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Goals of the course
- Learn about the foundational ideas and concepts 
  in the theory of computation.

- Learn the mathematical constructs and techniques needed to  
  understand and develop key computational concepts.

- Improve rigorous, logical, and abstract thinking skills.

- Develop problem-solving skills.

- Refine proof-writing skills.

- Express complex ideas and arguments clearly, 
  both in written and oral form.

- Cooperate with others in order to solve challenging and 
  rigorous problems related to the study of computer science.



This is a “big picture” course

Finite automata

Turing machines

Graph theory

NP-completeness

Combinatorial games

Approximation algorithms

Group theory

Probability

Randomized algorithms

Basic number theory

Cryptography

Markov chains

Generating functions

Communication complexity

Fields and polynomials

Interactive proofs

Error correcting codes



Topics we learned

- Formalization of computation (DFAs,  TMs)

- Decidability/Undecidability  
  (and relations to countability/uncountability)

- Computational complexity
  (and some interesting algorithms)

- NP-completeness and the P vs NP question

- Approximation algorithms

- Randomized algorithms



Topics we learned

- Markov chains

- Cryptography

- Communication complexity

- Computer science perspective on proofs

- Error-correcting codes

- Gödel’s incompleteness theorems



Topics we learned

- Graph theory

- Probability theory

- Modular arithmetic

- Group theory

- Fields and polynomials

- Generating functions



Some big open questions



Relative power of resources

Does non-determinism help 
with respect to time efficient computation?

P = NP?

Resources:  time, space, randomness, non-determinism.



Relative power of resources

Does non-determinism help 
with respect to space efficient computation?

Resources:  time, space, randomness, non-determinism.

L = NL?



Relative power of resources

Resources:  time, space, randomness, non-determinism.

Is time equivalent to space 
with respect to efficient computation?

P = PSPACE?

Note:
P ✓ NP ✓ PSPACE



Relative power of resources

Resources:  time, space, randomness, non-determinism.

Does randomness give us more power
with respect to time efficient computation?

P = BPP?

Interesting connection to circuit complexity:

certain circuit complexity lower bounds =) P = BPP

                         certain circuit complexity lower bounds P = BPP =)



Relative power of resources

Resources:  time, space, randomness, non-determinism.

Does randomness give us more power
with respect to time efficient computation?

P = BPP?

A major related result:

PRIMES 2 P



Relative power of resources

Resources:  time, space, randomness, non-determinism.

Does randomness give us more power
with respect to space efficient computation?

L = BPL?

A major related result:

USTCONN 2 L



Relative power of resources

Resources:  time, space, randomness, non-determinism.

L ✓ NL ✓ P ✓ NP ✓ PSPACE ✓ EXP ✓ NEXP



Circuit complexity



Circuit complexity

poly-time TM           poly-size circuits=)

no poly-size circuits           no poly-time TM=)

Circuits:  a clean and simple definition of computation.

Just a composition of  AND,  OR,  NOT  gates.

So let’s show SAT cannot be computed with
poly-size circuits.



Circuit complexity

x1 x2 x3 · · · xn

f(x1, x2, . . . , xn)

Let’s restrict the circuit,  make it less powerful.

depth

What if we just allow constant depth?

Such circuits, in sub-exponential size, cannot compute
x1 + x2 + · · ·+ xn (mod 2)parity function: 

ANDOR NOT

.

.

.



Circuit complexity

What if we just allow                depth?

parity can be computed in poly-size.

O(log n)

we can’t prove lower bounds.

x1 x2 x3 · · · xn

f(x1, x2, . . . , xn)

depth

ANDOR NOT

.

.

.



Circuit complexity

but add parity gates to the circuit?

What if we just allow constant depth

x1 x2 x3 · · · xn

f(x1, x2, . . . , xn)

depth

ANDOR NOT

.

.

. XOR



Circuit complexity

but add parity gates to the circuit?

What if we just allow constant depth

Such circuits, in polynomial size, cannot compute

mod3(x) =

⇢
0 if x1 + x2 + · · ·+ xn ⌘3 0

1 otherwise

Ok, let’s add            gates to the circuit.
mod3

Or, instead of            and            gates, 
just allow           gates.  

mod2 mod3

mod6



Circuit complexity

Meanwhile…

Another restriction:  remove NOT gates
(but no restriction on depth)

Alexander Razborov (1985):

Such poly-size circuits cannot compute 
CLIQUE.

We are so close to separating P and NP…



Circuit complexity

Alas…



Circuit complexity

Current frontier in circuit complexity:

Find a language in NP that cannot be computed by
constant-depth, poly-size circuits with 
                             gates.
and, or, not,mod6

In fact:
Find a language in NP that cannot be computed by
depth 3, poly-size circuits with just             gates.mod6



Circuit complexity

In fact:

Let’s define a “generalized” mod6 gate.

For A ✓ {0, 1, 2, 3, 4, 5}

mod

A
6 (x) =

⇢
1 if x1 + x2 + · · ·+ xn (mod 6) 2 A

0 otherwise

Find a language in NP that cannot be computed by
depth 2, poly-size circuits with 
just “generalized” mod6 gates.

Please solve this problem!



Circuit complexity

For circuits with AND, OR, NOT gates:

Best known lower bound for an “explicit” function is

5n� peanuts

Best known lower bound



Circuit complexity

Another interesting type of circuit:

Circuits with threshold gates.

For w0, w1, w2, . . . , wn 2 Z

thrw(x) =

⇢
1 if w1x1 + w2x2 + · · ·+ wnxn > w0

0 otherwise

Another major open problem:

Find a function that cannot be computed by poly-size,
dept-2 circuits composed of only threshold gates.



Circuit complexity

Why are circuit lower bounds so hard to prove?

Steven Rudich Alexander Razborov
(CMU professor)

1994

Current techniques are unlikely to work!

“Natural Proofs barrier”



Algorithms



Algorithms

Matrix Multiplication

1978:                    by PanO(n2.796)

1979:                    by Bini, Capovani, Romani, LottiO(n2.78)

1981:                    by SchönhageO(n2.522)

1981:                    by RomaniO(n2.517)

1981:                    by Coppersmith, WinogradO(n2.496)

1986:                    by StrassenO(n2.479)

1990:                    by Coppersmith, WinogradO(n2.376)

2010:                    by Andrew Stothers (PhD thesis)O(n2.374)

2011:                    by Virginia Vassilevska WilliamsO(n2.373)



Algorithms

Matrix Multiplication

2014:                    by François Le GallO(n2.372)

2014:  Ambainis, Filmus, Le Gall

These techniques are not going to let you go below 

O(n2.3)

Can we go down to             ?O(n2)



Algorithms

Graph Isomorphism

Given two n-vertex graphs, are they isomorphic?

One of few problems not known to be in 
P nor NP-complete.

Best known algorithm used to be: 2O(

p
n logn)

Now: 2O(log

c n)



Algorithms

Factoring

Given a composite number, output a non-trivial factor.

One of few problems not known to be in 
P nor NP-complete.

Best known algorithm:  roughly 2O(n1/3)

There is a poly-time quantum algorithm.



Algorithms

Finding an n-bit prime

Given n, output a prime number with at least n digits.

poly(n) time randomized algorithm exists.

Find a poly(n) time deterministic algorithm.



Quantum computation



Quantum computation

The only difference between a probabilistic classical world and 
the equations of the quantum world is that somehow or other it 
appears as if the probabilities would have to go negative. 

-Richard Feynman



Quantum computation

BQP = quantum analog of BPP

BQP = BPP?

BQP = NP?



How are we going to tackle these tough questions?



Tackling math problems

(SOLO)

(was open for 358 years)

Andrew Wiles

Proved Fermat’s Last Theorem
1995

Spent 7 years on it in secrecy.



Tackling math problems

(GROUP)

´Paul Erdós

1913-1996

More than 500 collaborators

(he referred to children as “epsilons”)

Erdós number:

degree of separation from Erdós

´

´



Tackling math problems

(OPEN)

Massively collaborative online mathematical projects

Polymath projects:

…
Timothy Gowers



Tackling math problems

(COMP)

4-Color Theorem

Reduce the problem to checking ~2000 cases.

Let the machine check those cases.

Can expect more meaningful interactions between
humans and computers in the future.



Tackling math problems

(SOLO FOR COMP)

This stuff is
piece of cake.



Whatever the case may be, we need your help to make 
progress.



David Hilbert, 1900

The Problems of Mathematics
“Who among us would not be happy to lift the veil behind which is 
hidden the future; to gaze at the coming developments of our science 
and at the secrets of its development in the centuries to come? What 
will be the ends toward which the spirit of future generations of 
mathematicians will tend? What methods, what new facts will the new 
century reveal in the vast and rich field of mathematical thought?”




