
September 22nd, 2016

15-251
Great Theoretical Ideas in Computer Science

Lecture 8:
Power of Algorithms

2 main questions in TOC

Computability of a problem:

Is there an algorithm to solve it?

Complexity of a problem:

Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

Computable cousins of uncomputable problems

Halting Problem with Time Bound

Input: Description of a TM M, an input x, a number k

Question: Does M(x) halt in at most k steps?

Halting Problem

Input: Description of a TM M and an input x

Question: Does M(x) halt?

This is undecidable.

This is decidable. (Simulate for k steps)

Computable cousins of uncomputable problems

Theorem Proving Problem

Input: A FOL statement (a mathematical statement)

Question: Is the statement provable?

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement), k

Question: Is the statement provable
 using at most k symbols?

This is undecidable.

This is decidable. (Brute-force search)

Kurt Friedrich Gödel (1906-1978)

Logician, mathematician, philosopher.

Considered to be one of the most
important logicians in history.

Great contributions to
foundations of mathematics.

Incompleteness Theorems.

Completeness Theorem.

John von Neumann (1903-1957)

- Mathematical formulation of
quantum mechanics

- Founded the field of game theory
in mathematics.

- Created some of the first
general-purpose computers.

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement), k

Question: Is the statement provable
 using at most k symbols?

This is decidable. (Brute-force search)

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann

= the number of steps required for input (F, n)

(a worst-case notion of
 running time)

Question: How fast does grow
 for an optimal machine?

'(n)

 (F, n)

'(n) = max

F
 (F, n)

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Goals for the week

2. Appreciating the power of algorithms.

- analyzing running time of recursive functions

1. What is the right way to study complexity?

- upper bounds vs lower bounds

- polynomial time vs exponential time

- using the right language and level of abstraction

Polynomial time vs Exponential time

What is efficient in theory and in practice ?

In practice:

O(n)

O(n log n)

O(n2)

O(n3)

O(n5)

O(n100)

Awesome! Like really awesome!

Great!

Kind of efficient.

Barely efficient. (???)

Would not call it efficient.

Definitely not efficient!O(n10)

WTF?

What is efficient in theory and in practice ?

In theory:

- Poly-time is not meant to mean “efficient in practice”

- It means “You have done something extraordinarily
better than brute force (exhaustive) search.”

Polynomial time

Otherwise

Efficient.

Not efficient.

- Poly-time: mathematical insight into a problem’s
structure.

- If you show, say Factoring Problem, has running time
 , it will be the best result in CS history. O(n100)

What is efficient in theory and in practice ?

In theory:

- Robust to notion of what is an elementary step,
 what model we use, reasonable encoding of input,
 implementation details.

- Nice closure property: Plug in a poly-time alg. into
another poly-time alg. —> poly-time

Polynomial time

Otherwise

Efficient.

Not efficient.

What is efficient in theory and in practice ?

In theory:

- Big exponents don’t really arise.

- If it does arise, usually can be brought down.

Polynomial time

Otherwise

Efficient.

Not efficient.

What is efficient in theory and in practice ?

In theory:

- Summary: Poly-time vs not poly-time
 is a qualitative difference, not a quantitative one.

Polynomial time

Otherwise

Efficient.

Not efficient.

Can you cheat exponential time?

Algorithms with integer inputs

Recall our model

The Random-Access Machine (RAM) model

Good combination of reality/simplicity.

+ , - , / , *, <, >, etc. takes 1 stepe.g. 245*12894

memory access takes 1 stepe.g. A[94]

Unless specified otherwise, we will use this model.

Technically:
We’ll assume arithmetic operations take 1 step
if the numbers are bounded by a polynomial in n.

Integer Summation

Input: 2 n-digit numbers x and y.

Output: The sum of x and y.

Can we assume that this takes 1 step?

Are x and y bounded by some polynomial in n?
No! x and y can be about 10n.

Imagine n = 1 billion (which is a realistic value for n).

Integer summation requires an algorithm!

Integer Summation

Input: 2 n-digit numbers x and y.

Output: The sum of x and y.

First attempt at an algorithm.

def sum(x, y):
 for i from 1 to x do:
 y += 1
 return y

Remember, x can be about 10n.

The time complexity of this algorithm is . ⌦(10n)

Integer Summation

Input: 2 n-digit numbers x and y.

Output: The sum of x and y.

Second attempt at an algorithm.

def sum(x, y):
 carry = 0
 for i from 0 to n-1 do:
 columnSum = x[i] + y[i] + carry
 z[i] = columnSum % 10
 carry = (columnSum - z[i]) / 10
 z[n] = carry
 return z

all arithmetic operations
here are on bounded ints

Time complexity of algorithm:

Intrinsic complexity of summation:

O(n)

⇥(n)

Integer Multiplication

Input: 2 n-digit numbers x and y.

Output: The product of x and y.

Grade-School Algorithm:

5 6 7 8
1 2 3 4x

2 2 7 1 2
1 7 0 3 4

1 1 3 5 6
5 6 7 8+

7 0 0 6 6 5 2

n rows

Total: O(n2)

�! O(n) operations

�! O(n) operations

�! O(n) operations

�! O(n) operations

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks:

How can we do better ?

Let’s try a different approach and see what happens…

Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x · y =

x = a · 10n/2 + b

y = c · 10n/2 + d

(a · 10n/2 + b) · (c · 10n/2 + d)

Use recursion!

= ac · 10n + (ad+ bc) · 10n/2 + bd

Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x · y =

x = a · 10n/2 + b

y = c · 10n/2 + d

(a · 10n/2 + b) · (c · 10n/2 + d)

- Recursively compute ac, ad, bc, and bd.

= ac · 10n + (ad+ bc) · 10n/2 + bd

- Do the multiplications by 10n and 10n/2

- Do the additions.

T (n) = 4T (n/2) +O(n)

O(n)

O(n)

Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2 n/2

n/2 n/2

n/4 n/4 n/4 n/4

n/4 n/4 n/4 n/4

2

distinct nodes at level j:

work done per node at level j:

4j

c(n/2j)

levels: Total cost:
log2 n

log2 nX

j=0

cn2j 2 O(n2)

per level
cn2j

Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x · y =

x = a · 10n/2 + b

y = c · 10n/2 + d

(a · 10n/2 + b) · (c · 10n/2 + d)

= ac · 10n + (ad+ bc) · 10n/2 + bd

Hmm, we don’t really care about ad and bc.
We just care about their sum.

Maybe we can get away with 3 recursive calls.

Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x · y =

x = a · 10n/2 + b

y = c · 10n/2 + d

(a · 10n/2 + b) · (c · 10n/2 + d)

= ac · 10n + (ad+ bc) · 10n/2 + bd

(a+ b)(c+ d) = ac+ ad+ bc+ bd

T (n) 3T (n/2) +O(n) Is this better??

Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2

n/2

n/4 n/4 n/4

n/4 n/4 n/4

2

distinct nodes at level j:

work done per node at level j: c(n/2j)

levels: Total cost:
log2 n

3j

log2 nX

j=0

cn(3j/2j)

per level
cn(3j/2j)

Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2

n/2

n/4 n/4 n/4

n/4 n/4 n/4

2

Total cost:
log2 nX

j=0

cn(3j/2j)

2 O(nlog2 3)Karatsuba Algorithm

 Cn(3log2 n/2log2 n)

= C3log2 n

= Cnlog2 3

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks:

How can we do better ?

Cut the integer into 3 parts of length n/3 each.

Replace 9 multiplications with only 5.

T (n) 5T (n/3) +O(n)

T (n) 2 O(nlog3 5)

Can do for any T (n) 2 O(n1+✏) ✏ > 0.

Integer Multiplication

Fastest known: n(log n)2O(log

⇤ n) Martin Fürer
(2007)

Matrix Multiplication

x =X Y Zn

n

Input: 2 n x n matrices X and Y.

Output: The product of X and Y.

(Assume entries are objects we can multiply and add.)

Matrix Multiplication

a b

c d

e f

g h
x =

ae+bg af+bh

ce+dg cf+dh

Matrix Multiplication

Note: we are interested in the number of multiplications
 needed to solve this problem.

x =X Y Zn

n

Input: 2 n x n matrices X and Y.

Output: The product of X and Y.

(Assume entries are objects we can multiply and add.)

Matrix Multiplication

x =X Y Z
i

jj

i

Z[i,j] = (i’th row of X) (j’th column of Y).
nX

k=1

 = X[i,k] Y[k,j]

Matrix Multiplication

x =X Y Z
i

jj

i

Z[i,j] = (i’th row of X) (j’th column of Y).
nX

k=1

 = X[i,k] Y[k,j]

Algorithm 1: ⇥(n3)

Matrix Multiplication

X Y= =
A B

C D

E F

G H

Z =
AE+BG AF+BH

CE+DG CF+DH

Algorithm 2: recursively compute 8 products
 + do the additions. ⇥(n3)

Matrix Multiplication: Strassen’s Algorithm

Can reduce the number of products to 7.

Q1 = (A+D)(E+G)
Q2 = (C+D)E
Q3 = A(F-H)
Q4 = D(G-E)
Q5 = (A+B)H
Q6 = (C-A)(E+F)
Q7 = (B-D)(G+H)

Z =
AE+BG AF+BH

CE+DG CF+DH

AE+BG = Q1+Q4-Q5+Q7

AF+BH = Q3+Q5

CF+DH = Q1+Q3-Q2+Q6

CE+DG = Q2+Q4

Matrix Multiplication: Strassen’s Algorithm

T (n) = 7 · T (n/2) +O(n2)Running Time:

= O(n2.81)

T (n) = O(nlog2 7)=)

Matrix Multiplication: Strassen’s Algorithm

Volker Strassen

Strassen’s Algorithm (1969)

Together with Schönhage (in 1971)
did n-bit integer multiplication
in time O(n log n log log n)

Arnold Schönhage

The race for the world record

Improvements since 1969

No improvement for 20 years!

1978: by PanO(n2.796)

1979: by Bini, Capovani, Romani, LottiO(n2.78)

1981: by SchönhageO(n2.522)

1981: by RomaniO(n2.517)

1981: by Coppersmith, WinogradO(n2.496)

1986: by StrassenO(n2.479)

1990: by Coppersmith, WinogradO(n2.376)

The race for the world record

No improvement for 20 years!

2010: by Andrew Stothers (PhD thesis)O(n2.374)

2011: by Virginia Vassilevska WilliamsO(n2.373)

(CMU PhD, 2008)

The race for the world record

Current world record:

2014: by François Le GallO(n2.372)

2011: by Virginia Vassilevska WilliamsO(n2.373)

(CMU PhD, 2008)

Enormous Open Problem

Is there an time algorithm
for matrix multiplication ???

O(n2)

