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15-251 
Great Theoretical Ideas in Computer Science 

Lecture 9:
Graphs I:  The Basics



Crossing bridges

Is there a way to walk through the city that would cross 
each bridge exactly once?

Leonhard Euler
(1735)

This is not possible!

Königsberg  (Prussia)

Kaliningrad  (Russia)
Now



Crossing bridges

- Whenever one enters a vertex by an edge, 
  one must leave by another edge.

Except for the start and end vertices:

- # edges incident to a vertex must be even.
(start and end vertex must not have this property,
 unless start = end)

A “graph” with
4 nodes/vertices

and 7 edges.



Crossing bridges

3

3

35

Every vertex is incident to an odd number of edges.

So this graph does not have an “Eulerian tour”.



Crossing bridges

Ok, that wasn’t too bad.
But 7 bridges.. Come on.  Pittsburgh has 446.

What if it is the case that exactly 0 or 2 nodes
are incident to an odd number of vertices?

Does that imply the graph must have an Eulerian tour?



Why graphs?

Why now?



Facebook



Enemybook

Enemybook remedies the one-sided perspective of Facebook, by 
allowing you to manage enemies as well as friends. With Enemybook 
you can add people as Facebook enemies, specify why they are 
your enemies, notify your enemies, see who lists you as an enemy, 
and even become friends with the enemies of your enemies.

Kevin Matulef



Enemybook



Zachary Karate Club



Zachary Karate Club CLUB

networkkarate.tumblr.com



Google PageRank

Larry Page

Sergey Brin

1998 paper



Street Maps



Images



Kidney Exchange



Kidney Exchange



Kidney Exchange

UNOS pool, Dec 
2010 [Courtesy 
John Dickerson, 

CMU] 

Vertices = 
patient-donor 
pairs, edges = 
compatibility 

Tuomas Sandholm
(CMU prof.)



Computer Science Life Lesson

If your problem has a graph,    😃 👍 .

If not, try to make it have a graph. 



(A hundred) definitions and some basic properties

What is a graph?



Types of Graphs

v1

v2

v3 v4

v1

v2

v3 v4

v1

v2

v3 v4

v1

v2

v3 v4

Simple
Undirected
Graph

Directed
Graph Multigraph



Formal Definition:  (undirected) graph

A graph       is a tuple            ,  where G (V,E)

-      is a finite set called the set of vertices (or nodes).V

-      is a set called the set of edges.E

Each edge            is of the form           
for distinct            

e 2 E {u, v}
u, v 2 V.

V = {v1, v2, v3, v4, v5, v6}

E = {{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v5, v6}}

Example:



Formal Definition:  (undirected) graph

V = {v1, v2, v3, v4, v5, v6}
E = {{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v5, v6}}

Example:

v1

v2 v3

v4 v5

v6

Graphs can be drawn:



Formal Definition:  (undirected) graph

V = {v1, v2, v3, v4, v5, v6}
E = {{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v5, v6}}

Example:

v1

v2 v3

v4 v5

v6

Matrix representation 
(adjacency matrix):

0

BBBBBB@

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA

v1
v2
v3
v4
v5
v6

v1 v2 v3 v4 v5 v6



IMPORTANT Notation

Almost always:

n =  number of vertices in the graph, |V |

m =  number of edges, |E|



Edge cases

Is it possible that             ?E = ;

Is it possible that             ?V = ;

v1

v2 v3

v4 v5

v6

“Empty graph” 
with 6 vertices.

6 “isolated” vertices.



The Null Graph



The Null Graph



1st Challenge

Is it possible to have a party with 251 people in which 
everyone knows exactly 5 other people in the party?

Is it possible to have a graph with 251 vertices in which 
each vertex is adjacent to exactly 5 other vertices?



Terminology: Neighbor

Suppose                          is an edge.e = {u, v} 2 E

We say:

    and      are adjacentu v

    is a neighbor of  u v

    is a neighbor of  uv

    and      are endpoints of u v e

    and      are incident on u v e



Terminology: Neighborhood

v2

v3 v4

v1

v2

v3 v4

v5
N(v1) = {v2, v3}

N(v5) = ;

N(v3) = {v1, v2, v4}

For           ,  the neighborhood of     is defined asv 2 V

N(v) = {u 2 V : {v, u} 2 E}
v

.



Terminology: Degree

For           ,  the degree of      is defined as  v 2 V

deg(v) = |N(v)| .
v

v2

v3 v4

v1

v2

v3 v4

v5
deg(v1) = 2

deg(v3) = 3

deg(v5) = 0

A graph is called d-regular if 8v 2 V, deg(v) = d.



1st  Theorem

Theorem: Let                     be a graph.  ThenG = (V,E)
X

v2V

deg(v) = 2m.

Proof:
v2

v3 v4

v1

v2

v3 v4

v5

Place tokens on edges:

- each vertex puts a token 
on each edge it’s incident to.

Observations:

- vertex     puts             tokens.deg(v)v

- each edge gets 2 tokens.



1st  Theorem

Theorem: Let                     be a graph.  ThenG = (V,E)
X

v2V

deg(v) = 2m.

Proof:
v2

v3 v4

v1

v2

v3 v4

v5

Count the total # tokens:

1st way:
X

v2V

deg(v)

2nd way: 2m



Back to Facebook for a sec

2m = 2000000000000

=) on average, people have 2000 friends.

m = 1000000000000 n = 1000000000

=
P

v2V deg(v)
🤔



Poll

Is it possible to have a graph with 251 vertices in which 
each vertex is adjacent to exactly 5 other vertices?

Yes

No

Beats me



2nd Challenge

We have n computers that we want to connect.

We can put a link between any two computers,
but the links are expensive.

What is the least number of edges needed to connect
n vertices?

What is the least number of links we can use?



Walks and Paths

A walk in a graph G = (V, E) is a sequence of vertices

such that                          for all                        .  {vi�1, vi} 2 E i 2 {1, . . . , k}

v0, v1, v2, . . . , vk (k � 0)

We say that this is a walk from       to      ,  v0 vk
and its length is    . k

a
b

c

d e

(a, c, d, a, d, e)

is a walk from a to e 
of length 5.



Walks and Paths

A path in a graph G = (V, E) is 
a walk with no repeated vertices.

Fact: There is a path from u to v iff
there is a walk from u to v

a
b

c

d e

(a, c, d, a, d, e)

(a, d, e)

“shortcut”
repeated vertices



Circuits and Cycles

A circuit in a graph G = (V, E) is a walk from u to u
(for some u).

a b

c d

e
(a, e, b, d, e, c, a)

is a circuit



Circuits and Cycles

A cycle in a graph G = (V, E) is a walk from u to u
with no repeated vertices (except for u).

a b

c d

e

(a, c, e, a) is a cycle

(of length ≥3)

(e, b, d, e)  is a cyle

(a, e, c, a) is considered 
the same cycle

A graph with no cycles is called acyclic.

(e, a, c, e) is considered 
the same cycle



Connected Graphs

A graph is connected if there is a path between
any two vertices of the graph.

a

j

i

d

e

g f

b
c

h

This 10-vertex graph is not connected.

It has 4 connected components:

{a, i, j},           {b, h},     {c},              {d, e, f, g}

A graph is connected iff it has 1 connected component.



Back to the challenge
What is the least number of edges needed to connect
n vertices?

n = 1 n = 3n = 2

n = 4

m = 0
necessary 
and sufficient

m = 1
necessary 
and sufficient

m = 2
necessary 
and sufficient

m = 3
necessary 
and sufficient



Back to the challenge
What is the least number of edges needed to connect
n vertices?

n-1 edges are always sufficient

“star graph” “path graph” “something else”

n-1 edges always necassary?



Poll

Are n-1 edges always necassary to connect n vertices?

Yes

No

No opinion



2nd  Theorem

Theorem: Let                     be a connected graph. G = (V,E)

Then                   .m � n� 1

Furthermore,
is acyclic.m = n� 1 () G

Proof:
Imagine the following process:

- remove all the edges of G.
- add them back one by one (in an arbitrary order).

n isolated vertices G

n  CCs 1  CC
CC = connected
          component



2nd  Theorem
Proof (continued):

Consider a step of adding an edge back.

C1

C2
C3

2 possibilities:

- connects 2 CCs.
- # CCs goes down by 1.

(i) connector edge

- cannot create a new cycle.



2nd  Theorem
Proof (continued):

Consider a step of adding an edge back.

C1

C2
C3

(ii) cycle creator edge

- an edge within a CC.
- # CCs stays the same.

2 possibilities:

(i) connector edge

- connects 2 CCs.
- # CCs goes down by 1.
- cannot create a new cycle.

- creates a new cycle.



2nd  Theorem
Proof (continued):

(ii) cycle creator edge # CCs stays the same.

(i) connector edge # CCs goes down by 1.

Consider a step of adding an edge back.

n  CCs 1  CC

i.e.   we must have                   .m � n� 1

So we must add at least            edges.n� 1

If                   : m = n� 1 all type (i) edges no cycles.=)
at least one type (ii) edgeIf                   :m > n� 1 a cycle.=)

2 possibilities:



Trees

Some examples with 5 vertices

(i) connected
(ii) m = n-1
(iii) acyclic

Exercise:
if it has two of the properties,
it automatically has the third too.

Definition:
An n-vertex tree is any graph with at least
2 of the following 3 properties:



Trees

Leaf:  a vertex of degree 1



Trees

Leaf:  a vertex of degree 1

Internal node:  a vertex of degree > 1



Trees

12

3

4

5
6

7

8

9
10

11

12

Leaf:  a vertex of degree 1

Internal node:  a vertex of degree > 1

Rooted tree:  a tree with one vertex designated as “root”



Trees

Leaf:  a vertex of degree 1

Internal node:  a vertex of degree > 1

Rooted tree:  a tree with one vertex designated as “root”

1

2

3 4 5

6 7 8

9

10 11 12

vertex 1 is the root



Trees

For rooted trees, we use “family tree” terminology:

1

2

3 4 5

6 7 8

9

10 11 12

- parent
- child
- sibling

- ancestor
- descendant

etc…

Binary tree:
- rooted tree
- each node has 
  at most 2 children.

vertex 1 is the root



Back to Köningsberg’s Bridges



Eulerian circuit

Eulerian Circuit Problem

Input:  a graph G = (V, E)

Output:  Yes if there is a circuit visiting each edge
              exactly once.  No otherwise.



Eulerian circuit

Eulerian Circuit Problem

Input:  a graph G = (V, E)

Output:  Yes if there is a circuit visiting each edge
              exactly once.  No otherwise.



Eulerian circuit
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Eulerian circuit

Eulerian Circuit Problem
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              exactly once.  No otherwise.



Eulerian circuit

Eulerian Circuit Problem

Input:  a graph G = (V, E)
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              exactly once.  No otherwise.



Eulerian circuit

Eulerian Circuit Problem

Input:  a graph G = (V, E)

Output:  Yes if there is a circuit visiting each edge
              exactly once.  No otherwise.



Eulerian circuit

Eulerian Circuit Problem

Input:  a graph G = (V, E)

Output:  Yes if there is a circuit visiting each edge
              exactly once.  No otherwise.



Eulerian circuit

A connected graph has an Eulerian circuit iff 
deg(v) is even for all v.

Euler claimed (but did not provide a proof):

Eulerian Circuit Problem

Input:  a graph G = (V, E)

Output:  Yes if there is a circuit visiting each edge
              exactly once.  No otherwise.

proved by 
Hierholzer

Efficient algorithm:

- Check that every vertex has even degree.
- Check that the graph is connected.



Hamiltonian cycle

Hamiltonian Cycle Problem

Input:  a graph G = (V, E)

Output:  Yes if there is a cycle visiting each vertex
              exactly once.  No otherwise.



Hamiltonian cycle

Hamiltonian Cycle Problem

Input:  a graph G = (V, E)

Output:  Yes if there is a cycle visiting each vertex
              exactly once.  No otherwise.



Hamiltonian cycle

- Try all cycles

Hamiltonian Cycle Problem

Input:  a graph G = (V, E)

Brute-Force Algorithm:

O(n!)

Dynamic Programming Algorithm: O(2n)

Clever Algebraic Brute-Force: O(1.657n)

Anything better?

Output:  Yes if there is a cycle visiting each vertex
              exactly once.  No otherwise.


