conversation

Accept or reject

Prover any function $\mathrm{P}(\mathrm{x}, \mathrm{c})=$ what to say next if c is conversation so far.

Verifier is a poly-time function $\mathrm{V}(\mathrm{x}, \mathrm{r}, \mathrm{c})=$ what to say next if c is conversation so far (r=verifier's random coins)
$\mathrm{P} \leftrightarrow \mathrm{V}(\mathrm{x}, \mathrm{r})$ denotes one conversation. Total bits in conversation can't exceed some poly(|x|). Verifier must accept/reject at end of conversation.

A language L belongs to IP iff

There is a polynomial time verifier $\mathrm{V}(\mathrm{x}, \mathrm{r}),|\mathrm{r}|<$ poly $(|\mathrm{x}|)$; all $\mathrm{P} \leftrightarrow \mathrm{V}(\mathrm{x}, \mathrm{r})$ conversations are poly $(|\mathrm{x}|)$ bounded and accept/reject.

- Completeness
$>x \in L: \quad \exists$ Prover $P, \operatorname{Pr}_{r}[P \leftrightarrow V(x, r)$ accepts $] \geq \frac{3}{4}$
- Soundness
$>x \notin L: \forall$ Provers $P, \operatorname{Pr}_{r}[P \leftrightarrow V(x, r)$ accepts $] \leq \frac{1}{4}$

We saw last lecture that graph non-isomorphism has an interactive proof, even though we don't know if it is in NP.

What about problems we surely believe to not be in NP, such as complements of 3COLOR, 3SAT, or other NP-complete problems?

In particular, can one (interactively) prove that a 3SAT formula is NOT satisfiable?

A more general problem: \#SAT How many satisfying assignments does φ have?

3SAT $=\{\varphi \mid \varphi$ is a satisfiable 3-CNF formula. $\}$
\#3SAT $=\{(\varphi, \mathrm{k}) \mid \varphi$ is a 3CNF formula that has exactly k satisfying assignments\}

A Great Theoretical Idea

Arithmetization: From Boolean formulae to a polynomial over a finite field.

- $\operatorname{Arith}(T)=1, \operatorname{Arith}(F)=0$
- $\operatorname{Arith}(\mathrm{x})=\mathrm{x}$
- $\operatorname{Arith}\left(\neg \theta_{1}\right)=1$ - $\operatorname{Arith}\left(\theta_{1}\right)$
- $\operatorname{Arith}\left(\theta_{1} \wedge \theta_{2}\right)=\operatorname{Arith}\left(\theta_{1}\right) \operatorname{Arith}\left(\theta_{2}\right)$
- $\operatorname{Arith}\left(\theta_{1} \vee \theta_{2}\right)=1-\left(1-\operatorname{Arith}\left(\theta_{1}\right)\right)\left(1-\operatorname{Arith}\left(\theta_{2}\right)\right)$

Claim (proof by induction): For any Boolean formula θ, θ and Arith(θ) agree on all 0/1 assignments.

Also, degree $(\operatorname{Arith}(\theta))=\mathrm{O}(\operatorname{size}(\theta))$

Example

Suppose

$$
\phi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{4}\right)
$$

$\operatorname{Arith}(\phi)=$

$$
\left(1-\left(1-x_{1}\right) x_{2}\left(1-x_{3}\right)\right) \cdot\left(1-x_{1} x_{3}\left(1-x_{4}\right)\right) \cdot\left(1-x_{2} x_{4}\right)
$$

Product of m terms if there are m clauses.
Each has degree at most 3 if ϕ is a 3SAT instance

Claim: $\Phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, ., \mathrm{x}_{\mathrm{n}}\right)$ has exactly k assignments.

First I choose a prime p>2n and let us encode

$$
\Phi\left(x_{1}, x_{2}, . ., x_{n}\right) \text { as }
$$

$\mathrm{P}=\operatorname{Arith}(\Phi)$ over F_{p} so that
P and Φ are identical on all $2^{n} 0 / 1$ assignments.
Prover
I'll now prove that

Let's define some polynomials

$P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{Arith}(\phi) ; n$-variate polynomial

$$
P_{0}=\sum_{b_{1}, \ldots, b_{n} \in\{0,1\}} P\left(b_{1}, b_{2}, \ldots, b_{n}\right) ; \text { To prove } P_{0}=k
$$

$P_{1}(x)=\sum_{b_{2}, \ldots, b_{n} \in\{0,1\}} P\left(x, b_{2}, \ldots, b_{n}\right) ;$ Univariate polynomial in $F_{p}[x]$
Prover can send $P_{1}(x)$ and verifier can check $P_{1}(0)+P_{1}(1)=k$.
But what if prover sends bogus $\mathrm{P}_{1}(\mathrm{x})$?
To combat this, Verifier picks random $r_{1} \in F_{p}$, and challenges prover to "prove" the value of $\mathrm{P}_{1}\left(\mathrm{r}_{1}\right)$ Key point: If prover sends polynomial $Q_{1}(x) \neq P_{1}(x)$, then $Q_{1}\left(r_{1}\right) \neq P_{1}\left(r_{1}\right)$ with prob. $\geq 1-O(\operatorname{size}(\phi) / p)$

The power of polynomials

Two n-variable formulae ϕ and ψ can differ on just one out of 2^{n} assignments. So can't catch their difference by checking at a random assignment.

Two low-degree polynomials $\mathrm{P} \neq \mathrm{Q}$ must differ on significant fraction of the domain.

This property was very useful for "error-correction" and is now handy again.

Amazing reach of this simple fact about polynomials: a nonzero degree d polynomial has at most d roots over a field.
$P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{Arith}(\phi) ; n$-variate polynomial

$$
P_{1}(x)=\sum_{b_{2}, \ldots, b_{n} \in\{0,1\}} P\left(x, b_{2}, \ldots, b_{n}\right) ; \text { Univariate polynomial in } F_{p}[x]
$$

Prover asked to send low-degree polynomial $P_{1}(x)$ (by listing its coefficients); verifier checks $P_{1}(0)+P_{1}(1)=k$, picks random $r_{1} \in F_{p}$, and challenges prover to prove the claimed value of $P_{1}\left(r_{1}\right)$.

Lies beget lies: If prover sends poly $Q_{1}(x) \neq P_{1}(x)$, then $Q_{1}\left(r_{1}\right) \neq P_{1}\left(r_{1}\right)$ with high probability.

Next round:

$$
P_{2}(x)=\sum_{b_{3}, \ldots, b_{n} \in\{0,1\}} P\left(r_{1}, x, b_{3}, \ldots, b_{n}\right) ; \text { Univariate poly. in } F_{p}[x]
$$

Prover asked to send polynomial $P_{2}(x)$ (by listing its coefficients); verifier checks $P_{2}(0)+P_{2}(1)=P_{1}\left(r_{1}\right)$, picks random $r_{2} \in F_{p}$, and challenges prover to prove the claimed value of $P_{2}\left(r_{2}\right)$.

Next round:

$$
P_{2}(x)=\sum_{b_{3}, \ldots, b_{n} \in\{0,1\}} P\left(r_{1}, x, b_{3} \ldots, b_{n}\right) ; \text { Univariate poly. in } F_{p}[x]
$$

Prover sends low-degre polynomial $P_{2}(x)$ (by listing its coefficients); verifier checks $P_{2}(0)+P_{2}(1)=P_{1}\left(r_{1}\right)$, picks random $r_{2} \in F_{p}$, and challenges prover to prove the claimed value of $P_{2}\left(r_{2}\right)$.

Lies beget more lies: If prover sends polynomial $Q_{2}(x) \neq P_{2}(x)$, then $Q_{2}\left(r_{2}\right) \neq P_{2}\left(r_{2}\right)$ with high prob.

Round i invariant: Verifier has chosen $r_{1}, r_{2}, \ldots, r_{i-1}$.
Prover must commit to a polynomial, which for honest behavior should be

$$
P_{i}(x)=\sum_{b_{i+1}, \ldots, b_{n} \in\{0,1\}} P\left(r_{1}, \ldots, r_{i-1}, x, b_{i+1}, \ldots, b_{n}\right)
$$

Verifier checks $P_{i}(0)+P_{i}(1)=P_{i-1}\left(r_{i-1}\right)$, picks random $r_{i} \in F_{p}$, and tasks prover with backing up the claimed value of $P_{i}\left(r_{i}\right)$.

Final round: Verifier has chosen $r_{1}, r_{2}, \ldots, r_{n-1}$.
Prover sends a univariate low-degree polynomial, supposedly

$$
P_{n}(x)=P\left(r_{1}, \ldots, r_{n-1}, x\right)
$$

Verifier checks $P_{n}(0)+P_{n}(1)=P_{n-1}\left(r_{n-1}\right)$,
picks random $r_{n} \in F_{p}$,
and checks $P_{n}\left(r_{n}\right)=P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.

Verifier rejects if any of its checks across the n rounds fails; otherwise he accepts.

Completeness: If $\Phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ has exactly k assignments, then a prover playing honestly by the rules will satisfy all checks made by the verifier, and the verifier will accept with certainty.

Soundness Theorem: If number of satisfying assignments to $\Phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, . ., \mathrm{x}_{\mathrm{n}}\right)$ doesn't equal k , then the verifier accepts with probability \leq poly $(n) / p \ll 1 / 2$

Proof idea: Let $Q_{i}(x)$ be poly. prover sends in round i Since \# sat. assignments to $\Phi=P_{1}(0)+P_{1}(1) \neq k$, prover must lie about $P_{1}(x)$ in round 1 , sending $Q_{1} \neq P_{1}$. (otherwise the check $Q_{1}(0)+Q_{1}(1)=k$ will fail)

Now $P_{2}(0)+P_{2}(1)=P_{1}\left(r_{1}\right)$ (by defn) \& $P_{1}\left(r_{1}\right) \neq Q_{1}\left(r_{1}\right)$ w.h.p.
So prover is forced to lie in round 2 , sending $Q_{2} \neq P_{2}$ (otherwise the check $Q_{2}(0)+Q_{2}(1)=Q_{1}\left(r_{1}\right)$ will fail)

Continuing this argument, unless very lucky in an earlier round, prover must send $Q_{n}(x) \neq P_{n}(x)$ in round n.
Verifier can compute $P_{n}\left(r_{n}\right)=P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$
(as he knows P) \& will find $P\left(r_{1}, r_{2}, \ldots, r_{n}\right) \neq Q_{n}\left(r_{n}\right)$ w.h.p.

Probability of accepting false claim

For verifier to accept, prover must get lucky in some round.

Let i be the earliest round where this happens,
i.e., $P_{i}\left(r_{i}\right)=Q_{i}\left(r_{i}\right)$ even though $P_{i}(x) \neq Q_{i}(x)$

As P_{i} and Q_{i} are degree poly(n) polys, this happens with probability $\leq \operatorname{poly}(n) / p$

The probability that prover gets lucky in some round is at most n times bigger, and thus also \leq poly(n)/p

Summary

One can prove that a 3SAT formula is not satisfiable via an interactive proof!
(Note: verifier is efficient, prover has to work hard)

Via NP-completeness reductions, same holds for claim that graph is not 3-colorable, not Hamiltonian, etc.

In fact, power of interactive proofs extends to all problems solvable in polynomial space (IP=PSPACE)

Surprising efficacy of polynomials in unexpected places!!

Problem 1: Bin Packing

Given a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of positive integers, and a positive integer $B \geq \max a_{i}$, partition A into minimum number of subsets such that the sum of the elements in each subset is at most B.

Midterm 2: Bin Packing is NP-hard
(reduction from PARITITION to telling if two "bins" suffice)
Open: Is there a polytime algo to find a partition with OPT + 1 subsets, where OPT is the number of subsets in an optimal solution?

Best known: $(1+\epsilon)$ OPT +1 , or OPT + O(log OPT)

Problem 2: Graph 3-Coloring

3COLOR $=\{\langle\mathrm{G}\rangle \mid \mathrm{G}$ is 3-colorable $\}$ is NP-complete.
So, unless $\mathrm{P}=$ NP, there is no polynomial time algorithm that given as input a 3-colorable graph, finds a proper 3-coloring of it.

Also known (and harder to prove):
Finding a 4-coloring of a 3-colorable graph is NP-hard.
Open: What about 5-coloring a 3-colorable graph?
Most likely NP-hard, but we can't prove it!
Best algorithm uses $\approx n^{0.2}$ colors, where $n=\#$ vertices

Problem 3: Finding a satisfying assignment when there is an abundance of them

Suppose we are given a CNF formula ϕ on n variables that is promised to have $\geq 2^{n-1}$ satisfying assignments
(i.e., at least $1 / 2$ the assignments satisfy every clause).
$>$ Trivial to find a satisfying assignment of such an instance in randomized polynomial time.

Open: Is there a deterministic polynomial time algorithm for finding a satisfying assignment given such an instance of SAT?

Best known runtime: $\mathrm{n}^{\wedge}\left\{O\left((\log \log \mathrm{n})^{2}\right)\right\}$
(2016)

