## |5-25| <br> Great Theoretical Ideas in Computer Science

## Lecture 9 : <br> Graphs I: The Basics



September 27th, 2016

## Crossing bridges



Königsberg (Prussia)

Now
Kaliningrad (Russia)

Is there a way to walk through the city that would cross each bridge exactly once?


Leonhard Euler (I735)

This is not possible!

## Crossing bridges



Except for the start and end vertices:


A "graph" with 4 nodes/vertices and 7 edges.
-Whenever one enters a vertex by an edge, one must leave by another edge.

- \# edges incident to a vertex must be even.
(start and end vertex must not have this property, unless start $=$ end)


## Crossing bridges



Every vertex is incident to an odd number of edges. So this graph does not have an "Eulerian tour".

## Crossing bridges

Ok, that wasn't too bad.
But 7 bridges.. Come on. Pittsburgh has 446.

What if it is the case that exactly 0 or 2 nodes are incident to an odd number of vertices?

Does that imply the graph must have an Eulerian tour?

Why graphs?
Why now?

## Facebook

## Graph is big and changing

## $\Omega, 1$ billion people

-. 240 billion photos
\& 1 trillion connectione है

## Enemybook

## Kevin Matulef



Enemybook remedies the one-sided perspective of Facebook, by allowing you to manage enemies as well as friends. With Enemybook you can add people as Facebook enemies, specify why they are your enemies, notify your enemies, see who lists you as an enemy, and even become friends with the enemies of your enemies.

## Enemybook

## Browse Your Enemies:



## Kevin Matulef's Enemybook

(See who's listed youl $\Rightarrow$ )

## Enemy List Add Enemies

You have 2 enemies in your enemybook.


Name: Networks:

Enemy Detals:
Facebook ruined Mark's and your relationship.
You don't even know Mark, but hate him already.
[edit details]

View Enemies
Remove as Enemy
Tell Friends to "Enemy"
View Friends
Add as Friend
Send Message
Flip Off Mark!

View Enemies
Remove as Enemy
Tell Friends to "Enemy"
View Friends
Add as Friend
Send Message
Flip Off George!

## Zachary Karate Club

FIGURE 1
Social Network Model of Relationships in the Karate Club


This is the graphic representation of the social relationships among the 34 individuals in the karate club. A line is drawn between two points when the two individuals being represented consistently interacted in contexts outside those of karate classes, workouts, and club meetings. Each such line drawn is referred to as an edge.

## Zachary Karate Club CLUB


networkkarate.tumblr.com

## Google PageRank

## 1998 paper

### 2.2 Link Structure of the Web

While estimates vary, the current graph of the crawlable Web has roughly 150 million nodes (pages) and 1.7 billion edges (links). Every page has some number of forward links (outedges) and backlinks (inedges) (see Figure 1). We can never know whether we have found all the backlinks of a particular page but if we have downloaded it, we know all of its forward links at that time.


Figure 1: A and B are Backlinks of C

Web pages vary greatly in terms of the number of backlinks they have. For example, the Netscape home page has 62,804 backlinks in our current database compared to most pages which

Sergey Brin have just a few backlinks. Generally, highly linked pages are more "important" than pages with few links. Simple citation counting has been used to speculate on the future winners of the Nobel Prize [San95]. PageRank provides a more sophisticated method for doing citation counting.

## Street Maps



## Images



## Kidney Exchange



## Kidney Exchange

Four-Way Paired Kidney Exchange


## Kidney Exchange



UNOS pool, Dec 2010 [Courtesy John Dickerson, CMU]


Tuomas Sandholm
(CMU prof.)

## Computer Science Life Lesson

If your problem has a graph, ;)

If not, try to make it have a graph.

What is a graph?
(A hundred) definitions and some basic properties

## Types of Graphs



Simple
Undirected
Graph
Directed
Graph

## Formal Definition: (undirected) graph

A graph $G$ is a tuple $(V, E)$, where

- $V$ is a finite set called the set of vertices (or nodes).
- $E$ is a set called the set of edges.

Each edge $e \in E$ is of the form $\{u, v\}$ for distinct $u, v \in V$.

Example:

$$
\begin{aligned}
V & =\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \\
E & =\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{5}, v_{6}\right\}\right\}
\end{aligned}
$$

## Formal Definition: (undirected) graph

## Example:

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{5}, v_{6}\right\}\right\}
\end{aligned}
$$

Graphs can be drawn:


## Formal Definition: (undirected) graph

## Example:

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{5}, v_{6}\right\}\right\}
\end{aligned}
$$

Matrix representation
(adjacency matrix):

$\quad$| $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ | $v_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{1}$ |  |  |  |  |  |
| $v_{2}$ |  |  |  |  |  |
| $v_{3}$ |  |  |  |  |  |
| $v_{4}$ |  |  |  |  |  |
| $v_{5}$ |  |  |  |  |  |
| $v_{6}$ |  |  |  |  |  |\(\left(\begin{array}{lllllll}v_{4} \& v_{4} \& v_{5} <br>

1 \& 0 \& 1 \& 0 \& 0 \& 0 <br>
0 \& 1 \& 0 \& 1 \& 0 \& 0 <br>
1 \& 0 \& 1 \& 0 \& 0 \& 0 <br>
0 \& 0 \& 0 \& 0 \& 0 \& 1 <br>
v_{1} \& 0 \& 0 \& 1 \& 0\end{array}\right)\)

## IMPORTANT Notation

## Almost always:

## $=$ number of vertices in the graph, $|V|$

$=$ number of edges, $|E|$

## Edge cases

## Is it possible that $E=\emptyset$ ?



# "Empty graph" with 6 vertices. 

6 "isolated" vertices.

Is it possible that $V=\emptyset$ ?

## The Null Graph

IS THE NULL-GRAPH A POINTLESS CONCEPT?
Frank Harary
University of Michigan
and Oxford University
Ronald C. Read
University of Waterloo

## ABSTRACT

The graph with no points and no lines is discussed critically. Arguments for and against its official admittance as a graph are presented. This is accompanied by an extensive survey of the literature. Paradoxical properties of the null-graph are noted. No conclusion is reached.

## The Null Graph

Figure 1. The Null Graph

## Ist Challenge

Is it possible to have a party with 25 I people in which everyone knows exactly 5 other people in the party?

Is it possible to have a graph with 25 I vertices in which each vertex is adjacent to exactly 5 other vertices?


## Terminology: Neighbor

Suppose $e=\{u, v\} \in E$ is an edge.

We say:
$u$ and $v$ are endpoints of $e$
$u$ and $v$ are adjacent
$u$ and $v$ are incident on $e$
$u$ is a neighbor of $v$
$v$ is a neighbor of $u$

## Terminology: Neighborhood

For $v \in V$, the neighborhood of $v$ is defined as

$$
N(v)=\{u \in V:\{v, u\} \in E\} .
$$



$$
\begin{aligned}
& N\left(v_{1}\right)=\left\{v_{2}, v_{3}\right\} \\
& N\left(v_{3}\right)=\left\{v_{1}, v_{2}, v_{4}\right\} \\
& N\left(v_{5}\right)=\emptyset
\end{aligned}
$$

## Terminology: Degree

For $v \in V$, the degree of $v$ is defined as

$$
\operatorname{deg}(v)=|N(v)|
$$



$$
\begin{aligned}
& \operatorname{deg}\left(v_{1}\right)=2 \\
& \operatorname{deg}\left(v_{3}\right)=3 \\
& \operatorname{deg}\left(v_{5}\right)=0
\end{aligned}
$$

A graph is called d-regular if $\forall v \in V, \quad \operatorname{deg}(v)=d$.

## Ist Theorem

Theorem: Let $G=(V, E)$ be a graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2 m
$$

Proof:


Place tokens on edges:

- each vertex puts a token on each edge it's incident to.


## Observations:

- vertex $v$ puts $\operatorname{deg}(v)$ tokens.
- each edge gets 2 tokens.


## Ist Theorem

Theorem: Let $G=(V, E)$ be a graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2 m
$$

## Proof:



Count the total \# tokens:

Ist way:


2nd way: $\quad 2 m$

## Back to Facebook for a sec

## Graph is big and changing

$\Omega 1$ billion people
■. 240 billion photos
\& 1 trillion connectione
$m=1000000000000 \quad n=1000000000$
$2 m=2000000000000=\sum_{v \in V} \operatorname{deg}(v)$
$\Longrightarrow$ on average, people have 2000 friends.

## Poll

# Is it possible to have a graph with 25 I vertices in which each vertex is adjacent to exactly 5 other vertices? 

Yes
No
Beats me

## 2nd Challenge

We have n computers that we want to connect.
We can put a link between any two computers, but the links are expensive.
What is the least number of links we can use?

What is the least number of edges needed to connect n vertices?


## Walks and Paths

A walk in a graph $G=(V, E)$ is a sequence of vertices

$$
v_{0}, v_{1}, v_{2}, \ldots, v_{k} \quad(k \geq 0)
$$

such that $\left\{v_{i-1}, v_{i}\right\} \in E$ for all $i \in\{1, \ldots, k\}$.
We say that this is a walk from $v_{0}$ to $v_{k}$, and its length is $k$.

(a, c, d, a, d, e) is a walk from a to e of length 5 .

## Walks and Paths

A path in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a walk with no repeated vertices.

Fact: There is a path from $u$ to $v$ iff there is a walk from $u$ to $v$

(a, c, d, a, d, e)
"shortcut"
repeated vertices
(a, d, e)

## Circuits and Cycles

A circuit in a graph $G=(V, E)$ is a walk from $u$ to $u$ (for some u).

$(a, e, b, d, e, c, a)$
is a circuit

## Circuits and Cycles

A cycle in a graph $G=(V, E)$ is a walk from $u$ to $u$ with no repeated vertices (except for $u$ ). (of length $\geq 3$ )

( $\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{a}$ ) is a cycle
( $\mathrm{a}, \mathrm{e}, \mathrm{c}, \mathrm{a}$ ) is considered the same cycle
( $\mathrm{e}, \mathrm{a}, \mathrm{c}, \mathrm{e}$ ) is considered the same cycle
(e, b, d, e) is a cyle

A graph with no cycles is called acyclic.

## Connected Graphs

A graph is connected if there is a path between any two vertices of the graph.


This 10-vertex graph is not connected.
It has 4 connected components:

$$
\{\mathrm{a}, \mathrm{i}, \mathrm{j}\}, \quad\{\mathrm{b}, \mathrm{~h}\}, \quad\{\mathrm{c}\}, \quad\{\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}\}
$$

A graph is connected iff it has I connected component.

## Back to the challenge

What is the least number of edges needed to connect n vertices?

$$
n=1
$$

$$
n=2
$$

$$
\mathrm{n}=3
$$

$$
m=0
$$

necessary and sufficient

$$
n=4
$$




$$
m=2
$$

necessary and sufficient

$$
m=3
$$

necessary and sufficient

## Back to the challenge

What is the least number of edges needed to connect n vertices?
n-I edges are always sufficient
"star graph"
"path graph"
"something else"
n-I edges always necassary?

## Poll

## Are n -I edges always necassary to connect n vertices?

Yes
No
No opinion

## 2nd Theorem

Theorem: Let $G=(V, E)$ be a connected graph.
Then $m \geq n-1$.
Furthermore,

$$
m=n-1 \quad \Longleftrightarrow \quad G \text { is acyclic. }
$$

## Proof:

Imagine the following process:

- remove all the edges of $G$.
- add them back one by one (in an arbitrary order).
n isolated vertices $\longrightarrow \mathrm{G}$

$$
\begin{aligned}
& \mathrm{CC}= \text { connected } \\
& \text { component }
\end{aligned}
$$

## 2nd Theorem

## Proof (continued):

Consider a step of adding an edge back.

## 2 possibilities:


(i) connector edge

- connects 2 CCs.
- \# CCs goes down by 1 .
- cannot create a new cycle.


## 2nd Theorem

## Proof (continued):

Consider a step of adding an edge back.

## $\underline{2}$ possibilities:


(i) connector edge

- connects 2 CCs.
- \# CCs goes down by 1 .
- cannot create a new cycle.
(ii) cycle creator edge
- an edge within a CC.
- \# CCs stays the same.
- creates a new cycle.


## 2nd Theorem

## Proof (continued):

Consider a step of adding an edge back.

## $\underline{2}$ possibilities:

(i) connector edge \# CCs goes down by I.
(ii) cycle creator edge \# CCs stays the same.

$$
\mathrm{nCCs} \longrightarrow 1 \mathrm{CC}
$$

So we must add at least $n-1$ edges.
i.e. we must have $m \geq n-1$.

If $m=n-1$ : all type (i) edges $\Longrightarrow$ no cycles.
If $m>n-1:$ at least one type (ii) edge $\Longrightarrow$ a cycle.

## Trees

## Some examples with 5 vertices



Definition:
An n-vertex tree is any graph with at least
2 of the following 3 properties:
(i) connected
(ii) $m=n-I$
(iii) acyclic

## Exercise:

if it has two of the properties, it automatically has the third too.

## Trees



## Leaf: a vertex of degree I

## Trees



Leaf: a vertex of degree I
Internal node: a vertex of degree > I

## Trees



Leaf: a vertex of degree I
Internal node: a vertex of degree > |
Rooted tree: a tree with one vertex designated as "root"

## Trees



Leaf: a vertex of degree I
Internal node: a vertex of degree > I
Rooted tree: a tree with one vertex designated as "root"

## Trees



For rooted trees, we use "family tree" terminology:

- parent
- child
- sibling
- ancestor
- descendant etc...

Binary tree:

- rooted tree
- each node has at most 2 children.


## Back to Köningsberg's Bridges

## Eulerian circuit

## Eulerian Circuit Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.


## Eulerian circuit

## Eulerian Circuit Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.


## Eulerian circuit

## Eulerian Circuit Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.


## Eulerian circuit

## Eulerian Circuit Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.


## Eulerian circuit

## Eulerian Circuit Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.


## Eulerian circuit

## Eulerian Circuit Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.


## Eulerian circuit

## Eulerian Circuit Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.


## Eulerian circuit

## Eulerian Circuit Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a circuit visiting each edge exactly once. No otherwise.

Euler claimed (but did not provide a proof):
A connected graph has an Eulerian circuit iff $\operatorname{deg}(\mathrm{v})$ is even for all v .
proved by
Hierholzer

Efficient algorithm:

- Check that the graph is connected.
- Check that every vertex has even degree.


## Hamiltonian cycle

## Hamiltonian Cycle Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a cycle visiting each vertex exactly once. No otherwise.


## Hamiltonian cycle

## Hamiltonian Cycle Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a cycle visiting each vertex exactly once. No otherwise.


## Hamiltonian cycle

## Hamiltonian Cycle Problem

Input: a graph $G=(V, E)$
Output: Yes if there is a cycle visiting each vertex exactly once. No otherwise.

Brute-Force Algorithm:

- Try all cycles $O(n!)$

Dynamic Programming Algorithm: $O\left(2^{n}\right)$
Clever Algebraic Brute-Force:
$O\left(1.657^{n}\right)$
Anything better?

