|5-25|
 Great Theoretical Ideas in Computer Science

Lecture 8:
Power of Algorithms

September 22nd, 2016

2 main questions in TOC

Computability of a problem:
Is there an algorithm to solve it?

Complexity of a problem:
Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

Computable cousins of uncomputable problems

Halting Problem

Input: Description of a TM M and an input x Question: Does $M(x)$ halt?

This is undecidable.

Halting Problem with Time Bound
Input: Description of a TM M, an input x , a number k Question: Does $M(x)$ halt in at most k steps?

This is decidable. (Simulate for k steps)

Computable cousins of uncomputable problems

Theorem Proving Problem

Input: A FOL statement (a mathematical statement)
Question: Is the statement provable?
This is undecidable.

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement), k
Question: Is the statement provable using at most k symbols?
This is decidable. (Brute-force search)

Kurt Friedrich Gödel (I906-1978)

Logician, mathematician, philosopher.

Considered to be one of the most important logicians in history.

Great contributions to foundations of mathematics.

Incompleteness Theorems.
Completeness Theorem.

John von Neumann (1903-1957)

Contents [hide]

1 Early life and education
2 Career and abilities
2.1 Beginnings
2.2 Set theory
2.3 Geometry
2.4 Measure theory
2.5 Ergodic theory
2.6 Operator theory
2.7 Lattice theory
2.8 Mathematical formulation of quantum mechanics
2.9 Quantum logic
2.10 Game theory
2.11 Mathematical economics
2.12 Linear programming
2.13 Mathematical statistics
2.14 Nuclear weapons
2.15 The Atomic Energy Committee
2.16 The ICBM Committee
2.17 Mutual assured destruction
2.18 Computing
2.19 Fluid dynamics
2.20 Politics and social affairs
2.21 On the eve of World War II
2.22 Greece and Rome
2.23 Weather systems
2.24 Cognitive abilities
2.25 Mastery of mathematics

3 Personal life
4 Later life

- Mathematical formulation of quantum mechanics
- Founded the field of game theory in mathematics.
- Created some of the first general-purpose computers.

Gödel's letter to von Neumann (I956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length $=$ number of symbols). Let $\psi(F, n)$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement), k
Question: Is the statement provable using at most k symbols?
This is decidable. (Brute-force search)

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann

$\Psi(F, n)=$ the number of steps required for input (F, n)
$\varphi(n)=\max _{F} \Psi(F, n)$
(a worst-case notion of running time)

Question: How fast does $\varphi(n)$ grow for an optimal machine?

Gödel's letter to von Neumann (I956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me , however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann (I956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me , however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Goals for the week

I.What is the right way to study complexity?

- using the right language and level of abstraction
- upper bounds vs lower bounds
- polynomial time vs exponential time

2. Appreciating the power of algorithms.

- analyzing running time of recursive functions

Polynomial time vs Exponential time

What is efficient in theory and in practice?

In practice:

$O(n)$
$O(n \log n) \quad$ Great!
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$
$O\left(n^{5}\right)$
$O\left(n^{10}\right)$
$O\left(n^{100}\right)$
WTF?

Awesome! Like really awesome!

Kind of efficient.
Barely efficient. (???)
Would not call it efficient.
Definitely not efficient!

What is efficient in theory and in practice?

In theory:

Polynomial time
Otherwise

Efficient.

Not efficient.

- Poly-time is not meant to mean "efficient in practice"
- It means"You have done something extraordinarily better than brute force (exhaustive) search."
- Poly-time: mathematical insight into a problem's structure.
- If you show, say Factoring Problem, has running time $O\left(n^{100}\right)$, it will be the best result in CS history.

What is efficient in theory and in practice?

In theory:

Polynomial time
Otherwise

Efficient.

Not efficient.

- Robust to notion of what is an elementary step, what model we use, reasonable encoding of input, implementation details.
- Nice closure property: Plug in a poly-time alg. into another poly-time alg. \rightarrow poly-time

What is efficient in theory and in practice?

In theory:
Polynomial time
Otherwise

Efficient.
Not efficient.

- Big exponents don't really arise.
- If it does arise, usually can be brought down.

What is efficient in theory and in practice?

In theory:
Polynomial time
Otherwise

Efficient.

Not efficient.

- Summary: Poly-time vs not poly-time is a qualitative difference, not a quantitative one.

Can you cheat exponential time?

Algorithms with integer inputs

Recall our model

The Random-Access Machine (RAM) model
Good combination of reality/simplicity.
$\begin{array}{ccc}+,-, /, *,<,>, \text { etc. } & \text { e.g. } 245 * \mid 2894 & \text { takes I step } \\ \text { memory access } & \text { e.g. A[94] } & \text { takes I step }\end{array}$

Technically:
We'll assume arithmetic operations take I step if the numbers are bounded by a polynomial in n.

Unless specified otherwise, we will use this model.

Integer Summation

Input: 2 n-digit numbers x and y.
Output: The sum of x and y.

Can we assume that this takes I step?

Are x and y bounded by some polynomial in n ? No! x and y can be about 10^{n}.

Imagine $n=I$ billion (which is a realistic value for n).

Integer summation requires an algorithm!

Integer Summation

Input: 2 n-digit numbers x and y.
Output: The sum of x and y.
First attempt at an algorithm.
def $\operatorname{sum}(x, y)$: for ifrom 1 to x do:

$$
\begin{array}{r}
\mathrm{y}+=1 \\
\text { return } \mathrm{y}
\end{array}
$$

Remember, x can be about 10^{n}.
The time complexity of this algorithm is $\Omega\left(10^{n}\right)$.

Integer Summation

Input: 2 n-digit numbers x and y.
Output: The sum of x and y.
Second attempt at an algorithm. def $\operatorname{sum}(x, y)$:
carry $=0$
for i from 0 to $\mathrm{n}-1$ do:
columnSum $=x[i]+y[i]+$ carry
$\mathrm{z}[\mathrm{i}]=$ columnSum \% 10
carry $=($ columnSum $-z[i]) / 10$
$\mathrm{z}[\mathrm{n}]=$ carry return z

Time complexity of algorithm: $O(n)$ Intrinsic complexity of summation: $\Theta(n)$

Integer Multiplication

Input: 2 n-digit numbers x and y.
Output: The product of x and y.
Grade-School Algorithm:

$$
\begin{aligned}
& 5678 \\
& \begin{array}{r}
1234 \\
\times \quad 1 \\
\hline
\end{array} \\
& 22712 \\
& 17034 \\
& \text { 1 } 1356 \\
& +\quad 5678 \\
& 7006652 \\
& \longrightarrow \quad O(n) \text { operations } \\
& n \text { rows } \\
& 7006652 \\
& \longrightarrow \quad O(n) \text { operations } \\
& \longrightarrow \quad O(n) \text { operations } \\
& \longrightarrow \quad O(n) \text { operations } \\
& \text { Total: } O\left(n^{2}\right)
\end{aligned}
$$

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks: How can we do better?

Let's try a different approach and see what happens...

Integer Multiplication

$$
\begin{aligned}
& \text { a b } \\
& \mathrm{x}=5678 \quad x=a \cdot 10^{n / 2}+b \\
& y=324 \\
& y=c \cdot 10^{n / 2}+d \\
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

Use recursion!

Integer Multiplication

$$
\begin{aligned}
& \text { a b } \\
& \begin{array}{ll}
\mathrm{x}=5678 & x=a \cdot 10^{n / 2}+b \\
\mathrm{y}=1234 & y=c \cdot 10^{n / 2}+d
\end{array} \\
& \text { c d } \\
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

- Recursively compute $a c, a d, b c$, and $b d$.
- Do the multiplications by 10^{n} and $10^{n / 2}$
- Do the additions.

$$
T(n)=4 T(n / 2)+O(n)
$$

Integer Multiplication

Level

0

\# distinct nodes at level $\mathrm{j}: \quad 4^{j}$
work done per node at level j :
$c\left(n / 2^{j}\right)$
$c n 2^{j}$
per level \# levels: $\log _{2} n$

Integer Multiplication

$$
\begin{aligned}
& \text { a b } \\
& \begin{array}{l}
\mathrm{x}=5678 \\
\mathrm{y}=1234
\end{array} \quad \begin{array}{l}
x=a \cdot 10^{n / 2}+b \\
y=c \cdot 10^{n / 2}+d
\end{array} \\
& \text { c d } \\
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

Hmm, we don't really care about ad and bc. We just care about their sum.
Maybe we can get away with 3 recursive calls.

Integer Multiplication

$$
T(n) \leq 3 T(n / 2)+O(n)
$$

Is this better??

$$
\begin{aligned}
& \text { a b } \\
& \mathrm{x}=5678 \quad x=a \cdot 10^{n / 2}+b \\
& y=1234 \\
& \text { c d } \\
& y=c \cdot 10^{n / 2}+d \\
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d \\
& (a+b)(c+d)=a c+a d+b c+b d
\end{aligned}
$$

Integer Multiplication

Level

0

\# distinct nodes at level $\mathrm{j}: \quad 3^{j}$
work done per node at level $\mathrm{j}: \quad c\left(n / 2^{j}\right)$
$\operatorname{cn}\left(3^{j} / 2^{j}\right)$ per level \# levels: $\log _{2} n$

$$
\text { Total cost: } \sum_{j=0}^{\infty 2} c n\left(3^{j} / 2^{j}\right)
$$ $\log _{2} n$

Integer Multiplication

Level

0

Total cost:

$$
\sum_{j=0}
$$

$$
\begin{aligned}
c n\left(3^{j} / 2^{j}\right) & \leq C n\left(3^{\log _{2} n} / 2^{\log _{2} n}\right) \\
& =C 3^{\log _{2} n}
\end{aligned}
$$

Karatsuba Algorithm

$$
=C n^{\log _{2} 3} \in O\left(n^{\log _{2} 3}\right)
$$

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?
A good algorithm designer always thinks: How can we do better ?

Cut the integer into 3 parts of length $\mathrm{n} / 3$ each.
Replace 9 multiplications with only 5 .

$$
\begin{aligned}
& T(n) \leq 5 T(n / 3)+O(n) \\
& T(n) \in O\left(n^{\log _{3} 5}\right)
\end{aligned}
$$

Can do $T(n) \in O\left(n^{1+\epsilon}\right)$ for any $\epsilon>0$.

Integer Multiplication

Fastest known: $\quad n(\log n) 2^{O\left(\log ^{*} n\right)}$
Martin Fürer
(2007)

Matrix Multiplication

Input: $2 \mathrm{n} \times \mathrm{n}$ matrices X and Y .
Output: The product of X and Y.
(Assume entries are objects we can multiply and add.)

Matrix Multiplication

$\left.$| a | b |
| :--- | :--- |
| c | d |\times| e | f |
| :--- | :--- |
| g | h | \right\rvert\,$=$| $a e+b g$ | $a f+b h$ |
| :--- | :--- |
| $c e+d g$ | $c f+d h$ |

Matrix Multiplication

Input: $2 \mathrm{n} \times \mathrm{n}$ matrices X and Y .
Output: The product of X and Y.
(Assume entries are objects we can multiply and add.)
Note: we are interested in the number of multiplications needed to solve this problem.

Matrix Multiplication

$Z[i, j]=(i$ 'th row of $X) \cdot(j$ 'th column of $Y)$
$=\sum_{k=1}^{n} \mathrm{X}[\mathrm{i}, \mathrm{k}] \mathrm{Y}[\mathrm{k}, \mathrm{j}]$

Matrix Multiplication

$Z[i, j]=(i$ 'th row of $X) \cdot(j$ 'th column of $Y)$

$$
=\sum_{k=1}^{n} \mathrm{X}[\mathrm{i}, \mathrm{k}] \mathrm{Y}[\mathrm{k}, \mathrm{j}]
$$

Algorithm I:
$\Theta\left(n^{3}\right)$

Matrix Multiplication

$$
\left.X=\begin{array}{|ccc|}
A & \vdots & B \\
\cdots & \vdots & \cdots
\end{array} \quad Y \cdots \cdots \begin{array}{ccc}
E & \vdots & F \\
C & \vdots & D
\end{array}\right]
$$

$$
\left.Z=\left\lvert\, \begin{array}{c}
A E+B G \vdots \\
\cdots \cdots \cdots+B H \\
\vdots \\
\cdots \\
\vdots
\end{array}\right.\right]
$$

Algorithm 2: recursively compute 8 products + do the additions.

Matrix Multiplication: Strassen's Algorithm

$$
Z=\left|\begin{array}{|c|c|}
\hline A E+B G: A F+B H \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
C E+D G & \cdots F+D H
\end{array}\right|
$$

Can reduce the number of products to 7 .

QI = (A+D) $(E+G)$
Q2 $=(C+D) E$
Q3 $=\mathrm{A}(\mathrm{F}-\mathrm{H})$
Q4 $=\mathrm{D}(\mathrm{G}-\mathrm{E})$
Q5 $=(A+B) H$
Q6 $=(\mathrm{C}-\mathrm{A})(\mathrm{E}+\mathrm{F})$
Q7 $=(B-D)(G+H)$
$A E+B G=Q 1+Q 4-Q 5+Q 7$
$\mathrm{AF}+\mathrm{BH}=\mathrm{Q} 3+\mathrm{Q} 5$
$C E+D G=Q 2+Q 4$
$C F+D H=Q 1+Q 3-Q 2+Q 6$

Matrix Multiplication: Strassen's Algorithm
Running Time:

$$
\begin{aligned}
T(n) & =7 \cdot T(n / 2)+O\left(n^{2}\right) \\
T(n) & =O\left(n^{\log _{2} 7}\right) \\
& =O\left(n^{2.81}\right)
\end{aligned}
$$

Matrix Multiplication: Strassen's Algorithm

Strassen's Algorithm (1969)

Together with Schönhage (in 1971) did n-bit integer multiplication in time $O(n \log n \log \log n)$

Arnold Schönhage

The race for the world record

Improvements since 1969

1978: $O\left(n^{2.796}\right)$ by Pan
1979: $O\left(n^{2.78}\right)$ by Bini, Capovani, Romani, Lotti
1981: $O\left(n^{2.522}\right)$ by Schönhage
1981: $O\left(n^{2.517}\right) \quad$ by Romani
1981: $O\left(n^{2.496}\right)$ by Coppersmith,Winograd
1986: $O\left(n^{2.479}\right)$ by Strassen
1990: $O\left(n^{2.376}\right) \quad$ by Coppersmith, Winograd
No improvement for 20 years!

The race for the world record

No improvement for 20 years!

2010: $O\left(n^{2.374}\right)$ by Andrew Stothers (PhD thesis)

201 I: $O\left(n^{2.373}\right)$ by Virginia Vassilevska Williams

(CMU PhD, 2008)

The race for the world record

20II: $O\left(n^{2.373}\right)$ by Virginia Vassilevska Williams

Current world record:

2014: $O\left(n^{2.372}\right)$ by François Le Gall

Enormous Open Problem

Is there an $O\left(n^{2}\right)$ time algorithm for matrix multiplication ???

