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Kaliningrad (Russia)

Is there a way to walk through the city that would cross
each bridge exactly once?

Leonhard Euler

. R
(1735) This is not possible!




Crossing bridges

A “graph” with
4 nodesl/vertices
and 7/ edges.

Except for the start and end vertices:

- Whenever one enters a vertex by an edge,
one must leave by another edge.

- # edges incident to a vertex must be even.

(start and end vertex must not have this property,
unless start = end)



Crossing bridges

3

Every vertex is incident to an odd number of edges.

So this graph does not have an “Eulerian tour”.



Crossing bridges

Ok, that wasn’t too bad.
But 7 bridges.. Come on. Pittsburgh has 446.

What if it is the case that exactly 0 or 2 nodes
are incident to an odd number of vertices!?

Does that imply the graph must have an Eulerian tour?



Why graphs?
Why now!?



Facebook

Graph is big and changing

/'4 1 billion people
B 240 billion pho
& 1 trillion connections




Enemybook

Kevin Matulef

Enemybook remedies the one-sided perspective of Facebook, by
allowing you to manage enemies as well as friends. With Enemybook
you can add people as Facebook enemies, specify why they are
your enemies, notify your enemies, see who lists you as an enemy,
and even become friends with the enemies of your enemies.



Browse Your Enemies:

Enemybook

ey st T

Kevin Matulef's Enemybook

(See who's isted you! =)

You have 2 enemies in your enemybook,

Mark 2uckerberg
Facebook

Harvard

San Francisco, CA

Facebook runed Mark's and your relationship.

You don't even know Mark, but hate him already.

[edit details]

George Bush
Boston, M&,
George insulted your intelligence.

[edit details)

Yiew Enemies
Remove as Enemy
Tell Friends to "Enemy"”
View Friends
Add as Friend
Send Message
Flip Off Mark!

Yiew Enemies
Remove as Enemy
Tell Friends to "Enemy"
View Friends
Add as Friend
Send Message

Flip OFf George!




Zachary Karate Club

456 JOURNAL OF ANTHROPOLOGICAL RESEARCH

FIGURE 1
Social Network Model of Relationships in the Karate Club
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This is the graphic representation of the social relationships among the 34 indi-
viduals in the karate club. A line is drawn between two points when the two
individuals being represented consistently interacted in contexts outside those of
karate classes, workouts, and club meetings. Each such line drawn is referred to as
an edge.



Zachary Karate Club CLUB

networkkarate.tumblr.com



Google PageRank
1998 paper

2.2 Link Structure of the Web

While estimates vary. the current graph of the crawlable Web has roughly|150 million nodes (pages)

and 1.7 billion edges (links).|Every page has some number of forward links (outedges) and backlinks
(inedges) (see Figure 1). We can never know whether we have found all the backlinks of a particular
page but if we have downloaded it, we know all of its forward links at that time.
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Figure 1: A and B are Backlinks of C

Web pages vary greatly in terms of the number of backlinks they have. For example, the
Netscape home page has 62,804 backlinks in our current database compared to most pages which
have just a few backlinks. Generally, highly linked pages are more “important” than pages with
few links. Simple citation counting has been used to speculate on the future winners of the Nobel
Prize [San95]. PageRank provides a more sophisticated method for doing citation counting.

Sergey Brin



Street Maps
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Kidney Exchange
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Kidney Exchange

Four-Way Paired Kidney Exchange




Kidney Exchange
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pairs, edges = John Dickerson,
compatibility CMU]

Tuomas Sandholm
(CMU prof.)




Computer Science Life Lesson

If your problem has a graph, < =

If not, try to make it have a graph.



What is a graph?

(A hundred) definitions and some basic properties



U3 Ug

Simple
Undirected
Graph

Types of Graphs

U2
U1
U3
Directed

Graph

U2
U1
U3 Uyg
Multigraph



Formal Definition: (undirected) graph

A graph G isatuple (V,F), where

- V' is a finite set called the set of vertices (or nodes).

- I/ is a set called the set of edges.

Each edge ¢ € F is of the form {u,v}
for distinct u,v € V.

Example:

V = {v1,v9,v3,04, 5,06}

E = {{01702}, {”01,?14}7 {UZ,UB}a {7137714}7 {715»”6}}



Formal Definition: (undirected) graph

Example:
V = {Ula v2, V3, U4, Us, UG}

E = {{v1,v2},{01,V4},{V2,V3},{V3, V4 }, {5, V6 } }

U1 Uyg Vs

@ 2 2
Graphs can be drawn:

# 2 B




Formal Definition: (undirected) graph

Example:

V = {?}1,’(]2,2]3,1]4,1]5,@6}

E = {{v1,v2},{v1,V4},{v2,V3},1V3, V4 }, { Vs, V6 } }

Matrix representation

(adjacency matrix):

V1 U2 V3 Vg4 Vs Vg

U1 / 0
vz | 1
U3l 0
Vg | 1

1

o O O O

0

OO = O ==

1

o O O = O

0

_—O O O O

0)
0

0
1

0/

U1 Uyg Vs
@ @ @
@ ® ®
V2 U3 Ug



IMPORTANT Notation

Almost always:

number of vertices in the graph, |V|

number of edges, |F|



Edge cases

Is it possible that F = () ?

(X Uy Us
@ @ @
@ @ @
(%) U3 Vg

Is it possible that V = () ?

“Empty graph”
with 6 vertices.

6 “isolated” vertices.



The Null Graph

IS THE NULL-GRAPH A POINTLESS CONCEPT?

Frank Harary
University of Michigan

and Oxford University

Ronald C. Read
University of Waterloo

ABSTRACT

The graph with no points and no lines is discussed critically. Arguments
for and against its official admittance as a graph are presented. This is
accompanied by an extensive survey of the literature. Paradoxical properties

of the null-graph are noted. No conclusion is reached.



The Null Graph

Figgre 1. The Null GraEh



| st Challenge

s it possible to have a party with 25| people in which
everyone knows exactly 5 other people in the party!?

s it possible to have a graph with 25| vertices in which
each vertex is adjacent to exactly 5 other vertices!?

CHALLENGE
N LU =l |
v 3/ |




Terminology: Neighbor
Suppose ¢ = {u,v} € E is an edge.

We say:

and v are endpoints of e

and v are adjacent

and v are incidenton e

S & g &£

is a neighbor of v

v is a neighbor of u



Terminology: Neighborhood

For v € V, the neighborhood of v is defined as
Nw)={u eV {v,u} € E}.

N(v1) = {v2, v}
B N (vg) = {v1,v2,v4}
N(U5) — @




Terminology: Degree

For v € V, the degree of v is defined as
deg(v) = [N (v)].

v
o ’ deg(vy) = 2
v
o deg(vg) = 3
deg(vs) =0
8
U3 Vg

A graph is called d-regular if Yv € V, deg(v) = d.



|st Theorem

‘Theorem: Let G = (V, E) be a graph. Then
Z deg(v) = 2m.

K veV J

Proof: Place tokens on edges:

o - each vertex puts a token
. Vs on each edge it’s incident to.
A
Observations:
- vertex v puts deg(v) tokens.
(V] Uyg

- each edge gets 2 tokens.




|st Theorem

‘Theorem: Let G = (V, E) be a graph. Then A
Z deg(v) = 2m.
\ veV J
Proof:
Vs Count the total # tokens:
U1
7:5 | st way: Z deg(v)
veV
2nd way:  2m

o h [ ]



Back to Facebook for a sec

Graph is big and changing

/'4 1 billion people
Bl 240 billion photos
&% 1trillion connection<

m = 1000000000000 n = 1000000000
& 2m = 2000000000000 = ) .y deg(v)

— on average, people have 2000 friends.



Poll

s it possible to have a graph with 251 vertices in which
each vertex is adjacent to exactly 5 other vertices!?

Yes
No

Beats me



2nd Challenge

We have n computers that we want to connect.

We can put a link between any two computers,
but the links are expensive.

What is the least number of links we can use?

What is the least number of edges needed to connect
n vertices!?

CHALLENGERCCEPTED



Walks and Paths

A walk in a graph G = (V, E) is a sequence of vertices

Vo, V1,V2, ...,V (kZO)
such that {v;_1,v;} € E forall i€ {1,... k}.

We say that this is a walk from vy to vy,
and its length is .

a
a (a,c,d,a,d, e)

is a walk from a to e
of length 5.




Walks and Paths

A path in a graph G = (V,E) is
a walk with no repeated vertices.

Fact: There is a path from u to v iff
there is a walk from u to v

a
b (a,c,d,a,d, e)
C i “shortcut”
| repeated vertices

d be (3, d,e)




Circuits and Cycles

A circuit in a graph G = (V,E) is a walk from u to u
(for some u).

(a,e,b,d,e,c¢,a)

IS A Circuit




Circuits and Cycles

A cycle in a graph G = (V,E) is a walk from u to u
with no repeated vertices (except for u). (of length = 3)

a b (a,c,e,a) isacycle
(a, e, c,a) is considered
the same cycle
e
(e,a,c,e) is considered
c d the same cycle

(e,b,d,e) is acyle

A graph with no cycles is called acyclic.



Connected Graphs

A graph is connected if there is a path between
any two vertices of the graph.

d b. d

] ®h g f

This 10-vertex graph is not connected.

It has 4 connected components:
@}, b, h},  1c}, 1d, e, f g}

A graph is connected iff it has | connected component.



Back to the challenge

What is the least number of edges needed to connect
n vertices!

n=| n=2 n=3
@ / <:
m=0 m = | m=2
necessary necessary necessary
and sufficient and sufficient and sufficient
n=4
) m =3
necessary
and sufficient




Back to the challenge

What is the least number of edges needed to connect
n vertices!

n-1 edges are always sufficient

“star graph” “path graph” “something else”
8

—_— R e I
2

n-l1 edges always necassary?



Poll

Are n-| edges always necassary to connect n vertices!?

Yes
No

No opinion



2nd Theorem

(Theorem: Let G = (V,E) be a connected graph. A
Then m>n—1.
Furthermore,
m=n—1 <= G isacyclic.
\_ J

Proof:
Imagine the following process:

- remove all the edges of G.

- add them back one by one (in an arbitrary order).

n |SO|ated vertices q G CC = connected
n CCS ' I CC component




2nd Theorem

Proof (continued):

Consider a step of adding an edge back.
2 possibilities:
1 (i) connector edge
@ - connects 2 CCs.
- # CCs goes down by |.
- cannot create a new cycle.




2nd Theorem

Proof (continued):

Consider a step of adding an edge back.

2 possibilities:

1 (i) connector edge
@ - connects 2 CCs.
- # CCs goes down by |.
- cannot create a new cycle.

Q (ii) cycle creator edge
C - an edge within a CC,

- # CCs stays the same.
- creates a new cycle.




2nd Theorem

Proof (continued):

Consider a step of adding an edge back.
2 possibilities:

(i) connector edge # CCs goes down by |.
(ii) cycle creator edge # CCs stays the same.

n CCs mmp | CC

So we must add at least 7 — 1 edges.

i.e. wemusthave m >n—1.

If m =n—1: all type (i) edges — no cycles.
If m >n —1: atleast one type (ii) edge — a cycle.



Trees

Some examples with 5 vertices

——— ],

G)efinition: \

An n-vertex tree is any graph with at least
2 of the following 3 properties:
(i) connected

(i) m = n-|

Exercise:
if it has two of the properties,
o (iii) acyclic it automatically has the third tooJ




Trees

Leaf: a vertex of degree |



Trees

Leaf: a vertex of degree |

Internal node: a vertex of degree > |




Leaf: a vertex of degree |

Internal node: a vertex of degree > |

Rooted tree: a tree with one vertex designated as “root”




I vertex | is the root

10 11 12

6 7 8

Leaf: a vertex of degree |

Internal node: a vertex of degree > |

Rooted tree: a tree with one vertex designated as “root”




6 7 8

vertex | is the root

12

For rooted trees, we use “family tree” terminology:

- parent
- child
- sibling

- ancestor
- descendant
etc...

Binary tree:
- rooted tree

- each node has
at most 2 children.




Back to Koningsberg’s Bridges



Eulerian circuit

Eulerian Circuit Problem
Input: a graph G = (V,E)

Output: Yes if there is a circuit visiting each edge
exactly once. No otherwise.




Eulerian circuit

Eulerian Circuit Problem
Input: a graph G = (V,E)

Output: Yes if there is a circuit visiting each edge
exactly once. No otherwise.




Eulerian circuit

Eulerian Circuit Problem
Input: a graph G = (V,E)

Output: Yes if there is a circuit visiting each edge
exactly once. No otherwise.




Eulerian circuit

Eulerian Circuit Problem
Input: a graph G = (V,E)

Output: Yes if there is a circuit visiting each edge
exactly once. No otherwise.




Eulerian circuit

Eulerian Circuit Problem
Input: a graph G = (V,E)

Output: Yes if there is a circuit visiting each edge
exactly once. No otherwise.




Eulerian circuit

Eulerian Circuit Problem
Input: a graph G = (V,E)

Output: Yes if there is a circuit visiting each edge
exactly once. No otherwise.




Eulerian circuit

Eulerian Circuit Problem
Input: a graph G = (V,E)

Output: Yes if there is a circuit visiting each edge
exactly once. No otherwise.




Eulerian circuit

Eulerian Circuit Problem
Input: a graph G = (V,E)

Output: Yes if there is a circuit visiting each edge
exactly once. No otherwise.

Euler claimed (but did not provide a proof):

A connected graph has an Eulerian circuit iff | proved by
Hierholzer

deg(v) is even for all v.

Efficient algorithm:
- Check that the graph is connected.

- Check that every vertex has even degree.



Hamiltonian cycle

Hamiltonian Cycle Problem
Input: a graph G = (V,E)

Output: Yes if there is a cycle visiting each vertex
exactly once. No otherwise.




Hamiltonian cycle

Hamiltonian Cycle Problem
Input: a graph G = (V,E)

Output: Yes if there is a cycle visiting each vertex
exactly once. No otherwise.




Hamiltonian cycle

Hamiltonian Cycle Problem
Input: a graph G = (V,E)

Output: Yes if there is a cycle visiting each vertex
exactly once. No otherwise.

Brute-Force Algorithm:

-Try all cycles O(n!)
Dynamic Programming Algorithm: (O(2")
Clever Algebraic Brute-Force: O(1.657™)

Anything better?



