15-251
Great Theoretical ldeas in Computer Science

Lecture 3:
Deterministic Finite Automata (DFA)

September 6th, 2016

This Week

(")
Input
data

output

—>{ “computer”
data

| J

What is computation?
What is an algorithm?

How can we mathematically define them!?

Let’s assume two things about our world

No universal machines exist.

4) 4) ("

+ isPrime Sorting

We only have machines to solve decision problems.

Input

—
data

(

|

“computer”

v

What is computation?

What is an algorithm?

output
data

How can we mathematically define them!?

Today:

How do we represent information/data?
What is a computational problem?

Introducing deterministic finite automata (DFA)

Examples of computational problems

4)

input output
—> —>
data + data

N/

Instance Solution

0, 0 0
0, 1 1
1, 1 2
2, 2 4
2.3 5
10, 1 11

100, 99 199

Examples of computational problems

4)

input e output
—> isPrime —

data data

_ J

Instance Solution

0 No
1 No
2 Yes
3 Yes
4 No

251 Yes

Examples of computational problems

(

\

IgaP:at — isPalindrome —> Oz;g:t
\ J
Instance Solution

a Yes
10101 Yes
selfless No
dammitimmad Yes
parahaziramarizaharap Yes

Examples of computational problems

Input
data

(

—>

|

\

Sorting

—

Instance

output
data

[vanilla, mind, Anil, yogurt, doesn’t]

Solution

[Anil, doesn’t, mind, vanilla, yogurt]

Representing information

Familiar idea:

Information in a computer is represented with Os and Is.

Can encode/represent any kind of data
(numbers, text, pairs of numbers, graphs, images, etc...)
with a finite length binary string.

Representing information

/z — 10,1}
alphabet symbols of the alphabet

>* = the set of all finite length strings over X
>* = {¢,0,1,00,01,10,11,000,001,010,011, 100, 101, 110, 111, ...}

l

string of length 0 (empty string)

A subset . C " is called a language.

Representing information
>, ={a,b}
> ={a,b,c}
> =10,1,2,3,4,5,6,7,8,9}
Z — {07]’72737475767 778797a7 b7c7d767 f7g7 h7i7j7 k?

l7m7n707p7Q7r7S7t7u7v7w7x7y7z}

Can use whichever is convenient.

What is a computational problem!?

Let ¥ = {0,1}.

The palindrome computational problem is:

Instance Solution

€ 1 Yes
0 1 Yes
1 1 Yes
00 1 Yes
01 0 No
10 0 No
11 1 Yes
000 1 Yes
001 0 No

What is a computational problem!?

Let ¥ = {0,1,2,3,4,5,6,7,8,9, #}

The multiplication computational problem is:

Instance Solution
0#0 0
041 0
1#0 0
1#1 1

10#42 20
1143 33

1234567949 111111111

What is a computational problem?

p
Definition: A computational problem is a function
3 foX = .
p
Definition: A decision problem is a function
. f:¥"—={0,1}

No, Yes

False, True

Reject, Accept

What is a computational problem!?

Important

There is a one-to-one correspondence between
decision problems and languages.

Instance Solution

(€) 1

L CxY*
L ={e,0,1,00,11,000,...}

e
-
O = O O K = =

001

Input

—
data

(

|

computing
device

\

What is computation?

What is an algorithm?

output
data

How can we mathematically define them!?

Today:

How do we represent information/data?
What is a computational problem?

Introducing deterministic finite automata (DFA)

Input

—
data

(

|

computing
device

\

What is computation?

What is an algorithm?

output
data

How can we mathematically define them!?

Today:

How do we represent information/data?

What is a computational problem?

» Introducing deterministic finite automata (DFA)

Introducing deterministic finite automata (DFA)

4)

input . DEA __, output
data data

- restricted model of computation
- very limited memory

- reads input from left to right, and accepts or rejects.
(one pass through the input)

> = {0,1)

State diagram of a DFA

State diagram of a DFA

> = {0,1)

State diagram of a DFA

> = {0,1)

Simulation of a DFA

> =40,1}
Input: 1010

% N/
o —() o

Simulation of a DFA

> =40,1}
Input: 1010

0 | 0,1 |
_>

2
O

Simulation of a DFA

> =40,1}
Input: 1010

I
~(g

Simulation of a DFA

> =40,1}
Input: 1010

I
~(g

Simulation of a DFA

> =40,1}
Input: 1010

0 |
~(,
0

Simulation of a DFA

> =40,1}
Input: 1010

% N/
~(») o

Simulation of a DFA

> =40,1}
Input: 1010

% N/
~(») o

Simulation of a DFA

| 0,
aORE=O
0 o |

> =40,1}
Input: 1010

Simulation of a DFA

> = {0,1)

Decision: Reject
Input: 1010

—(»)
0
0 o |

Simulation of a DFA

> =40,1}
Input: Ol111

T iil I “III” 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: Ol111

T iil I “III’) 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: 01111

T iil I “III’) 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: 01111

‘T iil I ¢‘III” 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: 01111

Tiil I “III') 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: 01111

T
% N/
~(») o

Simulation of a DFA

|

- o
N

),

> =40,1}
Input: 0111

Simulation of a DFA

> = {0,1)

Decision: Accept
Input: 0111

|

*

0 | 0, | |

—(»)
0

0 o |

Anatomy of a DFA

states accepting
states

start
state

states

transition rule: labeled arrows

DFA as a programming language

def io((;;(mput). imput=| 0| | | | |
STATE 0:
if (1 == input.length): return False;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

DFA as a programming language

def io(o);(mput). oout= [O T 1 | | |
S 0
if (i == input.length): return False;) Have we reached end of input?
letter = mputf[i]; s it an accepting state?
1++;
switch(letter):

case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

DFA as a programming language

def io((;;(mput). imput=| 0| | | | |
STATE 0:
if (1 == input.length): return False;
letter = input[i];
[i++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

] Read current letter.

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

DFA as a programming language

def io(o);(mput). imput=| 0| | | | |
STATE 0:

if (1 == input.length): return False;
letter = input[i];
1++;

(switch(letter):

case ‘0’: go to STATE 0;

case ‘1’: goto STATE 1;

Depending on the letter
change the state.

\

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

DFA as a programming language

def io((;;(mput). imput=| O] | | | |
STATE 0:
if (1 == input.length): return False;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

Definition: Language decided by a DFA

Let M be a DFA.

We let L(M) denote the set of strings that M accepts.

So, L(M)={x € X" : M(x) accepts.} C ¥*

If L = L(M),we say that M decides L.
computes

recognizes
accepts

DFA Examples

M

N

°
1

= all binary strings with an even number of |’s

= {x € {0,1}" : = has an even number of 1’s}

DFA Examples

M
0,1

2O
0,1

= all binary strings with even length

= {z € {0,1}* : |z| is even}

DFA Examples

M

N

_> 0
0

L(M)= {x e {0,1}* : z ends with a 0} U {¢}

DFA Examples

> =1{a,b,c}
M a,b,c

a ‘
C a.b.c
> b7 > — >

a,b

L(M) = {a,b,cb,cc}

he set of a
ne set of a
ne set of a
he set of a
ne set of a

ne set of a

= e e T = = B

he set of a

words t

words t
words t
words t

words t

nat contain at least three Q’s
nat contain at least two O’s
nat contain 000 as a substring

hat contain 000 as a substring

nat contain 00 as a substring

words ending in 000

words ending in 00

None of the above

Beats me

DFA Examples

Draw a DFA that decides
L ={x € {0,1}" : z starts and ends with same bit.}

Hint: How do you decide all strings that end with a 0 ?

How do you decide all strings that end witha | ?

DFA construction practice

L = {110,101}

L = {0,1}*\{110,101}

L ={x € {0,1}" : z starts and ends with same bit.}
L ={x€{0,1}" : |z| is divisible by 2 or 3.}

L = {¢,110,110110, 110110110, .. .}

L ={x €{0,1}" : x contains the substring 110.}
L ={x€{0,1}* : 10 and 01 occur equally often in x.}

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple
M = (Q72757QO7F)
where
- () is a finite set (which we call the set of states);

- 2. is a finite set (which we call the alphabet);
- 0 is a function of theform 0 : Q) x X — @)

(which we call the transition function);

- go € () is an element of ()
(which we call the start state);

- FFC (@ isasubset of ()
(which we call the set of accepting states).

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple
M = (Q72757QO7F)

Q — {QO7 d1, 42, QS}

>, =40,1}
0:0Q XX —Q
0 0 1

qo qo q1
d1 q2 qo
q2 qs3 q2
q3 qo q2

qo is the start state
F={q1,q}

Formal definition: DFA accepting a string

Let w = wiws - --w, be a string over an alphabet >..
Let M = (Q,X,9,q0, F) be a DFA.

We say that M accepts the string w
if there exists a sequence of states 7r9,71,...,7, € ¢
such that

- ’]"O :qo;
- 0(ri_1,w;) =1r; foreach i€ {1,2,...,n};
- T'n GF.

Otherwise we say M rejects the string w.

Definition: Regular languages

-

_

Definition: A language L is called regular if

L =L(M) for some DFA M.

Regular languages

All languages
P(X™)

Regular languages

(//;110,101} ﬂ‘\\\

{0,1}*\{110, 101}

{x € {0,1}" : x starts and ends with same bit.}

{z € {0,1}" : |z| is divisible by 2 or 3.}
{e,110,110110,110110110, ...}
{z € {0,1}" : = contains the substring 110.}

{z € {0,1}" : 10 and 01 occur equally often in z.}

. /

Regular languages

Questions:

|. Are all languages regular?
(Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

A non-regular language

4)
Theorem:

The language L = {0"1™ : n € N} is not regular.
.

Note on notation:

For a €, a" denotesthestring aa---a.
Y
n times
a’ = e

For w,v € ¥*, uv denotes u concatenated with v.

So L = {¢,01,0011,000111,00001111,...}.

A non-regular language

p
Theorem:

The language L = {0"1™ : n € N} is not regular.
.

Intuition:

Seems like the DFA would need to remember
how many O’s it sees.

But it has a constant number of states.
And no other way of remembering things.

Careful though:
L ={z € {0,1}" : 10 and 01 occur equally often in .} is regular!

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N},

Input: 000000001 [I TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [I TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [I TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [T TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [T TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [T TTTTI

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [T TTTTI

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}
Input: 00000000| T After 00 and 000000

we ended up in the
same state q;g

‘ ‘ 0011 and 000000 |
_, Imagine some end uptmt the
arbitrary transitions same state.
‘ But
00l — accept
OOOOOO

0000001 |—>reject

A non-regular language
Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}
Input: 000000001 TTTTTTI

Pigeonhole Principle
Where will 0000000 go!?

T
:
_» imagine some 000
arbitrary transitions

0000

00000
000000

A non-regular language

-

The language L = {0"1™ : n € N} is not regular.
.

Theorem:

J

Proof: Proof is by contradiction. So suppose L is regular.

So there is a DFA M that decides L.

Let £ denote the number of states of M.

Let 7, denote the state M is in after reading 0".

By PHP, there exists 7,5 € {0,1,...,k}, ¢ # j,such that

r; =1;. So 0" and 0’ end up in the same state.

For any string w, 0"w and 07w end up in the same state.

But for w = 1°, 0“w should end up in an accepting state,
and 0’w should end up in a rejecting state.

This is the desired contradiction.

Proving a language is not regular

Usually the proof goes like:

|. Assume (to reach a contradiction) that the language
is regular. So a DFA decides it.

2. Argue by PHP that there are two strings * and y
that lead to the same state in the DFA.

3. Find a string 2 such that xz € L but yz & L.

Regular languages

All languages
P(X™)

Regular languages

(//;110,101} ﬂ‘\\\

{0,1}*\{110, 101}

{x € {0,1}" : x starts and ends with same bit.}

{z € {0,1}" : |z| is divisible by 2 or 3.}
{e,110,110110,110110110, ...}
{z € {0,1}" : = contains the substring 110.}

{z € {0,1}" : 10 and 01 occur equally often in z.}

. /

Regular languages

All languages
P(X™)

Regular languages

(//5110,101} ﬂ‘\\\

{0,1}*\{110, 101}

{x € {0,1}" : x starts and ends with same bit.}

{z € {0,1}" : |z| is divisible by 2 or 3.}
{€,110,110110, 110110110, ...}
{z € {0,1}" : = contains the substring 110.}

{z € {0,1}" : 10 and 01 occur equally often in z.}

. /

Regular languages

Questions:

|. Are all languages regular?
(Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

Closure properties or regular languages

Closed under union:
Ly, Lo regular = L7 U Lo regular.
LiULy={xe¥":x € Liorx¢€ Ly}
Closed under concatenation:
Ly, Loregular = L; - Lo regular.
Li-Lo={xy:x € L1,y € Ly}
Closed under star:

L regular —> L™ regular.

L ={x1z9- - a1 : k>0,Vix; € L}

Closure properties or regular languages

Fact:

Can define regular languages inductively as follows:

- () is regular.

- Forevery a € X, {a} is regular.

- L1, Lo regular = L U Lo regular.
- Ly, Lo regular = L; - Lo regular.
- L regular = L" regular.

Regular expression:
a(aUb)*faUblaUb)*™bUaUb

Regular languages are closed under union

-

_

Theorem:
Let >. be some finite alphabet.

If L1 C X" and Ly C X" are regular, then so is L1 U L.

J

Proof: Let M = (Q, X, J, qo, I') be the decider for L,
and M’ = (Q',X,0',q), F") be the decider for L.
We construct a DFA M = (Q", X, 6", q7, F")

that decides L1 U Lo, as follows:

Regular languages are closed under union

Example

7. — strings with even
1 — 9
number of I’s

strings with length

divisible by 3.

=
/MQ 0,1 AN /
)
\ %

Lo =

Regular languages are closed un

Input: 101001

?

L 01 A
(D)
N Y,

der union

/
0

M

o
L),

Regular languages are closed un

Input: 101001

?

L 01 A
(D)
N Y,

der union

/
0

M

o
L),

Regular languages are closed un

Input: 101001

?

L 01 A
(D)
N Y,

der union

/
0

M

o
L),

Regular languages are closed un

Input: 101001

T

L 01 A
(D)
N Y,

der union

/
0

M

o
L),

Regular languages are closed un

Input: 101001

T

L 01 A
(D)
N Y,

der union

/
0

M

o
L),

Regular languages are closed un

Input: 101001

?

L 01 A
(D)
N Y,

der union

/
0

M

o
L),

Regular languages are closed un

Input: 101001

T

L 01 A
(D)
N Y,

der union

/
0

M

o
L),

Regular languages are closed un

Input: (01001

T

L 01 A
(D)
N Y,

der union

/
0

M

o
L),

Regular languages are closed under union

Input: 101001

T

Accept

L 01 A
(D)
N Y,

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

/Mz / 0,1 N
~Or (D)
\ %

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

4 N

_ /

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

~

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

4 N

O©

_ /

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

4 N

O

1

7

_ /

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

4 N

@
1

/

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

~

@
1
7
0

/

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

~

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

~

@
1

7
1
(Zﬁ
Godd P1 Jodd P2

/

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

Main idea:

Construct a DFA that keeps track of
both at once.

Regular languages are closed under union

Input: 101001

T

Regular languages are closed under union

Input: 101001

T

Regular languages are closed under union

Input: 101001

T

Regular languages are closed under union

Input: 101001

T

Regular languages are closed under union

Input: 101001

T

Regular languages are closed under union

Input: 101001

T

Regular languages are closed under union

Input: 101001

T

Regular languages are closed under union

Input: 101001

?

Regular languages are closed under union

Input: 101001

?

Regular languages are closed under union

Input: 101001

T

Regular languages are closed under union

Input: 101001
T
4 0 N
0
(&
1 1
! »(dodd P1 0
_ =~ Y,

Regular languages are closed under union

Input: (01001
T
4 0 N
0
(&
1 1
! »(dodd P1 0
_ =~ Y,

Regular languages are closed under union

Input: (01001

T

Regular languages are closed under union

Input: 101001 Decision: Accept

T

Regular languages are closed under union

-

_

Theorem:
Let >. be some finite alphabet.

If L1 C X" and Ly C X" are regular, then so is L1 U L.

_/

Proof: Let M = (Q, 3,9, qo, I') be the decider for L
and M’ = (Q',X,0',q), F') be the decider for L.
We construct a DFA M = (Q",X, 6", q7, F")

that decides L; U Lo, as follows:

-Q"=0QxQ ={(¢,¢):q¢€Q,d €Q'}
- 5”((’) a) = (6(q,a),6'(¢',a))

:qge Forq¢ eF'}

Regular languages are closed under union

Proof: Let M = (Q, X, J, qo, I') be the decider for L,
and M’ = (Q',X,0',q), F') be the decider for L.
We construct a DFA M" = (Q", X, 6", q;, F")

that decides 1.1 U Lo, as follows:

- Q"=QxQ ={(¢,4):q€Q,q €Q’}
- 0"((q,4'),a) = (0(g,a),6'(q', a))

- 4o = (90, 90)

-F"={(q,¢'):qe Forq €F'}

It remains to show that L(M") = L; U Ls.
L(M")C LiULs; :

LyULy C L(M"):

An application of DFAs
String Searching Problem

Input: string I'of length n. string w of length £ .

Output: Yes/No. Does w occurin 1'?

Naive algorithm:

About nk steps.

Can we do better?

An application of DFAs

String Searching Problem

Input: string I'of length n. string w of length £ .
Output: Yes/No. Does w occurin 1'?

Automaton solution:

The language >*w>™ is regular.

So there is some DFA M, that accepts it.

Build M, and feed it I'. Running time: ~ 1 steps.
Time to build M, ? Simple alg: ~ k° steps.

An application of DFAs
String Searching Problem

Input: string I'of length n. string w of length £ .

Output: Yes/No. Does w occurin 1'?

Knuth-Morris-Pratt 1977

~ k steps to build M,,.

Next Time

