15-251: Great Theoretical Ideas in Computer Science Fall 2016 Lecture 6 September 15, 2016

Turing & the Uncomputable

3-slide review of last lecture

Comparing the cardinality of sets

 $|A| \leq |B|$ if there is an injection (one-to-one map) from A to B

 $|A| \ge |B|$ if there is a surjection (onto map) from A to B

|A| = |B|if there is a bijection from *A* to *B*

|A| > |B|if there is no surjection from *B* to *A* (or equivalently, there is no injection from *A* to *B*)

Countable and uncountable sets

• Set A is countable if $|A| \leq |\mathbb{N}|$

 Set A is countably infinite if it is countable and infinite, i.e., |A| = |ℕ| (there's a bijection from A to ℕ)

• Set A is uncountable if it is not countable, i.e., $|A| > |\mathbb{N}|$

One slide guide to countability questions

You are given a set *A* : is it countable or uncountable $|A| \le |\mathbb{N}|$ or $|A| > |\mathbb{N}|$

- $|A| \le |\mathbb{N}|:$
 - Show directly surjection from \mathbb{N} to A
 - Show that $|A| \leq |B|$ where $B \in \{\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}, \mathbb{Q}, \Sigma^*, \mathbb{Q}[x], \ldots\}$

 $|A| > |\mathbb{N}|$:

- Show directly using a diagonalization argument
- Show that $|A| \ge |\{0,1\}^{\infty}|$

Proving sets countable using computation

For example, f(n) = 'the nth prime'. You could write a program (Turing machine) to compute f. So this is a well-defined rule.

Or: $f(n) = the n^{th}$ rational in our listing of \mathbb{Q} . (List \mathbb{Z}^2 via the spiral, omit the terms p/0, omit rationals seen before...) You could write a program to compute this f.

Poll

Let *A* be the set of all languages over $\Sigma = \{1\}^*$ Select the correct ones:

- A is finite
- A is infinite
- A is countable
- A is uncountable

Another thing to remember from last week
Encoding different objects with strings
Fix some alphabet Σ.
We use the (·) notation to denote the encoding of an object as a string in Σ*

Examples:

- $\langle M \rangle \in \Sigma^*$ is the encoding a TM M
- $\langle D \rangle \in \Sigma^*$ is the encoding a DFA D

 $\langle M_1, M_2 \rangle \in \Sigma^*$ is the encoding of a pair of TMs M_1, M_2

 $\langle M, x \rangle \in \Sigma^*$ is the encoding a pair M, x, where M is a TM, and $x \in \Sigma^*$ is an input to M

Uncountable to uncomputable

The real number 1/7 is "computable". You could write a (non-halting) program (in your favorite language) which printed out all its digits:

.142857142857142857...

The same is true of $\sqrt{2}$, π , e, " the first prime larger than $2^{43,112,609}$ ", etc.; indeed, any real number "you can think of".

Uncountable to uncomputable

However, the set of all programs (in your favorite language)
is just Σ*, for some finite alphabet Σ.

Hence the set of all programs is countable.

Hence the set of all "computable reals" is countable.

But R is uncountable.

Therefore there exist "uncomputable reals".

Recap: Turing Machines

Rules of computation:

Tape initialized with input $x \in \Sigma^*$ placed starting at square 0, preceded & followed by infinite \sqcup 's.

Control starts in state q_0 , head starts in square 0.

If the current state is q and head is reading symbol $s \in \Gamma$, the machine transitions according to $\delta(q,s)$, which gives:

- the next state,
- what tape symbol to overwrite the current square with,
- and whether the head moves Left or Right.

Continues until either the accept state or reject state reached. When accept/reject state is reached, M halts.

M might also never halt, in which case we say it loops.

Formal definition of Turing Machines

A Turing Machine is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}):$ Q is a finite set of states, Σ is a finite **input alphabet** (with $\Box \notin \Sigma$), Γ is a finite **tape alphabet** (with $\Box \in \Gamma$, $\Sigma \subseteq \Gamma$) $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is transition function, $q_0 \in Q$ is the start state, $q_{accept} \in Q$ is the accept state, $q_{reject} \in Q$ is the **reject state**, $q_{reject} \neq q_{accept}$.

Decidable languages

Definition:

A language $L \subseteq \Sigma^*$ is decidable if there is a Turing Machine M which:

- 1. Halts on every input $x \in \Sigma^*$.
- 2. Accepts inputs $x \in L$ and rejects inputs $x \notin L$.

Such a Turing Machine is called a decider. It 'decides' the language L.

We like deciders. We don't like TM's that sometimes loop.

Computable functions An equivalence between

languages and (Boolean-valued) functions:

function f: $\{0,1\}^* \rightarrow \{0,1\} \equiv \text{subset } L \subseteq \{0,1\}^*$

 $L = \{x \in \{0,1\}^* : f(x) = 1\}$ $f(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$

If L is decidable we call f computable, and vice versa.

Decidable languages

Examples:

Hopefully you're convinced that {0ⁿ1ⁿ : n∈ℕ} is decidable. (Recall it's not "regular".)

The language $\{0^{2^n} : n \in \mathbb{N}\} \subseteq \{0\}^*$, i.e. $\{0, 00, 0000, 00000000, ...\}$, is decidable.

Proof: You can describe decider TMs for these...

Describing Turing Machines

Low Level:

Explicitly describing all states and transitions.

Medium Level:

Carefully describing in English how the TM operates. Should be 'obvious' how to translate into a Low Level description.

High Level:

Skips 'standard' details, just highlights 'tricky' details. For experts only!

$\{0^{2^n} : n \in \mathbb{N}\}$ is decidable

Medium Level description:

- 1. Sweep from left to right across the tape, overwriting a # over top of every other 0.
- 2. If you saw one 0 on the sweep, accept.
- 3. If you saw an odd number of 0's, reject.
- 4. Move back to the leftmost square. (Say you write a marker on the leftmost square at the very beginning so that you can recognize it later.)
- 5. Go back to step 1.

TM programming exercises & tricks

- Convert input $x_1 x_2 x_3 \cdots x_n$ to $x_1 \sqcup x_2 \sqcup x_3 \sqcup \cdots \sqcup x_n$.
- Simulate a big Γ by just {0,1, \sqcup }. (Or just {0, \sqcup }!)
- Increment/decrement a number in binary.
- Copy sections of tape from one spot to another.
- Simulate having 2 tapes, with separate heads.

Create a Turing Machine U whose input is
 (M), the encoding of a TM M,
 x, a string
 and which simulates the execution of M on x.

Universal Turing Machine

If you get stuck on the last exercise, you can look up the answer in Turing's 1936 paper!

Such a simulating TM is called a universal Turing Machine.

TM's: good definition of computation?

After playing with them for a while, you'll become convinced you can program TM's to compute anything you could compute using Python, Java, ML, C++, etc. (and using arbitrarily much memory!)

You were probably already convinced that Python, Java, ML, C++, etc. can all simulate each other.

Church–Turing Thesis:

"Any natural / reasonable notion of computation can be simulated by a TM."

Describing Turing Machines

- Low Level:
- Medium Level:
- High Level:
- Super-high Level:

Just describe an algorithm / pseudocode.

Assuming the Church–Turing Thesis (which everybody does) there exists a TM which executes that algorithm.

Question:

Is every language in $\{0,1\}^*$ decidable? \Leftrightarrow Is every function f : $\{0,1\}^* \rightarrow \{0,1\}$ computable?

Answer: No!

Every TM is encodable by a finite string. Therefore the set of all TM's is countable. So the subset of all *decider* TM's is countable. Thus the set of all decidable languages is countable.

But the set of all languages is uncountable. (from last lecture, $|P(\{0,1\}^*)| > |\{0,1\}^*|$) Question:

Is it just weirdo languages that no one would care about which are *undecidable*?

Answer (due to Turing, 1936): Sadly, no. There are some very reasonable languages we'd like to compute which are undecidable.

Some uncomputable functions

Given two TM descriptions, $\langle M_1 \rangle$ and $\langle M_2 \rangle$, do they act the same (accept/reject/loop) on all inputs?

Given the description of an algorithm, (M), does it print out "HELLO WORLD"?

main(t,_,a) char * a; { return! 0 < t? t < 3? main(-79,-13,a+ main(-87,1-_, main(-86, 0, a+1) +a)): 1, t < 2? main(t + 1, _, a):3, main(-94, -27+t, a) & t == 2? < 13? main(2, _+1, "%s %d %d\n"):9:16: t < 0? t < -72? main(_, t,

"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{I,+,/n{n+,/+#n+,/#;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'I

|q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#){nl]!/n{n#'; r{#w'r |nc{nl]'/#{I,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' iwk{KK{nl]!/w{%'I##w#' i;

 $:\{nl]'/*\{q\#'ld;r'\}\{nlwb!/*de\}'c ;;\{nl'-\{}rw]'/+,\}\#\#'*\}\#nc,',\#nw]'/+kd'+e\}+;\#'rdq\#w! nr'/') \}+\}\{rl\#'\{n' ')\# \}'+\}#\#(!!/") : t<-50? _==*a ? putchar(31[a]): main(-65,_,a+1) : main((*a == '/') + t, _, a + 1) : 0<t? main (2, 2, "%s") :*a=='/'|| main(0, main(-61,*a, "!ek;dc i@bK'(q)-$

[w]*%n+r3#I,{}:\nuwloca-O;m .vpbks,fxntdCeghiry") ,a+1);}

This C program prints out all the lyrics of *The Twelve Days Of Christmas*.

Does the following program (written in Maple) print out "HELLO WORLD" ?

```
numberToTest := 2;
flag := 1;
while flag = 1 do
  flag := 0;
  numberToTest := numberToTest + 2;
  for p from 2 to numberToTest do
    if IsPrime(p) and IsPrime(numberToTest-p) then
       flag := 1;
       break; #exits the for loop
    end if
                                    It does so if and only if
  end for
                                   "Goldbach's Conjecture"
end do
print("HELLO WORLD")
                                              is false.
```

Some uncomputable functions

Given two TM descriptions, $\langle M_1 \rangle$ and $\langle M_2 \rangle$, do they act the same (accept/reject/loop) on all inputs?

Given the description of an algorithm, (M), does it print out "HELLO WORLD"?

Given a TM description (M) and an input x, does M halt on input x?

Given a TM description (M), does M halt when the input is a blank tape?

Some uncomputable functions

This one is called The Halting Problem.

Given a TM description (M) and an input x, does M halt on input x?

Turing's Theorem: The Halting Problem is undecidable.

The Halting Problem is Undecidable

Theorem:

Let HALTS $\subseteq \{0,1\}^*$ be the language { (M,x) : M is a TM which halts on input x }. Then HALTS is undecidable.

Proof:

Assume for the sake of contradiction that M_{HALTS} is a decider TM which decides HALTS.

The Halting Problem is Undecidable

Here is the (super-high level) description of another TM called D, which uses M_{HALTS} as a subroutine:

Given as input (M), the encoding of a TM M:
D executes M_{HALTS}((M, (M))).
If this call accepts, D enters an infinite loop.
If this call rejects, D halts (say, it accepts).

In other words...

D:

 $D(\langle M \rangle)$ loops if $M(\langle M \rangle)$ halts, halts if $M(\langle M \rangle)$ loops.

The Halting Problem is Undecidable

Assume M_{HALTS} is a decider TM which decides HALTS. We can use it to construct a machine D such that $D(\langle M \rangle)$ loops if $M(\langle M \rangle)$ halts, halts if $M(\langle M \rangle)$ loops.

Time for the contradiction: Does D((D) loop or halt?

By definition, if it loops it halts and if it halts it loops.

Contradiction.

BTW: last part of proof basically the same as Cantor's Diagonal Argument.

$D(\langle M \rangle)$ loops if $M(\langle M \rangle)$ halts, halts if $M(\langle M \rangle)$ loops

The set of all TM's is countable, so list it:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M ₁	halts	halts	loops	halts	loops	
M_2	loops	loops	loops	loops	loops	
M_3	halts	loops	halts	halts	halts	
M_4	halts	halts	halts	halts	loops	
M ₅	halts	loops	loops	halts	loops	

How could D be on this list? What would the diagonal entry be??

$D(\langle M \rangle)$ loops if $M(\langle M \rangle)$ halts, halts if $M(\langle M \rangle)$ loops

The set of all TM's is countable, so list it:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
M ₁	halts	halts	loops	halts	loops	
M_2	loops	loops	loops	loops	loops	
M_3	halts	loops	halts	halts	halts	
M_4	halts	halts	halts	halts	loops	
M ₅	halts	loops	loops	halts	loops	

Given some code, determine if it terminates.

It's not: "we don't know how to solve it efficiently".

It's not: "we don't know if it's a solvable problem".

We know that it is **unsolvable by any algorithm**.

In our proof that HALTS is undecidable, we used a *hypothetical* TM deciding HALTS to derive a contradiction

Having established the undecidability of HALTS, we can show further problems to be undecidable using the powerful tool of REDUCTIONS

Reductions

Using one problem as a **subroutine** to solve another problem.

Informally, a reduction from A to B gives a way to solve problem A using a *subroutine that can solve B*

Calculating the area of a rectangle reduces to calculating its length and height.

Solving a linear system Ax = b reduces to computing the matrix inverse A^{-1}

Reductions

Language A reduces to language B means (informally):

"there is a method that could be used to solve A if it has available to it a subroutine for solving B."

The *reduction* gives such a method.

Formally a **(Turing) reduction** from A to B is an *oracle* Turing machine that decides A when run with an oracle for B.

Notation for A reduces to B:Think, $A \leq_T B$ (T stands for Turing)."A is no harder than B""A is at least as easy as B"

Reducing language A to B

Reductions

Fact: Suppose $A \leq_T B$; i.e., A reduces to B.

If B is decidable, then A is also decidable. (can replace the assumed oracle for B with a decider for B, and the reduction can run this decider whenever it needs to ascertain membership of some string in B)

<u>Contrapositive</u>: *if A is undecidable then so is B.* Think: "B is at least as hard as A"

Reductions are *the* main technique for showing undecidability.

Reductions — examples

Theorem: ACCEPTS = {(M, x) : M is a TM which accepts x} is undecidable.

Proof: We'll prove HALTS reduces to ACCEPTS. Suppose $O_{ACCEPTS}$ is an oracle for language ACCEPTS. Then here's a description of an oracle TM deciding HALTS: "Given $\langle M, x \rangle$, run $O_{ACCEPTS}(\langle M, x \rangle)$. If it accepts, then accept. **Reverse the accept & reject states in (M), forming (M').** Run $O_{ACCEPTS}(\langle M', x \rangle)$. If it accepts (i.e., M rejects x), then accept. Else reject."

Interesting observation

To prove a **negative** result about computation (that a certain language is undecidable),

you actual **construct an algorithm** – namely, the reduction.

Reductions — another example

Theorem: EMPTY = $\{\langle M \rangle : M \text{ accepts no strings} \}$ is undecidable.

Proof: Let's prove ACCEPTS \leq_{T} EMPTY. This suffices, since we just showed ACCEPTS is undecidable. So suppose O_{EMPTY} is an oracle for language EMPTY. Here's an oracle TM with oracle access to O_{FMPTY} deciding ACCEPTS: "Given (M, x)... Write down the description $\langle N_x \rangle$ of a TM N_x which does the following: "On input y, check if y=x. If not, reject. If so, simulate M on y." Then call upon the oracle O_{FMPTY} on input $\langle N_x \rangle$ and do the opposite."

Correctness of reduction

Code for $N_{\boldsymbol{x}}\,$:

"On input y, check if y=x. If not, reject. If so, simulate M on y." $L(N_x)$ is either {x} or Ø

And $L(N_x) = \{x\}$ precisely when M accepts x, i.e., $\langle M, x \rangle \in ACCEPTS$

Important:

Reduction *never* runs N_x ; it simply writes down the description $\langle N_x \rangle$ of N_x and probes the oracle whether $\langle N_x \rangle \in EMPTY$

Schematic of the reduction ACCEPTS \leq_{T} EMPTY

Yes/No

 $\langle N_x \rangle \in EMPTY ?$

Oracle TM deciding ACCEPTS

Input $\langle M, x \rangle$

- Write down description $\langle N_x \rangle$ 1.
- Query oracle
 Accept if O_{EMPTY} answers No, and reject if it answers Yes

a single oracle query, and we just pass on answer to that query. Called "mapping reduction"

Undecidability galore

Similar reductions can show undecidability of telling if, given an input TM (M), L(M) is:

Finite Regular Contains 15251 in binary Decidable Contains a string of length more than 15251 Etc etc

Essentially any non-trivial property of languages

Question: Do all undecidable problems involve TM's?

Answer: No! Some very different problems are undecidable!

Input: A finite collection of "dominoes", having strings written on each half.

Definition: A match is a sequence of dominoes, repetitions allowed, such that top string = bottom string.

Input: A finite collection of "dominoes", having strings written on each half.

= abccabcc= abccabcc

Input: A finite collection of "dominoes", having strings written on each half.

Task: Output YES if and only if there is a match.

Theorem (Post, 1946): Undecidable. There is no algorithm solving this problem.

(More formally, PCP = {(Domino Set) : there's a match} is an undecidable language.)

Input: A finite collection of "dominoes", having strings written on each half.

Task: Output YES if and only if there is a match.

Theorem (Post, 1946): Undecidable. There is no algorithm solving this problem.

Two-second proof sketch:

Given a TM M, you can make a domino set such that the only matches are execution traces of M which end in the accepting state. Hence ACCEPTS \leq_{T} PCP.

Wang Tiles

Input: Finite collection of "Wang Tiles" (squares) with colors on the edges. E.g.,

Task: Output YES if and only if it's possible to make an infinite grid from copies of them, where touching sides must color-match.

Theorem (Berger, 1966): Undecidable.

Modular Systems

Input: Finite set of rules of the form "from ax+b, can derive cx+d", where a,b,c,d $\in \mathbb{Z}$. Also given is a starting integer u and a target v.

Task: Decide if v can be derived starting from u.

E.g.: "from 2x derive x", "from 2x+1 derive 6x+4", target v = 1. Starting from u, this is equivalent to asking if the "3n+1 problem" halts on u.

Theorem (Börger, 1989): Undecidable.

Mortal Matrices

Input: Two 15 × 15 matrices of integers, A & B.

Question: Is it possible to multiply A and B together (multiple times in any order) to get the 0 matrix?

Theorem (Cassaigne, Halava, Harju, Nicolas, 2014): Undecidable.

Hilbert's 10th problem

Input: Multivariate polynomial w/ integer coeffs.

Question: Does it have an integer root?

Theorem (1970): Undecidable.

Matiyasevich Robinson Davis

Putnam

Hilbert's 10th problem

Input: Multivariate polynomial w/ integer coeffs.

Question: Does it have an integer root? Undecidable.

Question: Does it have a real root? Decidable.

Tarski, 1951.

Question: Does it have a rational root? Not known if it's decidable or not.

Entscheidungsproblem

Input: A sentence in first-order logic. $\neg \exists n, x, y, z \in N: (n \ge 3) \land (x^n + y^n = z^n)$ Question: Is it provable?

This is undecidable.

We'll come back to this in the lecture on Gödel's Incompleteness Theorem

Possible discussion of Post Correspondence Problem undecidability

Study Guide

Definitions:

Decidable languages/ computable functions Undecidable languages Halting Problem

Theorems/proofs: Halting Problem is undecidable Undecidability proofs via reductions

Practice: Reductions