15-251: Great Theoretical Ideas in Computer Science Fall 2016 Lecture 6

September 15, 2016

Turing \& the Uncomputable

3-slide review of last lecture

Comparing the cardinality of sets

$|A| \leq|B|$
if there is an injection (one-to-one map) from A to B
$|A| \geq|B|$
if there is a surjection (onto map) from A to B
$|A|=|B|$
if there is a bijection from A to B
$|A|>|B|$
if there is no surjection from B to A
(or equivalently, there is no injection from A to B)

Countable and uncountable sets

- Set A is countable if $|A| \leq|\mathbb{N}|$
- Set A is countably infinite if it is countable and infinite, i.e., $|A|=|\mathbb{N}|$ (there's a bijection from A to \mathbb{N})
- Set A is uncountable if it is not countable, i.e., $|A|>|\mathbb{N}|$

One slide guide to countability questions

You are given a set A : is it countable or uncountable

$$
|A| \leq|\mathbb{N}| \text { or }|A|>|\mathbb{N}|
$$

$|A| \leq|\mathbb{N}|:$

- Show directly surjection from \mathbb{N} to A
- Show that $|A| \leq|B|$ where $B \in\left\{\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}, \mathbb{Q}, \Sigma^{*}, \mathbb{Q}[\mathrm{x}], \ldots\right\}$
$|A|>|\mathbb{N}|:$
- Show directly using a diagonalization argument
- Show that $|A| \geq\left|\{0,1\}^{\infty}\right|$

Proving sets countable using computation

For example, $\mathrm{f}(\mathrm{n})=$ 'the $\mathrm{n}^{\text {th }}$ prime'.
You could write a program (Turing machine) to compute f.
So this is a well-defined rule.

Or: $f(n)=$ the $n^{\text {th }}$ rational in our listing of \mathbb{Q}.
(List \mathbb{Z}^{2} via the spiral, omit the terms p/0, omit rationals seen before...)
You could write a program to compute this f .

Poll

Let A be the set of all languages over $\Sigma=\{1\}^{*}$

Select the correct ones:

- A is finite
- A is infinite
- A is countable
- A is uncountable

Another thing to remember from last week

Encoding different objects with strings
Fix some alphabet Σ.
We use the $\langle\cdot\rangle$ notation to denote the encoding of an object as a string in Σ^{*}

Examples:
$\langle M\rangle \in \Sigma^{*} \quad$ is the encoding a TM M
$\langle D\rangle \in \Sigma^{*} \quad$ is the encoding a DFA D
$\left\langle M_{1}, M_{2}\right\rangle \in \Sigma^{*}$ is the encoding of a pair of TMs M_{1}, M_{2}
$\langle M, x\rangle \in \Sigma^{*}$ is the encoding a pair M, x, where M is a TM, and $x \in \Sigma^{*}$ is an input to M

Uncountable to uncomputable

The real number $1 / 7$ is "computable".
You could write a (non-halting) program (in your favorite language) which printed out all its digits:
.142857142857142857...

The same is true of $\sqrt{ } 2, \pi, e$,
" the first prime larger than $243,112,609$ ", etc.; indeed, any real number "you can think of".

Uncountable to uncomputable

However, the set of all programs
(in your favorite language)
is just Σ^{*}, for some finite alphabet Σ.
Hence the set of all programs is countable.

Hence the set of all "computable reals" is countable.

But \mathbb{R} is uncountable.

Therefore there exist "uncomputable reals".

Recap: Turing Machines

Rules of computation:

Tape initialized with input $x \in \Sigma^{*}$ placed starting at square 0 , preceded \& followed by infinite ப's.

Control starts in state q_{0}, head starts in square 0 .
If the current state is q and head is reading symbol $s \in \Gamma$,
the machine transitions according to $\delta(\mathrm{q}, \mathrm{s})$, which gives:

- the next state,
- what tape symbol to overwrite the current square with,
- and whether the head moves Left or Right.

Continues until either the accept state or reject state reached.
When accept/reject state is reached, M halts.
M might also never halt, in which case we say it loops.

Formal definition of Turing Machines

A Turing Machine is a 7-tuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right):
$$

Q is a finite set of states,
Σ is a finite input alphabet (with $\sqcup \notin \Sigma$),
Γ is a finite tape alphabet (with $\sqcup \in \Gamma, \Sigma \subseteq \Gamma$)
$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is transition function,
$q_{0} \in Q$ is the start state,
$q_{\text {accept }} \in Q$ is the accept state,
$q_{\text {reject }} \in Q$ is the reject state, $q_{\text {reject }} \neq q_{\text {accept }}$.

Decidable languages

Definition:
A language $L \subseteq \Sigma^{*}$ is decidable if there is a Turing Machine M which:

1. Halts on every input $x \in \Sigma^{*}$.
2. Accepts inputs $x \in L$ and rejects inputs $x \notin L$.

Such a Turing Machine is called a decider. It 'decides' the language L.

We like deciders. We don't like TM's that sometimes loop

Computable functions

An equivalence between
languages and (Boolean-valued) functions:
function $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\} \equiv$ subset $L \subseteq\{0,1\}^{*}$

$$
\begin{aligned}
& L=\left\{x \in\{0,1\}^{*}: f(x)=1\right\} \\
& f(x)= \begin{cases}1 & \text { if } x \in L \\
0 & \text { if } x \notin L\end{cases}
\end{aligned}
$$

If L is decidable we call f computable, and vice versa.

Decidable languages

Examples:

Hopefully you're convinced that $\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is decidable. (Recall it's not "regular".)

The language $\left\{02^{n}: n \in \mathbb{N}\right\} \subseteq\{0\}^{*}$,
i.e. $\{0,00,0000,00000000, \ldots\}$, is decidable.

Proof: You can describe decider TMs for these...

Describing Turing Machines

Low Level:
Explicitly describing all states and transitions.
Medium Level:
Carefully describing in English how the TM operates. Should be 'obvious' how to translate into a Low Level description.

High Level:
Skips 'standard' details, just highlights 'tricky' details. For experts only!

$\left\{0^{2^{n}}: n \in \mathbb{N}\right\}$ is decidable

Medium Level description:

1. Sweep from left to right across the tape, overwriting a \# over top of every other 0.
2. If you saw one 0 on the sweep, accept.
3. If you saw an odd number of 0 's, reject.
4. Move back to the leftmost square.
(Say you write a marker on the leftmost square at the very beginning so that you can recognize it later.)
5. Go back to step 1.

TM programming exercises \& tricks

- Convert input $x_{1} x_{2} x_{3} \cdots x_{n}$ to $x_{1} \sqcup x_{2} \sqcup x_{3} \sqcup \cdots \sqcup x_{n}$.
- Simulate a big Γ by just $\{0,1, \sqcup\}$. (Or just $\{0, \sqcup\}$)
- Increment/decrement a number in binary.
- Copy sections of tape from one spot to another.
- Simulate having 2 tapes, with separate heads.
- Create a Turing Machine U whose input is $\langle M\rangle$, the encoding of a TM M,
x , a string
and which simulates the execution of M on x .

Universal Turing Machine

If you get stuck on the last exercise, you can look up the answer in Turing's 1936 paper!

Such a simulating TM is called a universal Turing Machine.

TM's: good definition of computation?

After playing with them for a while,
you'll become convinced you can program TM's to compute anything you could compute using Python, Java, ML, C++, etc.
(and using arbitrarily much memory!)

You were probably already convinced that Python, Java, ML, C++, etc. can all simulate each other.

Church-Turing Thesis:

"Any natural / reasonable notion of computation can be simulated by a TM."

Describing Turing Machines

Low Level:
Medium Level:
High Level:
Super-high Level:
Just describe an algorithm / pseudocode.

Assuming the Church-Turing Thesis
(which everybody does)
there exists a TM which executes that algorithm.

Question:

Is every language in $\{0,1\}^{*}$ decidable?
\Leftrightarrow Is every function $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}$ computable?
Answer: No!
Every TM is encodable by a finite string.
Therefore the set of all TM's is countable.
So the subset of all decider TM's is countable.
Thus the set of all decidable languages is countable.
But the set of all languages is uncountable.
(from last lecture, $\left|P\left(\{0,1\}^{*}\right)\right|>\left|\{0,1\}^{*}\right|$)

Question:

Is it just weirdo languages that no one would care about which are undecidable?

Answer (due to Turing, 1936):
Sadly, no.
There are some very reasonable languages we'd like to compute which are undecidable.

Some uncomputable functions

Given two TM descriptions, $\left\langle\mathrm{M}_{1}\right\rangle$ and $\left\langle\mathrm{M}_{2}\right\rangle$, do they act the same (accept/reject/loop) on all inputs?

Given the description of an algorithm, $\langle\mathrm{M}\rangle$, does it print out "HELLO WORLD"?
main($\mathrm{t},-, \mathrm{a}$) char * a; \{ return! $0<t$? $\mathrm{t}<3$? main($-79,-13, \mathrm{a}+$ main($-87,1-$, , main($-86,0, \mathrm{a}+1$) $+\mathrm{a})$): $1, \mathrm{t}<$? main($\mathrm{t}+1, \ldots$, a $): 3$, main ($-94,-27+\mathrm{t}, \mathrm{a}) \& \& \mathrm{t}=2$? <13 ? main ($2, \ldots$, " $\% \mathrm{~s}$ \%d \%dln") :9:16: t<0? t<-72? main(_, t,
"@n'+,\#'/*\{\}w+/w\#cdnr/+,\{\}r/*de\}+,/*\{*+,/w\{\%+,/w\#q\#n+,/\#\{1,+,/n\{n+,/+\#n+,/\#;\#q\#n+,/+k\#;*+,/'r :'d*'3,\}\{w+K w'K:'+\}e\#'; ;qq\#'I
q\#'+d'K\#!/+k\#;q\#'r\}eKK\#\}w'r\}eKK\{nl]'/\#;\#q\#n')\{)\#\}w')\{)\{nl]/+\#n';d\}rw' i;\#)\{nl]!/n\{n\#'; r\{\#w'r nc\{nl]/\#\{1,+'K \{rw' iK\{;[\{nl]'/w\#q\#n'wk nw' iwk\{KK\{nl]!/w\{\%'l\#\#w\#' i;
 ')\# \}'+\}\#\#\#(!!/") : t<-50? _==*a ? putchar(31[a]): main(-65,_,a+1) : main((*a == 'l') + t, _, a + 1): $0<t$? main (2, 2, "\%s") :*a==''|| main(0, main(-61,*a, "!ek;dc i@bK'(q)-[w]*\%n+r3\#\#l,\{\}:Inuwloca-O;m .vpbks,fxntdCeghiry") ,a+1);\}

This C program prints out all the lyrics of The Twelve Days Of Christmas.

Does the following program (written in Maple) print out "HELLO WORLD"?

```
numberToTest := 2;
flag := 1;
while flag = 1 do
    flag := 0;
    numberToTest := numberToTest + 2;
    for p from 2 to numberToTest do
        if IsPrime(p) and IsPrime(numberToTest-p) then
            flag := 1;
                break; #exits the for loop
end if
```

end for
end do
print("HELLO WORLD")

It does so if and only if

"Goldbach's Conjecture"
is false.

Some uncomputable functions

Given two TM descriptions, $\left\langle\mathrm{M}_{1}\right\rangle$ and $\left\langle\mathrm{M}_{2}\right\rangle$, do they act the same (accept/reject/loop) on all inputs?

Given the description of an algorithm, $\langle\mathrm{M}\rangle$, does it print out "HELLO WORLD"?

Given a TM description $\langle M\rangle$ and an input x , does M halt on input x ?

Given a TM description $\langle\mathrm{M}\rangle$, does M halt when the input is a blank tape?

Some uncomputable functions

Given a TM description $\langle M\rangle$ and an input x, does M halt on input x ?

Turing's Theorem:

The Halting Problem is undecidable.

The Halting Problem is Undecidable

Theorem:
Let HALTS $\subseteq\{0,1\}^{*}$ be the language
$\{\langle M, x\rangle$: M is a TM which halts on input $x\}$. Then HALTS is undecidable.

Proof:
Assume for the sake of contradiction that $\mathrm{M}_{\text {HALTS }}$ is a decider TM which decides HALTS.

The Halting Problem is Undecidable

Here is the (super-high level) description of another TM called D, which uses $\mathrm{M}_{\text {HALTs }}$ as a subroutine:

Given as input $\langle M\rangle$, the encoding of a TM M:
D executes $\mathrm{M}_{\text {Halts }}(\langle\mathrm{M},\langle\mathrm{M}\rangle\rangle)$.
If this call accepts, D enters an infinite loop.
If this call rejects, D halts (say, it accepts).

In other words... $\mathrm{D}(\langle\mathrm{M}\rangle)$ loops if $\mathrm{M}(\langle\mathrm{M}\rangle)$ halts, halts if $M(\langle M\rangle)$ loops.

The Halting Problem is Undecidable

Assume $\mathrm{M}_{\text {HALTS }}$ is a decider TM which decides HALTS.
We can use it to construct a machine D such that
$D(\langle M\rangle)$ loops if $M(\langle M\rangle)$ halts, halts if $M(\langle M\rangle)$ loops.

Time for the contradiction:
Does $\mathrm{D}(\langle\mathrm{D}\rangle)$ loop or halt?

By definition, if it loops it halts and if it halts it loops.
Contradiction.

BTW: last part of proof basically the same as Cantor's Diagonal Argument.

$D(\langle M\rangle)$ loops if $M(\langle M\rangle)$ halts, halts if $M(\langle M\rangle)$ loops

The set of all TM's is countable, so list it:

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	$\left\langle M_{5}\right\rangle$	\ldots
M_{1}	halts	halts	loops	halts	loops	
M_{2}	loops	loops	loops	loops	loops	
M_{3}	halts	loops	halts	halts	halts	
M_{4}	halts	halts	halts	halts	loops	
M_{5}	halts	loops	loops	halts	loops	

How could D be on this list?
What would the diagonal entry be??

$D(\langle M\rangle)$ loops if $M(\langle M\rangle)$ halts, halts if $M(\langle M\rangle)$ loops

The set of all TM's is countable, so list it:

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	$\left\langle M_{5}\right\rangle$	\ldots
M_{1}	halts	halts	loops	halts	loops	
M_{2}	loops	loops	loops	loops	loops	
M_{3}	halts	loops	halts	halts	halts	
M_{4}	halts	halts	halts	halts	loops	
M_{5}	halts	loops	loops	halts	loops	

Given some code, determine if it terminates.

It's not: "we don't know how to solve it efficiently".

It's not: "we don't know if it's a solvable problem".

We know that it is unsolvable by any algorithm.

In our proof that HALTS is undecidable, we used a hypothetical TM deciding HALTS to derive a contradiction

Having established the undecidability of HALTS, we can show further problems to be undecidable using the powerful tool of REDUCTIONS

Reductions

Using one problem as a subroutine to solve another problem.

Informally, a reduction from A to B gives a way to solve problem A using a subroutine that can solve B

Calculating the area of a rectangle reduces to calculating its length and height.

Solving a linear system $A x=b$ reduces to computing the matrix inverse A^{-1}

Reductions

Language A reduces to language B means (informally):
"there is a method that could be used to solve A if it has available to it a subroutine for solving B."
The reduction gives such a method.
Formally a (Turing) reduction from A to B is an oracle Turing machine that decides A when run with an oracle for B.

Notation for A reduces to B:
Think,
$A \leq{ }_{T} B \quad$ (T stands for Turing).
"A is no harder than B"
"A is at least as easy as B"

Reducing language A to B

Reductions

Fact: Suppose A \leq_{T} B; i.e., A reduces to B.

If B is decidable, then A is also decidable. (can replace the assumed oracle for B with a decider for B , and the reduction can run this decider whenever it needs to ascertain membership of some string in B)

Contrapositive: if A is undecidable then so is B. Think: "B is at least as hard as A"

Reductions are the main technique for showing undecidability.

Reductions - examples

Theorem:

ACCEPTS $=\{\langle M, x\rangle: M$ is a TM which accepts $x\}$ is undecidable.
Proof: We'll prove HALTS reduces to ACCEPTS.
Suppose $\mathrm{O}_{\text {ACCEPTS }}$ is an oracle for language ACCEPTS.
Then here's a description of an oracle TM deciding HALTS:
"Given $\langle M, x\rangle$, run $\mathrm{O}_{\mathrm{ACCEPTS}}(\langle\mathrm{M}, \mathrm{x}\rangle)$. If it accepts, then accept.
Reverse the accept \& reject states in $\langle M\rangle$, forming $\left\langle M^{\prime}\right\rangle$.
Run $\mathrm{O}_{\text {ACcEPTS }}\left(\left\langle\mathrm{M}^{\prime}, \mathrm{x}\right\rangle\right)$. If it accepts (i.e., M rejects x), then accept. Else reject."

Interesting observation

To prove a negative result about computation (that a certain language is undecidable),
you actual construct an algorithm namely, the reduction.

Reductions - another example

Theorem: EMPTY $=\{\langle M\rangle$: M accepts no strings $\}$ is undecidable.

Proof: Let's prove ACCEPTS \leq_{T} EMPTY.
This suffices, since we just showed ACCEPTS is undecidable.
So suppose $\mathrm{O}_{\text {EMPTY }}$ is an oracle for language EMPTY.
Here's an oracle TM with oracle access to $\mathrm{O}_{\text {EMPTY }}$ deciding ACCEPTS:
"Given $\langle\mathrm{M}, \mathrm{x}\rangle .$. .
Write down the description $\left\langle\mathrm{N}_{\mathrm{x}}\right\rangle$ of a TM N_{x} which does the following:
"On input y , check if $\mathrm{y}=\mathrm{x}$.
If not, reject. If so, simulate M on y ."
Then call upon the oracle $\mathrm{O}_{\text {EMPTY }}$ on input $\left\langle\mathrm{N}_{\mathrm{x}}\right\rangle$ and do the opposite."

Correctness of reduction

Code for N_{x} :
$\mathrm{L}\left(\mathrm{N}_{\mathrm{x}}\right)$ is either $\{\mathrm{x}\}$ or \emptyset
"On input y,
check if $\mathrm{y}=\mathrm{x}$.
If not, reject.
If so, simulate M on y ."
And $\mathrm{L}\left(\mathrm{N}_{\mathrm{x}}\right)=\{\mathrm{x}\}$ precisely when M accepts x, i.e., $\langle M, x\rangle \in$ ACCEPTS

Important:

Reduction never runs N_{x};
it simply writes down the description $\left\langle\mathrm{N}_{\mathrm{x}}\right\rangle$ of N_{x} and probes the oracle whether $\left\langle\mathrm{N}_{\mathrm{x}}\right\rangle \in$ EMPTY

Schematic of the reduction ACCEPTS \leq_{T} EMPTY

Oracle $\mathrm{O}_{\text {EMPTY }}$

$\left\langle\mathrm{N}_{\mathrm{x}}\right\rangle \in$ EMPTY ?

Yes/No
Oracle TM deciding ACCEPTS

1. Write down description $\left\langle\mathrm{N}_{\mathrm{x}}\right\rangle$ Query oracle
Accept if $\mathrm{O}_{\text {Empty }}$ answers No, and reject if it answers Yes

Another example:

 ACCEPTS \leq_{T} INFINITE $=\{\langle M\rangle: M$ accepts infinitely many strings\}
Oracle $\mathrm{O}_{\text {INFINITE }}$

$\left\langle\mathrm{I}_{\mathrm{x}}\right\rangle \in \operatorname{INFINITE} ?$

Oracle TM deciding ACCEPTS
Input 1. Write down description $\left\langle\left.\right|_{x}\right\rangle$
$\langle M, x\rangle$
2. Query oracle on $\left\langle I_{\mathrm{x}}\right\rangle$
3. Accept if $\mathrm{O}_{\text {INFInIte }}$ answers Yes, and reject if it answers No

Note: Reduction is particularly simple: a single oracle query, and we just pass on answer to that query. Called "mapping reduction"

Code $\left\langle\mathrm{I}_{\mathrm{x}}\right\rangle$:
"On input y:

- ignore y
- Run M on x
\& accept if it does."

Remember:

we don't run I_{x},
we only write down it's code

Undecidability galore

Similar reductions can show undecidability of telling if, given an input $\mathrm{TM}\langle\mathrm{M}\rangle, \mathrm{L}(\mathrm{M})$ is:

Finite
Regular
Contains 15251 in binary
Decidable
Contains a string of length more than 15251
Etc etc

Essentially any non-trivial property of languages

Question:
Do all undecidable problems involve TM's?

Answer:
No!
Some very different problems are undecidable!

Post's Correspondence Problem

Input: A finite collection of "dominoes", having strings written on each half.
E.g.:

Definition: A match is a sequence of dominoes, repetitions allowed, such that top string $=$ bottom string.

Post's Correspondence Problem

Input: A finite collection of "dominoes", having strings written on each half.

Match:

$=a b c c a b c c$
$=a b c c a b c c$

Post's Correspondence Problem

Input: A finite collection of "dominoes", having strings written on each half.

Task: Output YES if and only if there is a match.
Theorem (Post, 1946): Undecidable.
There is no algorithm solving this problem.
(More formally, PCP = \{〈Domino Set \rangle : there's a match $\}$ is an undecidable language.)

Post's Correspondence Problem

Input: A finite collection of "dominoes", having strings written on each half.

Task: Output YES if and only if there is a match.

Theorem (Post, 1946): Undecidable.
There is no algorithm solving this problem.
Two-second proof sketch:
Given a TM M, you can make a domino set such that the only matches are execution traces of M which end in the accepting state. Hence ACCEPTS \leq_{T} PCP.

Wang Tiles

Input: Finite collection of "Wang Tiles" (squares) with colors on the edges. E.g.,

Task: Output YES if and only if it's possible to make an infinite grid from copies of them, where touching sides must color-match.

Theorem (Berger, 1966): Undecidable.

Modular Systems

Input: Finite set of rules of the form
"from $\mathrm{ax}+\mathrm{b}$, can derive $\mathrm{cx}+\mathrm{d}$ ", where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathbb{Z}$.
Also given is a starting integer u and a target v.
Task: Decide if v can be derived starting from u.
E.g.: "from $2 x$ derive x ", "from $2 x+1$ derive $6 x+4$ ", target $v=1$. Starting from u, this is equivalent to asking if the " $3 n+1$ problem" halts on u.

Theorem (Börger, 1989): Undecidable.

Mortal Matrices

Input: Two 15×15 matrices of integers, A \& B.
Question: Is it possible to multiply A and B together (multiple times in any order) to get the 0 matrix?

Theorem (Cassaigne, Halava, Harju, Nicolas, 2014): Undecidable.

Hilbert's $10^{\text {th }}$ problem

Input: Multivariate polynomial w/ integer coeffs.
Question: Does it have an integer root?

Theorem (1970): Undecidable.

Matiyasevich Robinson
Davis Putnam

Hilbert's $10^{\text {th }}$ problem

Input: Multivariate polynomial w/ integer coeffs.
Question: Does it have an integer root? Undecidable.

Question: Does it have a real root? Decidable.

Question: Does it have a rational root?
Not known if it's decidable or not.

Entscheidungsproblem

Input: A sentence in first-order logic.

$$
\neg \exists n, x, y, z \in N:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)
$$

Question: Is it provable?

This is undecidable.

We'll come back to this in the
lecture on Gödel's Incompleteness Theorem

Possible discussion of Post Correspondence Problem undecidability

Definitions:
 Decidable languages/ computable functions
 Undecidable languages Halting Problem

Theorems/proofs:
Halting Problem is undecidable
Undecidability proofs via reductions

Practice:
Reductions

