1. Show that if a TM decides a language using $S(n)$ space (where $S(n) \geq \log n$), then it decides the language in $2^{O(S(n))}$ time.
2. Let $\Sigma=\{0,1, \#\}$. Consider the language $L \subseteq \Sigma^{*}$ consisting of the words

$$
\begin{aligned}
& 0 \# 1 \# \\
& 00 \# 01 \# 10 \# 11 \# \\
& 000 \# 001 \# 010 \# 011 \# 100 \# 101 \# 110 \# 111 \#
\end{aligned}
$$

(If the pattern is not clear, please don't hesitate to ask.) Show that (i) this language can be decided using $O(\log \log n)$ space; (ii) the language is not regular.
Fun fact (which you do not need to prove): If a language can be decided using $o(\log \log n)$ space ${ }^{1}$ then it must be regular.

[^0]
[^0]: ${ }^{1}$ Little-o notation: https://en.wikipedia.org/wiki/Big_0_notation\#Little-o_notation

