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Comparing the cardinality of sets

𝐴 ≤ 𝐵
if there is an injection (one-to-one map) from 𝐴 to 𝐵

𝐴 ≥ 𝐵
if there is a surjection (onto map) from 𝐴 to 𝐵

𝐴 = 𝐵
if there is a bijection from 𝐴 to 𝐵

𝐴 > |𝐵|
if there is no surjection from 𝐵 to 𝐴
(or equivalently, there is no injection from 𝐴 to 𝐵)



Countable and uncountable sets

countable

countably infinite

uncountable



One slide guide to countability questions

You are given a set 𝐴 : is it countable or uncountable

𝐴 ≤ |ℕ| or 𝐴 > |ℕ|

𝐴 ≤ |ℕ| :
• Show directly surjection from ℕ to 𝐴
• Show that 𝐴 ≤ |𝐵| where

𝐵 ∈ {ℤ, ℤ x ℤ, ℚ, Σ∗, ℚ[x], …}

𝐴 > |ℕ| :
• Show directly using a diagonalization argument

• Show that 𝐴 ≥ | 0,1 ∞|



Proving sets countable using computation

For example, f(n) = ‘the nth prime’.

You could write a program (Turing machine)

to compute f.

So this is a well-defined rule.

Or:  f(n) = the nth rational in our listing of ℚ.

(List ℤ2 via the spiral, omit the terms p/0, omit rationals seen before…)

You could write a program to compute this f.



Poll

Let  𝐴 be the set of all languages over   Σ = 1 ∗

Select the correct ones:

- A is finite

- A is countable

- A is uncountable

- A is infinite



Another thing to remember from last week
Encoding different objects with strings

We use the ⋅ notation to denote the encoding of an 

object as a string in Σ∗

Examples:

Fix some alphabet Σ .

is the encoding a TM 𝑀

is the encoding a DFA 𝐷

is the encoding of a pair of TMs 𝑀1, 𝑀2

is the encoding a pair 𝑀, 𝑥,  where 

𝑀 is a TM,  and  𝑥 ∈ Σ∗ is an input to 𝑀



Uncountable to uncomputable

The same is true of √2, π, e, 

“ the first prime larger than 243,112,609 ”, etc.;

indeed, any real number “you can think of”.

The real number 1/7 is “computable”.

You could write a (non-halting) program 

(in your favorite language)

which printed out all its digits:

.142857142857142857…



Uncountable to uncomputable

However, the set of all programs

(in your favorite language)

is just Σ*, for some finite alphabet Σ.

Hence the set of all programs is countable.

Hence the set of all 

“computable reals” is countable.

But ℝ is uncountable.

Therefore there exist “uncomputable reals”.



Recap: Turing Machines

Rules of computation:

Tape initialized with input x∈Σ* placed starting at square 0, 

preceded & followed by infinite ⊔’s.

Control starts in state q0, head starts in square 0.

If the current state is q and head is reading symbol s∈Γ, 

the machine transitions according to δ(q,s), which gives:

• the next state,

• what tape symbol to overwrite the current square with, 

• and whether the head moves Left or Right.

Continues until either the accept state or reject state reached.

When accept/reject state is reached, M halts.  

M might also never halt, in which case we say it loops.



Formal definition of Turing Machines

A Turing Machine is a 7-tuple 

M = (Q, Σ, Γ, δ, q0, qaccept, qreject):

Q is a finite set of states,

Σ is a finite input alphabet (with ⊔∉Σ),

Γ is a finite tape alphabet (with ⊔∈Γ,  Σ ⊆ Γ)

δ : Q×Γ → Q×Γ×{L,R} is transition function,

q0 ∈ Q is the start state,

qaccept ∈ Q is the accept state,

qreject ∈ Q is the reject state,  qreject ≠ qaccept.



Decidable languages

Definition:

A language L ⊆ Σ* is decidable if there is 

a Turing Machine M which:

1.  Halts on every input  x∈ Σ*.

2.  Accepts inputs x∈L and rejects inputs x∉L. 

Such a Turing Machine is called a decider.  

It ‘decides’ the language L.

We like deciders. We don’t like TM’s that sometimes loop.



function f : {0,1}* → {0,1} ≡  subset L ⊆ {0,1}*

L = {x∈{0,1}* : f(x) = 1}

Computable functions

An equivalence between

languages and (Boolean-valued) functions:

If L is decidable we call f computable,

and vice versa.



Decidable languages

Examples:

Hopefully you’re convinced that {0n1n : n∈ℕ}

is decidable.  (Recall it’s not “regular”.)

The language  {02n
: n∈ℕ} ⊆ {0}*,

i.e. {0, 00, 0000, 00000000, …},

is decidable.

Proof:  You can describe decider TMs for these…



Describing Turing Machines

Low Level:

Explicitly describing all states and transitions.

Medium Level:

Carefully describing in English how the TM

operates.  Should be ‘obvious’ how to 

translate into a Low Level description.

High Level:

Skips ‘standard’ details, just highlights 

‘tricky’ details.  For experts only!



{02n
: n∈ℕ} is decidable

Medium Level description:

1. Sweep from left to right across the tape,

overwriting a # over top of every other 0.

2. If you saw one 0 on the sweep, accept.

3. If you saw an odd number of 0’s, reject.

4. Move back to the leftmost square.

(Say you write a marker on the leftmost square at the

very beginning so that you can recognize it later.)

5. Go back to step 1.



TM programming exercises & tricks

‣ Convert input x1x2x3···xn to x1⊔x2⊔x3⊔··· ⊔xn.

‣ Simulate a big Γ by just {0,1,⊔}.     (Or just {0,⊔}!)

‣ Increment/decrement a number in binary.

‣ Copy sections of tape from one spot to another.

‣ Simulate having 2 tapes, with separate heads.

‣ Create a Turing Machine U whose input is

⟨M⟩, the encoding of a TM M,

x, a string

and which simulates the execution of M on x.



Universal Turing Machine

If you get stuck on the last exercise, you can 

look up the answer in Turing’s 1936 paper!

Such a simulating TM is called a

universal Turing Machine.



TM’s: good definition of computation?

After playing with them for a while,

you’ll become convinced you can program

TM’s to compute anything you could compute

using Python, Java, ML, C++, etc.

(and using arbitrarily much memory!)

You were probably already convinced that

Python, Java, ML, C++, etc. can all 

simulate each other.



Church–Turing Thesis:

“Any natural / reasonable notion of

computation can be simulated by a TM.”



Describing Turing Machines

Low Level:

Medium Level:

High Level:

Super-high Level:  

Just describe an algorithm / pseudocode.

Assuming the Church–Turing Thesis

(which everybody does)

there exists a TM which executes that algorithm.



Question: 

Is every language in {0,1}* decidable?

Is every function f : {0,1}*→{0,1} computable?

Answer: 

Every TM is encodable by a finite string.  

Therefore the set of all TM’s is countable.

So the subset of all decider TM’s is countable.

Thus the set of all decidable languages is countable.

No!

But the set of all languages is uncountable.

(from last lecture,  |P({0,1}*)| > |{0,1}*|)

⇔



Question: 

Is it just weirdo languages that no one 

would care about which are undecidable?

Answer (due to Turing, 1936): 

Sadly, no.  

There are some very reasonable languages

we’d like to compute which are undecidable.



Some uncomputable functions

Given two TM descriptions, ⟨M1⟩ and ⟨M2⟩, do they

act the same (accept/reject/loop) on all inputs?

Given the description of an algorithm, ⟨M⟩,

does it print out “HELLO WORLD”?



main(t,_,a ) char * a; { return!  0<t? t<3?  main(-79,-13,a+ main(-87,1-_, main(-86, 0, a+1 )   

+a)):  1, t<_? main( t+1, _, a ) :3,  main ( -94, -27+t, a ) &&t == 2 ?_ <13 ?  main ( 2, _+1, "%s 

%d %d\n" )  :9:16: t<0? t<-72? main( _, t, 

"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#;#q#n+,/+k#;*+,/'r 

:'d*'3,}{w+K w'K:'+}e#';dq#'l 

q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;# ){nl]!/n{n#'; r{#w'r

nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; 

:{nl]'/*{q#'ld;r'}{nlwb!/*de}'c ;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' 

')# }'+}##(!!/") : t<-50? _==*a ? putchar(31[a]):  main(-65,_,a+1) : main((*a == '/') + t, _, a + 1 ) :  

0<t?  main ( 2, 2 , "%s") :*a=='/'||  main(0,  main(-61,*a, "!ek;dc i@bK'(q)-

[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry")  ,a+1);} 

This C program prints out all the lyrics of

The Twelve Days Of Christmas.



Does the following program (written in Maple)

print out “HELLO WORLD” ?

numberToTest := 2;

flag := 1;

while flag = 1 do

flag := 0;

numberToTest := numberToTest + 2;

for p from 2 to numberToTest do

if IsPrime(p) and IsPrime(numberToTest−p) then

flag := 1;

break;       #exits the for loop

end if

end for

end do

print(“HELLO  WORLD”)

It does so if and only if

“Goldbach’s Conjecture”

is false.



Some uncomputable functions

Given two TM descriptions, ⟨M1⟩ and ⟨M2⟩, do they

act the same (accept/reject/loop) on all inputs?

Given the description of an algorithm, ⟨M⟩,

does it print out “HELLO WORLD”?

Given a TM description ⟨M⟩ and an input x,

does M halt on input x?

Given a TM description ⟨M⟩,

does M halt when the input is a blank tape?



Some uncomputable functions

Given a TM description ⟨M⟩ and an input x,

does M halt on input x?

This one is called

The Halting Problem.

Turing’s Theorem:  

The Halting Problem is undecidable.



The Halting Problem is Undecidable

Theorem:

Let HALTS ⊆ {0,1}* be the language

{ ⟨M,x⟩ : M is a TM which halts on input x }.

Then HALTS is undecidable.

Proof:

Assume for the sake of contradiction that

MHALTS is a decider TM which decides HALTS.



The Halting Problem is Undecidable

Here is the (super-high level) description of another

TM called D, which uses MHALTS as a subroutine:

Given as input ⟨M⟩, the encoding of a TM M:

D executes MHALTS( ⟨M, ⟨M⟩⟩ ).

If this call accepts, D enters an infinite loop.

If this call rejects,  D halts        (say, it accepts).

D:

D(⟨M⟩)   loops  if M(⟨M⟩) halts,

halts  if M(⟨M⟩) loops.

In other words…



The Halting Problem is Undecidable

Assume MHALTS is a decider TM which decides HALTS.

Time for the contradiction: 

Does D(⟨D⟩) loop or halt?

We can use it to construct a machine D such that

D(⟨M⟩)   loops  if M(⟨M⟩) halts,

halts  if M(⟨M⟩) loops.

By definition, if it loops it halts and if it halts it loops.

Contradiction. 



BTW: last part of proof basically the same as

Cantor’s Diagonal Argument.

D(⟨M⟩) loops if M(⟨M⟩) halts, halts if M(⟨M⟩) loops

The set of all TM’s is countable, so list it:

M1

M2

M3

M4

M5

⁝

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ⟨M5⟩ ···

halts halts loops halts loops

loops loops loops loops loops

halts loops halts halts halts

halts halts halts halts loops

halts loops loops halts loops



How could D be on this list?

What would the diagonal entry be??

D(⟨M⟩) loops if M(⟨M⟩) halts, halts if M(⟨M⟩) loops

The set of all TM’s is countable, so list it:

M1

M2

M3

M4

M5

⁝

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ⟨M5⟩ ···

halts halts loops halts loops

loops loops loops loops loops

halts loops halts halts halts

halts halts halts halts loops

halts loops loops halts loops



Given some code,

determine if it terminates.

It’s not: “we don’t know how to solve it efficiently”.

It’s not: “we don’t know if it’s a solvable problem”.

We know that it is unsolvable by any algorithm.



In our proof that HALTS is undecidable,

we used a hypothetical TM deciding HALTS to

derive a contradiction

Having established the undecidability of HALTS, 

we can show further problems to be 

undecidable using the powerful tool of 

REDUCTIONS



Reductions

Informally, a reduction from A to B

gives a way to solve problem A using a

subroutine that can solve B

Using one problem as a subroutine

to solve another problem.

Calculating the area of a rectangle reduces to 

calculating its length and height. 

Solving a linear system 𝐴𝑥 = 𝑏 reduces 

to computing the matrix inverse 𝐴−1



Reductions

Language A reduces to language B means (informally):

“there is a method that could be used to solve A 

if it has available to it a subroutine for solving B.”

The reduction gives such a method. 

Formally a (Turing) reduction from A to B is an 

oracle Turing machine that decides A 

when run with an oracle for B.

Notation for A reduces to B:              

A ≤T B (T stands for Turing).

Think, 

“A is no harder than B”

“A is at least as easy as B”



Reducing language A to B

Oracle O 

for B

Decider TM 

with Oracle 

access to O

Input x

𝑦1 ∈ 𝐵?

Yes/

No

𝑦𝑁 ∈ 𝐵?
Yes/No

Accept if 𝑥 ∈ 𝐴
Reject if 𝑥 ∉ 𝐴



Reductions are the main technique

for showing undecidability.

Reductions

Fact: Suppose A ≤T B; i.e., A reduces to B.

If B is decidable, then A is also decidable.

(can replace the assumed oracle for B with a decider

for B, and the reduction can run this decider whenever it

needs to ascertain membership of some string in B)

Contrapositive: if A is undecidable then so is B.

Think: “B is at least as hard as A”



Reductions — examples

Theorem:

ACCEPTS = {⟨M, x⟩ : M is a TM which accepts x}

is undecidable.

Proof: We’ll prove HALTS reduces to ACCEPTS.

Suppose OACCEPTS is an oracle for language ACCEPTS.  

Then here’s a description of an oracle TM deciding HALTS:

“Given ⟨M, x⟩, run OACCEPTS(⟨M, x⟩). If it accepts, then accept.

Reverse the accept & reject states in ⟨M⟩, forming ⟨M/⟩.

Run OACCEPTS(⟨M/, x⟩).  If it accepts (i.e., M rejects x), then accept.

Else reject.”    



Interesting observation

To prove a negative result about computation

(that a certain language is undecidable),

you actual construct an algorithm –

namely, the reduction.



Reductions — another example

Theorem: EMPTY = {⟨M⟩ : M accepts no strings}

is undecidable.

Proof: Let’s prove ACCEPTS ≤T EMPTY.  

This suffices, since we just showed ACCEPTS is undecidable. 

So suppose OEMPTY is an oracle for language EMPTY.  

Here’s an oracle TM with oracle access to OEMPTY deciding ACCEPTS:

“Given ⟨M, x⟩…

Write down the description ⟨Nx⟩ of a TM Nx which does the following:   

“On input y, check if y=x.  

If not, reject.  If so, simulate M on y.”

Then call upon the oracle OEMPTY on input ⟨Nx⟩ and do the opposite.”



Correctness of reduction

L(Nx) is either {x} or ∅
Code for Nx :

“On input y, 

check if y=x.  

If not, reject.  

If so, simulate M on y.”

And L(Nx) = {x} precisely 

when M accepts x, 

i.e., ⟨M, x⟩ ∈ ACCEPTS

Important:

Reduction never runs Nx ; 

it simply writes down the description ⟨Nx⟩ of Nx

and probes the oracle whether ⟨Nx⟩ ∈ EMPTY



Schematic of the reduction
ACCEPTS ≤T EMPTY

Oracle 

OEMPTY

Oracle TM deciding ACCEPTS

1. Write down description ⟨Nx⟩
2. Query oracle

3. Accept if OEMPTY answers No, 

and reject if it answers Yes

Input

⟨M, x⟩

⟨Nx⟩ ∈ EMPTY ?

Yes/No



Another example: 
ACCEPTS ≤T INFINITE = 

Oracle 

OINFINITE

Oracle TM deciding ACCEPTS

1. Write down description ⟨Ix⟩
2. Query oracle on ⟨Ix⟩
3. Accept if OINFINITE answers Yes, 

and reject if it answers No

Input

⟨M, x⟩

⟨Ix⟩ ∈ INFINITE ?

Yes/No
Code ⟨Ix⟩:

“On input y:

• ignore y

• Run M on x

& accept if it does.”

Note: Reduction is particularly simple: 

a single oracle query, and 

we just pass on answer to that query.

Called “mapping reduction”

Remember: 
we don’t run Ix,

we only write down it’s code



Undecidability galore
Similar reductions can show undecidability of

telling if, given an input TM ⟨M⟩, L(M) is: 

Finite

Regular

Contains 15251 in binary

Decidable

Contains a string of length more than 15251

Etc etc

Essentially any non-trivial property of languages



Question:

Do all undecidable problems involve TM’s?

Answer:

No!

Some very different problems are undecidable!



Post’s Correspondence Problem

Input:  A finite collection of “dominoes”,

having strings written on each half.

E.g.:  
a

ab

a

cabc

bcc

c

Definition:  A match is a sequence of dominoes, 

repetitions allowed, such that 

top string = bottom string.



Post’s Correspondence Problem

Input:  A finite collection of “dominoes”,

having strings written on each half.

E.g.:  
a

ab

a

cabc

bcc

c

Match:
a

ab

bcc

c

a

cabc

bcc

c

= abccabcc

= abccabcc



Post’s Correspondence Problem

Input:  A finite collection of “dominoes”,

having strings written on each half.

Task:  Output YES if and only if there is a match.

Theorem (Post, 1946):   Undecidable.

There is no algorithm solving this problem.

(More formally, PCP = {⟨Domino Set⟩ : there’s a match}

is an undecidable language.)



Post’s Correspondence Problem

Input:  A finite collection of “dominoes”,

having strings written on each half.

Task:  Output YES if and only if there is a match.

Theorem (Post, 1946):   Undecidable.

There is no algorithm solving this problem.

Two-second proof sketch:

Given a TM M, you can make a domino set such that

the only matches are execution traces of M which

end in the accepting state. Hence ACCEPTS ≤T PCP.



Wang Tiles

Input:  Finite collection of “Wang Tiles” (squares)

with colors on the edges.      E.g., 

Task:  Output YES if and only if it’s possible to

make an infinite grid from copies of them,

where touching sides must color-match.

Theorem (Berger, 1966):  Undecidable.



Modular Systems

Input:  Finite set of rules of the form

“from ax+b, can derive cx+d”, where a,b,c,d∈ℤ.

Also given is a starting integer u and a target v.

Task:  Decide if v can be derived starting from u.

Theorem (Börger, 1989):  Undecidable.

E.g.:  “from 2x derive x”,  “from 2x+1 derive 6x+4”,

target v = 1.  Starting from u, this is equivalent

to asking if the “3n+1 problem” halts on u.



Mortal Matrices

Input:  Two 15 × 15 matrices of integers, A & B.

Question:  Is it possible to multiply A and B 

together (multiple times in any order) 

to get the 0 matrix?

Theorem (Cassaigne, Halava, Harju, Nicolas, 2014):

Undecidable.



Hilbert’s 10th problem

Input:  Multivariate polynomial w/ integer coeffs.

Question:  Does it have an integer root?

Theorem (1970):  Undecidable.

Matiyasevich Robinson     Davis      Putnam



Hilbert’s 10th problem

Input:  Multivariate polynomial w/ integer coeffs.

Question:  Does it have an integer root?

Undecidable.

Question:  Does it have a real root?

Decidable.

Tarski, 1951.

Question:  Does it have a rational root?

Not known if it’s decidable or not.



Entscheidungsproblem

Input:  A sentence in first-order logic.

Question:  Is it provable?

This is undecidable.

We’ll come back to this in the 

lecture on Gödel’s Incompleteness Theorem

¬ ∃𝑛, 𝑥, 𝑦, 𝑧 ∈ 𝑁: 𝑛 ≥ 3 ∧ (𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛)



Possible discussion of
Post Correspondence Problem

undecidability



Definitions:

Theorems/proofs:

Practice:

Study Guide


