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Our heroes for this week

Uncountability Uncomputability

father of set theory father of computer science

1845-1918 1912-1954



Poll

Select the ones that apply to you:

- I know what an uncountable set means.

- I know Cantor’s diagonalization argument.

- I used to know what uncountable meant, I forgot.

- I used to know the diagonalization argument, I forgot.

- I’ve never learned about uncountable sets.

- I’ve never learned about the diagonalization argument.





Galileo (1564–1642)

Best known publication:  

Dialogue Concerning the Two Chief World Systems



The three characters

Salviati:

Argues for the Copernican system.

The “smart one”.  (Obvious Galileo stand-in.)

Named after one of Galileo’s friends.

Sagredo:

“Intelligent layperson”.  He’s neutral.

Named after one of Galileo’s friends.

Simplicio:

Argues for the Ptolemaic system. The “idiot”.  

Modeled after two of Galilelo’s enemies.



Salviati

I take it for granted that you know which of 

the numbers are squares and which are not.

Simplicio

I am quite aware that a squared number is one 

which results from the multiplication of another 

number by itself; thus 4, 9, etc., are squared 

numbers which come from multiplying 2, 3, etc., 

by themselves.

Very well.  If I assert that all numbers, including both squares 

and non-squares, are more than the squares alone, I shall speak 

the truth, shall I not?

Most certainly.



Salviati

If I should ask further how many squares there are 

one might reply truly that there are 

as many as the corresponding number of square-roots, 

since every square has its own square-root 

and every square-root its own square…

Simplicio

Precisely so.

But if I inquire how many square-roots there are, 

it cannot be denied that there are as many as the numbers because 

every number is the square-root of some square.

This being granted, we must say that there are 

as many squares as there are numbers because 

they are just as numerous as their square-roots, 

and all the numbers are square-roots. 

Yet at the outset we said that there are many more numbers than 

squares.



… Neither is the number of squares less than 

the totality of all the numbers, …

Salviati

Sagredo: What then must one conclude under these circumstances?

Cantor
(1845–1918)

Good, good…

… nor the latter greater than the former, …

Good, good…

… and finally, the attributes “equal,” 

“greater,” and “less,” are not applicable 

to infinite, but only to finite, quantities.

OOOHHHH!  So close!  

You were almost there, Galileo!

Why not say that they are indeed equal?



Let’s review Salviati’s arguments

ℕ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … }

S = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … }

“All numbers include[s] both 

squares and non-squares.”

“Every square has its own 

square-root and every 

square-root its own square…”

S ⊊ ℕ

There is a

bijection

between ℕ and S.



Cantor’s Definition

Sets A and B have the same

‘cardinality’ (size), written |A| = |B|,

if there exists a bijection between them.

Note: This is not a definition of “|A|”.

This is a definition of the phrase “|A| = |B|”.



Reminder: what’s a bijection?

• It’s a perfect matching between A and B.

• It’s a mapping f : A → B which is:

an injection

(i.e., ‘one-to-one’:  f(a)≠f(a’) if a≠a’)

& a surjection  

(i.e., ‘onto’:   ∀b∈B, ∃a∈A s.t. f(a)=b).

• It’s a function f : A → B which has an

inverse function, f−1 : B → A  (also a bijection).



Cantor’s Definition

E.g.: |ℕ| = |Squares|

because the function f : ℕ → Squares 

defined by f(a)=a2 is a bijection.

Sets A and B have the same

‘cardinality’ (size), written |A| = |B|,

if there exists a bijection between them.



Sure, that’s easy

Hold on a sec.  We just overloaded

notation. Can we at least

double-check this all makes 

sense for finite sets?



Hold on a sec.  We just overloaded

notation. Can we at least

double-check this all makes 

sense for finite sets?

Let A = {red, green, blue}.

Let B = {.03, −2, 18}.

Let C = {1, 2, 3, 4}

There is a bijection between A and B, so |A| = |B|.

There is no bijection between B and C, so |B| ≠ |C|.

There is no bijection between C and ℕ, so |C| ≠ |ℕ|.



Perhaps this definition

just captures the difference

between finite and infinite?

Good question.

If A and B are infinite sets

do we always have |A| = |B|?

That’s exactly what I was

wondering in 1873…

Let’s try some examples!



Examples

Let E = {0, 2, 4, 6, 8, 10, …}.

Does |E| = |ℕ|?

No!  E is a proper subset of ℕ.

They can’t be perfectly matched: 

the function f : E → ℕ, f(x) = x is not onto!

Wrong Simplicio, that doesn’t matter.

There does exist a bijection f : E → ℕ, 

namely f(x) = x/2.  So |E| = |ℕ|.



Examples

Let ℕ+ = {1, 2, 3, 4, 5…}.

Does |ℕ| = |ℕ+|?

Yes.  f(a) = a+1 is a 

bijection from ℕ to ℕ+.

Does |E| = |ℕ+|?
I hope so! We just showed |E| 

= |ℕ| and |ℕ| = |ℕ+|.

If not, our notation sucks.



Transitivity

Theorem:

If there is a bijection from A to B   (say, f),

and there is a bijection from B to C   (say, g),

then there is a bijection from A to C.

I.e., if |A| = |B| and |B| = |C| then |A| = |C|.

Proof: g ∘ f is a bijection from A to C.   (Why?)

Phew.



More Examples

Does |ℕ| = |ℤ|?

ℕ = {0, 1, 2, 3, 4, 5, 6, 7, …}

ℤ = {…, −3, −2, −1, 0, 1, 2, 3, …}

Hmm…



More Examples

Does |ℕ| = |ℤ|?

ℕ = { 0, 1,   2, 3, 4, 5, 6, 7, …}

ℤ = {   0, −1, +1, −2, +2, −3, +3, −4, …}

It’s looking good…

f(a) = (−1)a ⌈a/2⌉ is a bijection from ℕ to ℤ.



More Examples

ℕ+ = { 1, 2, 3, 4, 5, 6, 7, 8, …}

P = {  2, 3, 5, 7, 11, 13, 17, 19, …}

Hmm…

It’s looking good…

And yet…

Let P = {2, 3, 5, 7, 11, 13, … }.

Does |ℕ+| = |P|?



More Examples

ℕ+ = { 1, 2, 3, 4, 5, 6, 7, 8, …}

P = {  2, 3, 5, 7, 11, 13, 17, 19, …}

Don’t overthink it, G.

It’s staring you in the face.

Yes, |ℕ+| = |P|!  The bijection is

f(n) = the nth prime number.



He’s right, Galileo.  Totally legit.

Why not?  It’s a well-defined 

function, isn’t it?  It’s a 

bijection, isn’t it?

That can’t be legit.



ℕ = {0, 1, 2, 3, 4, 5, 6, 7, …}

E = {  0, 2, 4, 6, 8, 10, 12, 14, …}

ℤ = {  0, −1, +1, −2, +2, −3, +3, −4, …}

P = {  2, 3, 5, 7, 11, 13, 17, 19, …}

If S is an infinite set and you can

list off its elements as s0, s1, s2, s3, … uniquely,

in a well-defined way, then |S| = |ℕ|.

Any set S with |S| = |ℕ| is called 

countably infinite.

A set is called countable if it is either finite or 

countably infinite.



So ℤ is countable.  Is ℤ2 countable?

(0,0)

(1,0)

(1,1)

(0,1)

(−1,1)

(−1,0)

(−1,−1)

(0,−1)

(1,−1)

(2,−1)

(2,0)

(2,1)

(2,2)

(1,2)

(0,2)

Spiral.

Etc.  

So yes.  



What about ℚ, the rationals?  Countable?

Come on, no way!  How could you list them in 

a sequence?  Between any two

rationals there are infinitely many more.

Not so fast…



Take our listing of ℤ2:

(0,0), (1,0), (1,1), (0,1), (−1,1), …, (2,−1), …, (2,1), …, (1,2), …, (−1,2), …

To get a listing of ℚ, go through the above list in order.

If you are at (p,q), output p/q… 

… if q ≠ 0 and you haven’t output this rational yet.

If q = 0 or you’ve seen p/q before, just go on to next one.

1,    0,    −1,       −2,        2,   1/2,     −1/2, …

This indeed lists all of the rationals exactly once.

So ℚ is countable.



Is union 𝑆1 ∪ 𝑆2 of two countably 

infinite sets also countably infinite?

Yes, just list elements of 𝑆1 first 

and then those of 𝑆2

Sure, Simplicio? Will you ever get 

to elements in 𝑆2?  

Oops, sorry. Alternate elements of 𝑆1 and 𝑆2
𝑓 0 , 𝑔 0 , 𝑓 1 , 𝑔 1 , 𝑓 2 , 𝑔 2 ,…

if 𝑓 ∶ ℕ → 𝑆1 and 𝑔 ∶ ℕ → 𝑆1 are bijections.



Right. Similarly any finite union of

countably infinite sets is also 

countably infinite

What about a countable union of countably 

infinite sets, G. ?

Hmm, seems tricky, yet familiar…

Good practice problem…



More on injections and surjections

If there is an injection (one-to-one map) 

from A to B, we say |A| ≤ |B|.

E.g.: f(a) = a is an injection from Squares → ℕ;

f(x) = (p,q) when x = p/q in lowest terms

is an injection from ℚ → ℤ2.



More on injections and surjections

Suppose there is an injection A → B, so |A| ≤ |B|.

Suppose there’s also an injection B → A, so |B| ≤ |A|.

If our notation doesn’t suck, it should mean that |A|=|B|.

So must there be a bijection between A and B?

Yes!  This is the “Cantor–

Bernstein–Schröder Theorem”.

Shall I prove it for you?  

It’ll take 3-4 slides.

Nah, I’ll 

check it on 

Wikipedia



More on injections and surjections

If there is a surjection (onto map) 

from A to B, we say |A| ≥ |B|.

Here’s a clearer way to show ℚ is countable:

ℤ2 is countable so it suffices to show |ℤ2| ≥ |ℚ|.

Define f : ℤ2 → ℚ by

This is clearly a surjection, so |ℤ2| ≥ |ℚ|.



More on injections and surjections

Suppose there’s a surjection f : A → B, so |A| ≥ |B|.

If our notation doesn’t suck, then presumably |B| ≤ |A|,

meaning there should be an injection g : B → A. Is there?

Sure.  For any b∈B, define g(b) to be any 

element a such that f(a)=b.

(Such an a must exist ∵ f is a surjection.)  This 

g is an injection (why?).

This requires the 

Axiom of Choice,

which we will always

assume in 251.



Let’s do one more example.

Let {0,1}* denote the set of all 

binary strings of any finite length.

Is {0,1}* countable?

Yes, this is easy.  Here is my listing:

ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, …

Length 0

strings

Length 1 strings

in binary order

Length 2 strings

in binary order

Length 3 strings

in binary order



15 slides ago, Simplicio and I asked if every

infinite set has the same cardinality.  Now we’ve seen the 

squares, evens, primes, integers, rationals, {0,1}*, ℤ2

etc. are all countably infinite: they have the same cardinality as 

ℕ.  So are all infinite sets countable?

Yeah, I was thinking about all this in 1873.

In particular, about the next obvious question:  

Is ℝ (set of real numbers) countable?

My motivation was a simpler proof of Liouville’s

thorem that transcadental numbers exist



Anyway, I proved ℝ is uncountable 

in December 1873.

But when I wrote the paper, I kind of 

focused on countability of ℤd, 

the number theory application, etc.

’Cause, you know, I could tell there was 

going to be a lot of controversy over my 

radical new ideas on 

“different sizes of infinity”.

I feel you,

man.



The 1873 proof was specifically

tailored to ℝ.

In 1891, I described a much slicker

proof of uncountability.

People call it…



I’ll use the diagonal argument to prove

the set of all infinite binary strings,

denoted {0,1}∞, is uncountable.

Examples of infinite binary strings:

x = 000000000000000000000000000…

y = 010101010101010101010101010…

z = 101101110111101111101111110…

w = 001101010001010001010001000…

(Here wn = 1 if and only if n is a prime.)



We’ll come back to it.  Anyway, strings are more 

interesting than real numbers, don’t you think?

I’ll use the diagonal argument to prove

the set of all infinite binary strings,

denoted {0,1}∞, is uncountable.

Interesting!  I remember we 

showed that {0,1}*, the set of all 

finite binary strings,

is countable.

Yep.

What 

about ℝ?



Theorem:  {0,1}∞ is NOT countable.

Suppose for the sake of contradiction that you can 

make a list of all the infinite binary strings.

For illustration, perhaps the list starts like this:

0:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0…

1:    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1…

2:    1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1…

3:    0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0…

4:    0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5:    1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0…

…     …



0:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0…

1:    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1…

2:    1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1…

3:    0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0…

4:    0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5:    1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0…

…     …

Consider the string formed by the ‘diagonal’:

Theorem:  {0,1}∞ is NOT countable.



0:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0…

1:    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1…

2:    1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1…

3:    0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0…

4:    0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5:    1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0…

…     …               ⋱

Consider the string formed by the ‘diagonal’:

Theorem:  {0,1}∞ is NOT countable.



0:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0…

1:    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1…

2:    1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1…

3:    0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0…

4:    0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5:    1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0…

…     …               ⋱

Actually, take the negation of the string on the diagonal:

1 0 0 0 1 0…

It can’t be anywhere on the list, since it differs 

from every string on the list!       Contradiction.

Theorem:  {0,1}∞ is NOT countable.



Here is the same proof, using different words:

Suppose for contradiction’s sake that {0,1}∞ is countable.

Thus |ℕ| ≥ |{0,1}∞|; 

i.e., there’s a surjection f : ℕ → {0,1}∞.

Define an infinite binary string w∈{0,1}∞ by wn = ¬ f(n)n.

We claim that w ≠ f(m) for every m∈ℕ.  This is because, 

by definition, they disagree in the mth position.

Therefore f is not a surjection onto {0,1}∞, contradiction.

Theorem:  {0,1}∞ is NOT countable.



Awesome.  

So not every infinite set is countable.

{0,1}∞ has larger cardinality 

than the set ℕ. So what 

about ℝ?

ℝ is uncountable.  Even the set [0,1] of all reals

between 0 and 1 is uncountable.

This is because there is a bijection

between [0,1] and {0,1}∞.

Hence |ℝ| ≥ | [0,1] | = |{0,1}∞| > |ℕ|.



What’s the bijection

between [0,1] and {0,1}∞?

It’s just the function f which maps each 

real number between 0 and 1 to its 

binary expansion!

E.g.: 1/2 ↔ .1000000000…

1/3 = 1/4 + 1/16 + 1/64 + …

↔ .0101010101… 

π−3 = .14159265358979323…10

↔ .00100100001111110…2



Um, technically that’s not a surjection.

It misses, e.g., .0111111111111111…

It’s just the function f which maps each 

real number between 0 and 1 to its 

binary expansion.

E.g.: 1/2 ↔ .1000000000…

1/3 = 1/4 + 1/16 + 1/64 + …

↔ .0101010101… 

π−3 = .14159265358979323…10

↔ .00100100001111110…2



Sorry.

Um, technically that’s not a surjection.

It misses, e.g., .0111111111111111…

You’re saying because this also 

equals 1/2?

In the same way that, 

in base 10,     .499999…

is the same as .500000…?

Yeah.

Ugh.  I was hoping you wouldn’t notice that. This was all so 

elegant – and you had to go and bring that up!



I’ll make the TAs go over 

one or two such hacks 

in recitation.

There are a variety of  hacks you can use to 

get around this issue.



Summary: cardinalities we’ve seen so far

card. sets with that cardinality

0 ∅

1 {0},  {17},  {a}, …

2 {0,1},  {red,green}, …

…

ℕ, Primes, Squares, ℤ, ℤ2, ℕ2, ℚ, {0,1}*, …

…

“ℵ0”
“aleph zero”

{0,1}∞, [0,1], ℝ…

(recitation fact/exercise:   |[0,1]| = |ℝ|)

“c”
“the continuum”



Cantor’s Theorem

binary strings of  length |S| 

Theorem:

We just proved  



Example

.

.

.

Proof of Cantor’s Theorem

Assume                        for some set     

So                   .      Let      be such a surjection. 

Define 

Since      is a surjection,                 s.t.                  .

But this leads to a contradiction:

if               then 

if               then 

Is             ?



Cantor’s Theorem – Why is this diagonalization

0 0 1 0 0

0 1 0 0 1

1 1 1 0 0

1 1 1 0 0

0 0 0 1 1

…

.

.

.

1 2 3 4 5

f(1)

f(2)

f(3)

f(4)

f(5)

…

.

.

.

1 0 0 1 0 …

S is defined so that

S cannot equal any f(i)

Example

.

.

.

Sf(s)=



Cantor’s Theorem

So:

(an infinity of  infinities)

Theorem:

I.e.            is uncountable.



Summary: cardinalities we’ve seen so far

card. sets with that cardinality

0 ∅

1 {0},  {17},  {a}, …

2 {0,1},  {red,green}, …

…

ℕ, Primes, Squares, ℤ, ℤ2, ℕ2, ℚ, {0,1}*, …

…

“ℵ0”
“aleph zero”

𝑃(ℝ) : power set of reals

“c”
“the continuum”

<

<

<

< {0,1}∞, [0,1], ℝ…



Fact: There are no infinite sets with 

cardinality less than |ℕ|. 

Question: Is there any set S with                

|ℕ| < S < |ℝ|?

I didn’t think so, and called this the 

Continuum Hypothesis.  I spent a really 

long time trying to prove it, with no 

success. 



Fact: There are no infinite sets with 

cardinality less than |ℕ|. 

Question: Is there any set S with                

|ℕ| < S < |ℝ|?

I didn’t think so, and called this the 

Continuum Hypothesis.  I spent a really 

long time trying to prove it, with no 

success. 

There’s a reason you failed…

And it’s not because the 

Continuum Hypothesis is false…



Proving sets countable:

the computer scientist’s method

We showed |{0,1}*| = |ℕ|.

E.g., if Σ = {0, 1, …, 9, a, b, …, z, +, −, *, /, ^}:

Actually, if  Σ is any finite “alphabet” (set)

then Σ* = {all finite strings over alphabet Σ}

is also countably infinite.

ϵ, 0, 1, …, a, …, /, ^, 00, 01, …, 0a, 0/, 0^, 10, …, ^/, ^^, 000, 001, …



Proving sets countable:

the computer scientist’s method

Suppose we want to show set S is countable.

Since |Σ*| is countably infinite, it suffices to find

a surjection Σ* → S.  This implies |ℕ| = |Σ*| ≥ S.

To give such a surjection, just need to describe

a well-defined rule which maps each string to an 

element of S, and which covers all elements of S.



Proving sets countable:

the computer scientist’s method

Prove that ℚ[x] is countable.Ex. problem:

Valid solution:

Any polynomial in ℚ[x] can be described

by a finite string over the alphabet

Σ = {0, 1, …, 9, x, +, −, *, /, ^}.

(For example: x^3−1/4x^2+6x−22/7.)



Proving sets countable using computation

Remember Galileo was a little uncomfortable

with the bijection f : ℕ → Primes,

defined by f(n) = ‘the nth prime’ ?

We said it was okay as long as f is 

a ‘well-defined rule’.

A particular kind of well-defined rule:

anything “computable by a computer program”

(in your favorite language).



Proving sets countable using computation

For example, f(n) = ‘the nth prime’.

You could write a program (Turing machine)

to compute f.

So this is a well-defined rule.

Or:  f(n) = the nth rational in our listing of ℚ.

(List ℤ2 via the spiral, omit the terms p/0, omit rationals seen before…)

You could write a program to compute this f.



A caveat (and spoiler)

There are well-defined rules which

cannot be computed 

by a computer program.



Definitions:

Theorem/proof:

Study Guide


