I5-25 I Great Theoretical Ideas in Computer Science Lecture 3: Deterministic Finite Automata (DFA)

September 6th, 2016

This Week

What is **computation**?

What is an algorithm?

How can we mathematically define them?

Let's assume two things about our world

No universal machines exist.

We only have machines to solve decision problems.

What is **computation**?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data? What is a computational problem?

Instance

[vanilla, mind, Anil, yogurt, doesn't]

Solution

[Anil, doesn't, mind, vanilla, yogurt]

Representing information

Familiar idea:

Information in a computer is represented with 0s and 1s.

Can encode/represent any kind of data (*numbers, text, pairs of numbers, graphs, images, etc...*) with a finite length binary string.

Representing information

 Σ^* = the set of all finite length strings over Σ

$$\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots\}$$
string of length 0 (empty string)

A subset $L \subseteq \Sigma^*$ is called a *language*.

Representing information

- $\Sigma = \{a, b\}$
- $\Sigma = \{a, b, c\}$
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $$\begin{split} \Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, \\ l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \end{split}$$

Can use whichever is convenient.

Let $\Sigma = \{0, 1\}.$

The palindrome computational problem is:

Soluti	on
1	Yes
0	No
0	No
1	Yes
1	Yes
0	No
	Solution 1 1 1 1 1 0 0 1 1 1 0 0

- Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \#\}.$
- The multiplication computational problem is:

Instance	Solution
0#0	0
0#1	0
1 # 0	0
1 # 1	1
10 # 2	20
11#3	33
12345679#9	1111111111
•	•

• • •

Definition: A computational problem is a function $f: \Sigma^* \to \Sigma^*$.

Definition: A decision problem is a function $f: \Sigma^* \to \{0, 1\}.$

No,Yes

False, True

Reject, Accept

Important

There is a one-to-one correspondence between decision problems and languages.

What is **computation**?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data? What is a computational problem?

What is **computation**?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data? What is a computational problem?

- restricted model of computation
- very limited memory
 - reads input from left to right, and accepts or rejects.
 (one pass through the input)

State diagram of a DFA

State diagram of a DFA

 $\Sigma = \{0, 1\}$

State diagram of a DFA

Simulation of a DFA

Simulation of a DFA

Anatomy of a DFA

transition rule: labeled arrows

```
def foo(input):
    i = 0;
    STATE 0:
    if (i == input.length): return False;
    letter = input[i];
    i++;
    switch(letter):
    case '0': go to STATE 0;
    case '1': go to STATE 1;
```

```
case '1': go to STATE 1;
```

STATE 1:

```
if (i == input.length): return True;
letter = input[i];
i++;
switch(letter):
  case '0': go to STATE 2;
  case '1': go to STATE 2;
```


def foo(input):

```
i = 0;
```

STATE 0:

```
if (i == input.length): return False;
```

```
letter = input[1];
```

i++;

switch(letter):

```
case '0': go to STATE \mathbf{0};
```

case '1': go to STATE 1;

STATE 1:

```
if (i == input.length): return True;
letter = input[i];
i++;
switch(letter):
```

case '0': go to STATE 2; case '1': go to STATE 2;

Have we reached end of input? Is it an accepting state?


```
def foo(input):
                                                 input =
  i = 0;
  STATE 0:
     if (i == input.length): return False;
     letter = input[i];
                                               Read current letter.
     i++;
     switch(letter):
       case '0': go to STATE 0;
       case '1': go to STATE 1;
  STATE 1:
                                                                              0,1
     if (i == input.length): return True;
     letter = input[i];
     i++;
                                                                                   q_2
                                                   q_0
     switch(letter):
       case '0': go to STATE 2;
       case '1': go to STATE 2;
                                                         0
                                                                   q_3
```



```
def foo(input):
    i = 0;
    STATE 0:
    if (i == input.length): return False;
    letter = input[i];
    i++;
    switch(letter):
    case '0': go to STATE 0;
    case '1': so to STATE 1;
```

```
case '1': go to STATE 1;
```

STATE 1:

```
if (i == input.length): return True;
letter = input[i];
i++;
switch(letter):
  case '0': go to STATE 2;
  case '1': go to STATE 2;
```


Definition: Language decided by a DFA

Let M be a DFA.

We let L(M) denote the set of strings that M accepts.

So, $L(M) = \{x \in \Sigma^* : M(x) \text{ accepts.}\} \subseteq \Sigma^*$

If L = L(M), we say that M decides L. computes recognizes accepts

L(M) = all binary strings with an even number of I's $= \{x \in \{0,1\}^* : x \text{ has an even number of 1's} \}$

L(M) = all binary strings with even length $= \{x \in \{0,1\}^* : |x| \text{ is even}\}$

 $L(M) = \{x \in \{0,1\}^* : x \text{ ends with a } 0\} \cup \{\epsilon\}$

 $L(M) = \{a, b, cb, cc\}$

Poll

The set of all words that contain at least three 0's The set of all words that contain at least two 0's The set of all words that contain 000 as a substring The set of all words that contain 000 as a substring The set of all words that contain 00 as a substring The set of all words ending in 000 The set of all words ending in 00 None of the above

Beats me

Draw a DFA that decides

 $L = \{x \in \{0, 1\}^* : x \text{ starts and ends with same bit.}\}\$

- Hint: How do you decide all strings that end with a 0?
 - How do you decide all strings that end with a 1?

DFA construction practice

- $L = \{110, 101\}$
- $L = \{0, 1\}^* \setminus \{110, 101\}$
- $L = \{x \in \{0, 1\}^* : x \text{ starts and ends with same bit.}\}\$
- $L = \{x \in \{0, 1\}^* : |x| \text{ is divisible by 2 or } 3.\}$
- $L = \{\epsilon, 110, 110110, 110110110, \ldots\}$
- $L = \{x \in \{0, 1\}^* : x \text{ contains the substring 110.}\}$ $L = \{x \in \{0, 1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x.\}$

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

where

- Q is a finite set (which we call the set of states);
- Σ is a finite set (which we call the alphabet);
- δ is a function of the form $\delta: Q \times \Sigma \to Q$ (which we call the transition function);
- $q_0 \in Q$ is an element of Q(which we call the start state);
- $F \subseteq Q$ is a subset of Q (which we call the set of accepting states).

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

$Q = \{q_0, q_1, q_2, q_3\}$			
$\Sigma = \{0, 1\}$			
$\delta:Q\times\Sigma\to Q$			
	δ	0	1
	q_0	q_0	q_1
	q_1	q_2	q_2
	q_2	q_3	q_2
	q_3	q_0	q_2

 q_0 is the start state $F = \{q_1, q_2\}$

Formal definition: DFA accepting a string

Let $w = w_1 w_2 \cdots w_n$ be a string over an alphabet Σ . Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

We say that M accepts the string wif there exists a sequence of states $r_0, r_1, \ldots, r_n \in Q$ such that

-
$$r_0 = q_0$$
 ;

-
$$\delta(r_{i-1}, w_i) = r_i$$
 for each $i \in \{1, 2, ..., n\}$;
- $r_n \in F$.

Otherwise we say M rejects the string w.

Definition: Regular languages

Definition: A language L is called *regular* if L = L(M) for some DFA M.

Regular languages

Regular languages

Questions:

- I. Are all languages regular? (Are all decision problems computable by a DFA?)
- 2. Are there other ways to tell if a language is regular?

Theorem:

The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular.

Note on notation:

For
$$a \in \Sigma$$
, a^n denotes the string $aa \cdots a$.
n times $a^0 = \epsilon$

For $u, v \in \Sigma^*$, uv denotes u concatenated with v.

So $L = \{\epsilon, 01, 0011, 000111, 00001111, \ldots\}.$

Theorem:

The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular.

Intuition:

Seems like the DFA would need to remember how many 0's it sees.

But it has a constant number of states. And no other way of remembering things.

Careful though:

 $L = \{x \in \{0,1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x.\}$ is regular!

Theorem:

The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is **not** regular.

Proof: Proof is by contradiction. So suppose L is regular. So there is a DFA M that decides L.

Let k denote the number of states of M.

Let r_n denote the state M is in after reading 0^n .

By PHP, there exists $i, j \in \{0, 1, ..., k\}$, $i \neq j$, such that $r_i = r_j$. So 0^i and 0^j end up in the same state. For any string w, $0^i w$ and $0^j w$ end up in the same state. But for $w = 1^i$, $0^i w$ should end up in an accepting state, and $0^j w$ should end up in a rejecting state. This is the desired contradiction.

Proving a language is not regular

Usually the proof goes like:

- I. Assume (to reach a contradiction) that the language is regular. So a DFA decides it.
- 2. Argue by PHP that there are two strings x and y that lead to the same state in the DFA.

3. Find a string z such that $xz \in L$ but $yz \notin L$.

Regular languages

Regular languages

Regular languages

Questions:

- I. Are all languages regular? (Are all decision problems computable by a DFA?)
- 2. Are there other ways to tell if a language is regular?

Closure properties or regular languages

Closed under union:

$$L_1, L_2$$
 regular $\implies L_1 \cup L_2$ regular.

 $L_1 \cup L_2 = \{x \in \Sigma^* : x \in L_1 \text{ or } x \in L_2\}$

Closed under concatenation:

$$L_1, L_2$$
 regular $\implies L_1 \cdot L_2$ regular.
 $L_1 \cdot L_2 = \{xy : x \in L_1, y \in L_2\}$

Closed under star:

L regular $\implies L^*$ regular.

 $L^* = \{x_1 x_2 \cdots x_k : k \ge 0, \forall i \ x_i \in L\}$

Closure properties or regular languages

Fact:

Can define regular languages inductively as follows:

- \emptyset is regular.
- For every $a \in \Sigma$, $\{a\}$ is regular.
- L_1, L_2 regular $\implies L_1 \cup L_2$ regular.
- L_1, L_2 regular $\implies L_1 \cdot L_2$ regular.
- L regular $\implies L^*$ regular.

Regular expression:

 $a(a\cup b)^*a\cup b(a\cup b)^*b\cup a\cup b$

Theorem: Let Σ be some finite alphabet. If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 \cup L_2$.

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be the decider for L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be the decider for L_2 . We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

 $L_1 = {{\rm strings with even} \atop {\rm number of I's}}$

 $L_2 = {{\rm strings with length} \over {\rm divisible by 3.}}$

Main idea:

Main idea:

Main idea:

Main idea:

Main idea:

Main idea:

Main idea:

Main idea:

Main idea:

Main idea:

Main idea:

Input: 101001

Input: 101001

Input: 101001

Input: 101001

Decision: Accept

Theorem:

Let Σ be some finite alphabet.

If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 \cup L_2$.

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be the decider for L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be the decider for L_2 . We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

- $Q'' = Q \times Q' = \{(q, q') : q \in Q, q' \in Q'\}$
- $\delta''((q,q'),a) = (\delta(q,a),\delta'(q',a))$
- $q_0'' = (q_0, q_0')$
- $F'' = \{(q, q') : q \in F \text{ or } q' \in F'\}$

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be the decider for L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be the decider for L_2 . We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

- $Q'' = Q \times Q' = \{(q, q') : q \in Q, q' \in Q'\}$
- $\delta''((q,q'),a) = (\delta(q,a),\delta'(q',a))$

-
$$q_0'' = (q_0, q_0')$$

• $F'' = \{(q, q') : q \in F \text{ or } q' \in F'\}$

It remains to show that $L(M'') = L_1 \cup L_2$.

 $L(M'') \subseteq L_1 \cup L_2 : \dots$ $L_1 \cup L_2 \subseteq L(M'') : \dots$

An application of DFAs

String Searching Problem

Input: string T of length n. string w of length k. **Output**: Yes/No. Does w occur in T?

Naive algorithm:

About nk steps.

Can we do better?

An application of DFAs

String Searching Problem

Input: string T of length n. string w of length k. **Output**: Yes/No. Does w occur in T?

Automaton solution:

The language $\Sigma^* w \Sigma^*$ is regular. So there is some DFA M_w that accepts it. Build M_w and feed it T. Running time: $\sim n$ steps. Time to build M_w ? Simple alg: $\sim k^3$ steps.

An application of DFAs

String Searching Problem

Input: string T of length n. string w of length k. **Output:** Yes/No. Does w occur in T?

Knuth-Morris-Pratt 1977:

 $\sim k$ steps to build M_w .

Next Time

