
1 Modular Arithmetic

Definition 1.1 (A divides B).
Let A,B ∈ Z. We say that A divides B (or A is a divisor of B), denoted A|B, if there
is a number C ∈ Z such that B = AC. �

Definition 1.2 (Prime number).
Let P ∈ N. We say that P is a prime number if P ≥ 2 and the only divisors of P are
1 and P . �

Definition 1.3 (Congruence modulo N).
We denote by A mod N the remainder you get when you divide A by N . Note that
A mod N ∈ {0, 1, 2, · · · , N − 1}. We say that A and B are congruent modulo N ,
denoted A ≡N B (or A ≡ B mod N), if A mod N = B mod N . �

Exercise 1.4. Show that A ≡N B if and only if N |(A−B).

Remark. The above characterization of A ≡N B can be taken as the definition of
A ≡N B. Indeed, it is used a lot in proofs.

Notation 1.5. We write gcd(A,B) to denote the greatest common divisor of A and
B. Note that for any A, gcd(A, 1) = 1 and gcd(A, 0) = A.

Definition 1.6 (Relatively prime).
We say that A and B are relatively prime if gcd(A,B) = 1. �

Below, in Section 1.1, we first give the definitions of basic modular operations like
addition, subtraction, multiplication, division and exponentiation. We also explore
some of their properties. Later, in Section 1.2, we look at the computational complexity
of these operations. Being able to compute these operations efficiently is crucial for
applications.

1.1 Modular operations: Basic definitions and properties

1.1.1 Addition and subtraction

Notation 1.7. We let ZN denote the set {0, 1, 2, . . . , N − 1}.

Definition 1.8 (Addition in ZN).
For A,B ∈ ZN , we define the addition of A and B, denoted A+N B, as (A+B) mod N .
When N is clear from the context, we can drop the subscript N from +N and write +.
For N = 5, we can represent the addition operation in Z5 using the following table.

1

In ZN , the element 0 is called the additive identity. It has the property that for any
A ∈ ZN , A +N 0 = 0 +N A = A. �

Exercise 1.9.

• Show that if A ≡N B and A′ ≡N B′, then A + A′ ≡N B + B′.

• Show that for any A,B ∈ Z,

(A + B) mod N = (A mod N) +N (B mod N).

Definition 1.10 (Additive inverse).
Let A ∈ ZN . The additive inverse of A, denoted −A, is defined to be an element in ZN

such that A +N −A = 0. �

Exercise 1.11. Show that every element of ZN has a unique additive inverse.

Definition 1.12 (Subtraction in ZN).
Let A,B ∈ ZN . We define “A minus B”, denoted A−N B, as A +N −B. �

Exercise 1.13. Show that in the addition table of ZN , every row and column is a
permutation of the elements ZN .

1.1.2 Multiplication and division

Definition 1.14 (Multiplication in ZN).
For A,B ∈ ZN , we define the multiplication of A and B, denoted A·NB, as AB mod N .
If N is clear from the context, we can drop the subscript N from ·N and write ·.
Furthermore, we can even drop · and represent A ·N B as simply AB. �

Exercise 1.15.

• Show that if A ≡N B and A′ ≡N B′, then AA′ ≡N BB′.

• Show that for any A,B ∈ Z,

AB mod N = (A mod N) ·N (B mod N).

2

Definition 1.16 (Multiplicative inverse).
Let A ∈ ZN . The multiplicative inverse of A, denoted A−1, is defined to be an element
in ZN such that A ·N A−1 = 1. �

Proposition 1.17. Let A,N ∈ N. The multiplicative inverse of A in ZN exists if and
only if gcd(A,N) = 1.

Definition 1.18 (Division in ZN).
Let A,B ∈ ZN , where B has a multiplicative inverse B−1. Then we define “A divided
by B”, denoted A/NB, as A ·N B−1. �

Notation 1.19. We let Z∗N denote the set {A ∈ ZN : gcd(A,N) = 1}. In other words,
Z
∗
N is the set of all elements of ZN that have a multiplicative inverse.

Exercise 1.20. Show that Z∗N is closed under multiplication, i.e., A,B ∈ Z∗N =⇒
A ·N B ∈ Z∗N .

Remark. Similar to an addition table for ZN , one can consider a multiplication table
for Z∗N . For example, Z∗8 = {1, 3, 5, 7}, and the multiplication table is as below:

Exercise 1.21. Show that in the multiplication table of Z∗N , every row and column is
a permutation of the elements Z∗N .

Definition 1.22 (Euler totient function).
The Euler totient function ϕ : N → N is defined as ϕ(N) = |Z∗N |. By convention,
ϕ(0) = 0. �

Exercise 1.23. Show that for P a prime number, ϕ(P) = P − 1. Also show that for
P and Q distinct prime numbers, ϕ(PQ) = (P − 1)(Q− 1).

1.1.3 Exponentiation

Definition 1.24 (Exponentiation in ZN).
Let A ∈ ZN and E ∈ Z. We write AE to denote

A ·N A ·N · · · ·N A︸ ︷︷ ︸
E times

.

�

3

Theorem 1.25 (Euler’s Theorem). For any A ∈ Z∗N , Aϕ(N) = 1. Equivalently, for any
A,N ∈ Z with gcd(A,N) = 1, Aϕ(N) ≡N 1.

Proof. (In this proof we drop the subscript N from the multiplication notation.) Take
an arbitrary A ∈ Z∗N . Let B1, B2, . . . , Bk be the elements of Z∗N , where k = ϕ(N).
By Exercise 1.21, {AB1, AB2, . . . , ABk} = Z

∗
N . The product of all the elements in the

first set can be written as (AB1)(AB2) · · · (ABk). This must be equal to the product
B1B2 · · ·Bk, i.e.

(AB1)(AB2) · · · (ABk) = B1B2 · · ·Bk.

Dividing both sides by B1B2 · · ·Bk (i.e. multiplying both sides by the inverse of
B1B2 · · ·Bk), we get Ak = 1, as desired.

Remark. When N is a prime number, then Euler’s Theorem is known as Fermat’s
Little Theorem.

Exercise 1.26. Let A ∈ Z∗N and E ∈ Z. Show that AE ≡N AE mod ϕ(N).

Exercise 1.27. Compute by hand 10298 mod 7.

Remark. What the previous two exercises demonstrate is that if we are exponentiating
an element A ∈ Z∗N , then we can effectively think of the exponent as living in the set
Zϕ(N). This will be important to keep in mind when we cover Cryptography later.

Definition 1.28 (Generator in Z∗N).
Let A ∈ Z∗N . We say that A is a generator if

{AE : E ∈ Zϕ(N)} = Z
∗
N .

�

Theorem 1.29. If N is a prime number, then Z∗N contains a generator.

1.2 Modular operations: Computational complexity

In this section, we will look at the computational complexities of doing the basic mod-
ular operations discussed in the previous section. We will use the fact that addition,
subtraction, multiplication and division operations can be computed efficiently in Z.
Note that A mod N is easy to compute by dividing A by N and seeing what the re-
mainder is.

1.2.1 Addition and subtraction

In order to compute A +N B in ZN , we can simply add A and B in Z and then take
the sum modulo N . To compute A−N B, we can do A + (N − B) in Z and then take
the result modulo N .

4

1.2.2 Multiplication and division

In order to compute A ·N B in ZN , we can multiply A and B in Z and then take
the product modulo N . To compute A/NB = A ·N B−1, we first need to figure out
whether B has a multiplicative inverse. Recall that B−1 exists if and only if B and N
are relatively prime, i.e. gcd(B,N) = 1. The following algorithm, known as Euclid’s
Algorithm, efficiently computes the greatest common divisor of two numbers.

gcd(A,B):

• If B = 0, then return A.

• Else return gcd(B,A mod B).

Exercise 1.30. Show that if A ≥ B, gcd(A,B) = gcd(A−B,B). Use this to show that
Euclid’s Algorithm correctly computes the greatest common divisor of two numbers.

Exercise 1.31. Suppose A and B can be represented with at most n bits each. Give
an upper bound on the number of recursive calls Euclid’s Algorithm makes in terms of
n.

Using Euclid’s Algorithm, we can check if gcd(B,N) = 1 and determine if B has a
multiplicative inverse. It turns out that a slight modification of Euclid’s Algorithm also
allows us to compute B−1 if it exists. In order to show this, we first need a definition.

Definition 1.32 (Miix).
Let A,B,C ∈ N. We say that C is a miix of A and B if

C = kA + `B

for some k, ` ∈ Z. �

Exercise 1.33. Let A,B,C ∈ N. Show that if C is a miix of A and B then C is a
multiple of gcd(A,B).

Exercise 1.34. Let A,B,C ∈ N. Show that if C is any multiple of gcd(A,B), then C
is a miix of A and B.
Hint: Show how to modify Euclid’s algorithm so that it outputs k and ` such that
gcd(A,B) = kA + `B.

Suppose B has a multiplicative inverse modulo N , i.e. gcd(B,N) = 1. Then by
the previous exercise, we can obtain k and ` such that 1 = kB + `N . If we take this
equation modulo N , we get that kB ≡N 1. Therefore k is the multiplicative inverse of
B.

To sum up, if we want to compute A/NB = A ·N B−1, we can first compute B−1

and then compute A ·N B−1.

Exercise 1.35. Prove Proposition 1.17 using the previous two exercises.

5

1.2.3 Exponentiation

Given N ∈ N, A ∈ ZN and E ∈ N, we can compute AE mod N efficiently. Assume
that A,E and N can be represented using at most n bits each. The algorithm below
is known as fast modular exponentiation. To understand how the algorithm works, see
the example following the algorithm.

FME(A,E,N):

• Repeatedly square A to obtain
A2 mod N , A4 mod N , A8 mod N , . . ., A2n mod N .

• Multiply together (modulo N) the powers of A so that the product is AE.
To figure out which powers to multiply, look at the binary representation of E.

Consider the example of computing 233753 mod 100. The first step of the algorithm
computes

23372 mod 100

23374 mod 100

23378 mod 100

233716 mod 100

233732 mod 100

by squaring 2337 modulo 100 5 times. The binary representation of 53 is 110101. This
implies that

53 = 1 + 4 + 16 + 32.

Therefore to calculate 233753 mod 100, the second step of the algorithm does:

(2337 mod 100) · (23374 mod 100) · (233716 mod 100) · (233732 mod 100).

Exercise 1.36. Suppose A,E and N are integers that can be represented using at most
n bits. Give an upper bound on the running time of the above algorithm in terms of n.

1.2.4 Taking roots

Consider the following computational problem. You are given A,E,N ∈ N with A ∈
Z
∗
N . The goal is to output B ∈ N such that BE ≡N A. In other words, the goal is to

find the E’th root of A in Z∗N (if it exists). Many experts believe (but cannot prove)
that this problem cannot be computed in polynomial time. The assumed hardness of
this problem is used in the famous RSA cryptosystem (see the section on Cryptography
for details).

6

1.2.5 Taking logarithms

Consider the following computational problem which is known as the Discrete Log
Problem in Z∗P . You are given A,B, P ∈ N, where P is a prime number, A ∈ Z∗P , and
B ∈ Z∗P is a generator (Theorem 1.29 tells us that Z∗P always contains a generator). The
goal is to output X ∈ N such that BX ≡P A. In a sense, this is like trying to compute
logB A in Z∗N . Many experts believe (but cannot prove) that this problem cannot be
computed in polynomial time. The assumed hardness of this problem is used in the
famous Diffie-Hellman secret key exchange protocol (see the section on Cryptography
for details).

2 Cryptography

In this section, we will be interested in the following setting. There are three parties
named Alice, Bob and Eve. Alice’s goal is to send a private message to Bob over some
channel. In particular, Alice wants only Bob to know what her message is, but unfortu-
nately, any message she sends over the channel can be intercepted by the eavesdropper
Eve. Therefore she would like to first encrypt her message (which is also known as
the plaintext) and then send the encrypted message (the ciphertext) to Bob over the
channel. Bob should be able to decrypt the ciphertext and recover the plaintext. If
the system is secure, then Eve learns no information about the plaintext by seeing the
ciphertext. If the system is not secure, we will call it broken. We assume that Eve
knows the encryption and decryption algorithms used by Alice and Bob respectively.

2.1 Private-key cryptographic system

In a private-key cryptographic system, a protocol is designed as follows. We assume
Alice has a private key KA and Bob has a private key KB. These keys help Alice and
Bob encrypt and decrypt messages. In particular, if M is the plaintext that Alice wants
to send, she encrypts it using an encryption algorithm Enc that takes M and KA as
input, and produces a ciphertext C as output: Enc(M,KA) = C. This ciphertext C
is sent to Bob, and Bob uses a decryption algorithm Dec that takes a ciphertext C
and his private key KB as input, and produces a plaintext M : Dec(C,KB) = M . (We
assume that M,C,KA, KB are encoded as strings over some finite alphabet Σ.)

7

A very simple example of a private-key protocol is the well-known Caesar shift.1 In
this protocol, 0 ≤ KA = KB < 25 and a plaintext is encrypted by replacing each letter
with a letter which is KA positions down the alphabet. This system is easy to break
since the number of possibilities for the key is very small. Therefore one can try each
possible key value one by one.

There are much more sophisticated private-key protocols. We now present a simple
one that is provably perfectly secure.

2.1.1 One-time pad

In this section, we assume that the plaintext M ∈ {0, 1}n is a binary string of length n.
Then we choose KA = KB ∈ {0, 1}n uniformly at random (and denote it by K). The
encryption algorithm takes the bit-wise xor of M and K to produce an n-bit ciphertext
C. Or in other words, for each i, the i’th bit of C, C[i], is defined to be M [i] ⊕K[i].
Below is an example.

The decryption algorithm is exactly the same as the encryption algorithm. It takes
C and K as input, and produces M by taking the bit-wise xor of C and K. Observe

1See https://en.wikipedia.org/wiki/Caesar_cipher for details on the Caesar shift.

8

https://en.wikipedia.org/wiki/Caesar_cipher

that for all i,

C[i]⊕K[i] = (M [i]⊕K[i])⊕K[i] = M [i]⊕ (K[i]⊕K[i]) = M [i],

so the decryption algorithm correctly recovers the original message M .
For any plaintext M ∈ {0, 1}n, if K ∈ {0, 1}n is chosen uniformly at random, then

the cipertext C is a uniformly random element of {0, 1}n. This means that Eve learns
nothing about M by seeing C, so the system is perfectly secure. The downside is that
Alice and Bob have to share a key that is as long as the message itself.2

It is natural to ask whether there is any perfectly secure system like one-time pad
that uses a shorter key. Claude Shannon proved that the answer is “no”. To state his
result informally, he showed that if K is shorter than M and Eve is computationally
unbounded, then Eve can learn some information about the message M .

Given this, we let computational complexity come to our rescue. It is completely
reasonable to assume that Eve is indeed computationally bounded. So from now on, we
will assume that Eve is a polynomial-time agent.

2.1.2 Diffie-Hellman secret key exchange

We present a protocol for Alice and Bob to agree on a secret key K by communicating
publicly. The protocol is secure if Eve has no information about K even though she sees
all the communication between Alice and Bob. This sounds like an impossible task,
but it is actually believed to be feasible.

The protocol makes use of the assumption that the Discrete Log problem is com-
putationally hard (see Section 1.2.5), and it goes as follows. Alice picks privately a
(sufficiently large) random prime number P , a generator B in Z∗P , and a random ex-
ponent E1 ∈ Zϕ(P).

3 She computes BE1 in Z∗P and sends over to Bob P,B,BE1 . Bob
privately picks a random exponent E2 ∈ Zϕ(P) and computes BE2 in Z∗P . He sends BE2

to Alice. At this point both players can privately compute S = BE1E2 in Z∗P , which is
defined as the secret key that they now share. The protocol is illustrated below.

2For the system to remain perfectly secure, you should not reuse the same key for more than one
message. This is the reason for the name “one-time pad”.

3Why is the exponent chosen from Zϕ(P)? Recall that thanks to Euler’s Theorem, if we are
exponentiating an element A ∈ Z∗

N , then we can effectively think of the exponent as living in the set
Zϕ(N).

9

There are two important questions related to this protocol. First, are all the oper-
ations done by Alice and Bob polynomial-time computable? Second, how secure is the
system?

Even though we won’t explicitly discuss it, every computation done by Alice and
Bob can indeed be done in polynomial time. For the security, observe that we definitely
need the Discrete Log problem to be computationally hard, because otherwise, Eve
can compute E1 from BE1 and E2 from BE2 . Then it is easy for her to compute
the “secret” BE1E2 (since she also knows B). To be more careful though, we want that
given P,B,BE1 , BE2 (i.e. what Eve sees), it is computationally hard to compute BE1E2 .
This is known as the Diffie-Hellman assumption. Unfortunately we cannot prove this
assumption since if we could, we would be also proving P 6= NP. Even if the Diffie-
Hellman assumption holds, we should not be satisfied. Not only we don’t want Eve to
compute the secret BE1E2 , but we don’t want her to gain any information about BE1E2

(e.g. not even the first bit of it). The assumption that Eve learns nothing about the
secret is known as the Decisional Diffie-Hellman assumption.4

2.2 Public-key cryptographic system

In a public-key cryptographic system, our goal is to design a protocol that allows Alice
to send a message to Bob without the need of having to exchange messages in order to
share a secret key. For example, if a Nigerian prince wants to send you a private email

4Decisional Diffie-Hellman assumption turns out to be false in the group Z∗
P but there are other

cyclic groups for which experts believe the assumption should hold.

10

notifying you that you have inherited a million dollars, then he should be able to do so
without needing your authorization.

In order to establish this, a public-key cryptographic system uses the following
general strategy. Bob generates a tuple of keys (Kpri, Kpub), where Kpri is called the
private key and is kept private to him, and Kpub is called the public key and is published
to the world. If someone (e.g. Alice) wants to send a message to Bob, they use the
public key to encrypt their message M . That is, the ciphertext C is produced by
running an encryption algorithm Enc(M,Kpub). Once Bob receives C, he decrypts it
using his private key by running a decryption algorithm Dec(C,Kpri).

We now present different instantiations of this idea.

2.2.1 ElGamal public-key cryptographic system

The first public-key protocol we present is similar in nature to the Diffie-Hellman secret-
key exchange protocol. However, to make the correspondence clear, we reverse the roles
of Alice and Bob. Below are the details.

In the ElGamal protcol, Bob picks a (sufficiently large) prime number P , a generator
B ∈ Z∗P , and a random exponent E1 ∈ Zϕ(P). He computes BE1 in Z∗P . The private
key is Kpri = E1 and the public key is Kpub = (P,B,BE1).

The message M that Alice wants to send is viewed as an element of Z∗P (it is
easy to agree on an encoding scheme to do this). To encrypt her message, Alice does
the following. She picks a random exponent E2 ∈ Zϕ(P), and computes BE2 , BE1E2

and MBE1E2 in Z∗P . Then the ciphertext she sends over to Bob is C = (C1, C2) =
(BE2 ,MBE1E2). Once Bob receives this message, using C1 he first computes CE1

1 =
BE1E2 in Z∗P . Note that this is the secret key from the Diffie-Hellman protocol. Let’s
call it S. He computes S−1 in Z∗P . Then he computes C2S

−1 = M to recover the
original message M .

11

Even though this may seem like a non-simple protocol, it has a simple summary
once you understand the Diffie-Hellman secret-key exchange protocol. Effectively, Alice
and Bob are sharing the private secret S = BE1E2 as in the Diffie-Hellman secret-key
exchange protocol. Alice “masks” her message M using S (by multiplying M and S).
Since Bob also knows S, he can compute its inverse, and therefore recover M .

As in the Diffie-Hellman secret-key exchange protocol, all the computation done by
Alice and Bob can be carried out in polynomial time. Furthermore, the security is
based on the same assumptions as in the Diffie-Hellman secret-key exchange protocol.
The details are omitted.

2.2.2 RSA public-key cryptographic system

The RSA cryptographic system uses the assumption that taking roots in the modular
universe is a computationally hard problem (see Section 1.2.4). Notice that taking roots
is the inverse of the exponentiation function. And in RSA, the encryption is indeed
done using the exponentiation function. Below are the details.

First, Bob picks two (sufficiently large) distinct prime numbers P and Q. He mul-
tiplies them together to obtain N = PQ.5 He picks an exponent E ∈ Z∗ϕ(N).

6 He

computes E−1 in Z∗ϕ(N) and keeps that as his private key, Kpri = E−1. The public key

is Kpub = (N,E).

5Why is N chosen to be a product of primes and not just a prime number? We will explore this
question after we describe the protocol.

6Why is the exponent chosen from Z
∗
ϕ(N)? Once again, if we are exponentiating an element A ∈ Z∗

N ,
then we can effectively think of the exponent as living in the set Zϕ(N). In the RSA protocol, we will
need the exponent to have an inverse in Zϕ(N) and therefore we pick it from Z

∗
ϕ(N).

12

The message M that Alice wants to send to Bob is viewed as an element of Z∗N .
To encrypt her message, she computes C = ME in Z∗N , and sends it over to Bob. The
decryption algorithm happens to be exactly the same as the encryption algorithm. Once
Bob receives C, he computes CE−1

in Z∗N , and recovers M since CE−1
= (ME)E

−1
=

MEE−1
= M .

As before, it can be shown that all the computation done by Alice and Bob is
polynomial-time. We now make a few comments about the security of the system.
What is the advantage that Bob has over Eve that allows him to decrypt the message?
If Eve could compute E−1 herself, then she would be able to decrypt the message as well.
To compute E−1, you need to know ϕ(N) since E−1 lives in Z∗ϕ(N). Bob’s advantage is

that he can easily compute ϕ(N) because ϕ(N) = (P − 1)(Q− 1). In other words, the
advantage that Bob has is that he knows the prime factorization of N . If Eve could
factor N efficiently, then she could also easily compute ϕ(N) = (P − 1)(Q − 1). It
turns out that factoring N and computing ϕ(N) are computationally equivalent in the
following sense. Clearly, as we argued, if we can factor N in polynomial time, then
we can compute ϕ(N) in polynomial time. Furthermore, if we can compute ϕ(N) in
polynomial time, then we can factor N in polynomial time (we leave this as an exercise
to the reader).

One might ask if computing ϕ(N) is the only way to crack RSA. We don’t know the
answer to this question. So we cannot rule out that there might be some other devious
way of recovering the message M without computing ϕ(N) (or factoring N).

13

14

Solutions to Selected Exercises

Exercise 1.4

If A ≡N B, then by definition, A and B have the same remainder R when they are
divided by N . So we can write A = Q ·N + R for some Q ∈ Z and B = Q′ ·N + R for
some Q′ ∈ Z. Then A−B = (Q−Q′) ·N , and therefore N |(A−B).

Suppose N |(A−B). Write A = Q ·N +R for some Q ∈ Z and R ∈ {0, 1, . . . , N−1}.
Also write B = Q′ · N + R′ for some Q′ ∈ Z and R′ ∈ {0, 1, . . . , N − 1}. Then
A−B = (Q−Q′) ·N +(R−R′). Since N |(A−B), it must be the case that N |(R−R′).
Since R−R′ is an integer between −(N − 1) and (N − 1), the only way N can divide
R−R′ is if R = R′, i.e., A ≡N B.

Exercise 1.9

Part 1: Since A ≡N B, we have N |(A−B), and since A′ ≡N B′, we have N |(A′ −B′).
This implies N |(A − B) + (A′ − B′), or in other words, N |(A + A′) − (B + B′). And
this is equivalent to A + A′ ≡N B + B′.

Part 2: Follows from the previous part and the definition of +N .

Exercise 1.11

The additive inverse of A ∈ ZN is 0 if A = 0, and is N − A otherwise.
To show uniqueness, assume that −A and −A′ are both additive inverses of A. Then

A +N −A = A +N −A′ = 0, which implies −A = −A′.

Exercise 1.13

We argue that every row contains distinct elements of ZN , which implies that every
row is a permutation of ZN . Take an arbitrary row, which corresponds to some element
A ∈ ZN . Suppose for the sake of contradiction that two entries of this row are the
same. Then there exists B and B′ in ZN , B 6= B′, such that A +N B = A +N B′. But
then if we add −A to both sides of the equality, we get B = B′, a contradiction.

The argument for the columns is the same.

Exercise 1.15

Part 1: Hint: Write the elements as QN + R for some Q ∈ Z and remainder R ∈
{0, 1, . . . , N − 1}.

Part 2: Follows from Part 1 and the definition of ·N .

15

Exercise 1.20

If A and B are in Z∗N , then they have inverses A−1, B−1 ∈ Z∗N . To show A ·N B is in
Z
∗
N , we need to show that it has an inverse modulo N . And indeed, B−1 ·N A−1 is the

inverse of A ·N B since A ·N B ·N B−1 ·N A−1 = 1.

Exercise 1.21

We argue that every row contains distinct elements of Z∗N , which implies that every
row is a permutation of Z∗N . Take an arbitrary row, which corresponds to some element
A ∈ Z∗N . Suppose for the sake of contradiction that two entries of this row are the
same. Then there exists B and B′ in Z∗N , B 6= B′, such that A ·N B = A ·N B′. But
then if we multiply both sides of the equality by A−1 we get B = B′, a contradiction.

The argument for the columns is the same.

Exercise 1.23

We know that ϕ(N) is the number of elements in {0, 1, 2, . . . , N −1} that are relatively
prime to N . If P is a prime number, then for any A ∈ {1, 2, . . . , P − 1}, we have
gcd(A,P) = 1. And gcd(0, P) = P . So ϕ(P) = P − 1.

When N = PQ for distinct primes P and Q, we need to determine the number of
elements in {0, 1, 2, . . . , PQ − 1} that are relatively prime to PQ. The elements that
are not relatively prime to PQ are 0 and

P, 2P, 3P, . . . , (Q− 1)P,

Q, 2Q, 3Q, . . . , (P − 1)Q.

In total there are 1+(Q−1)+(P −1) = Q+P −1 of these elements. Then the number
of elements that are relatively prime to PQ is PQ− (Q+P − 1) = PQ−Q−P + 1 =
(P − 1)(Q− 1).

Exercise 1.26

For the first part, we can write E = ϕ(N) · Q + R where Q is some integer and
R ∈ {0, 1, . . . , ϕ(N)− 1} is the remainder. So E ≡ϕ(N) R. Then

AE = Aϕ(N)·Q+R =
(
Aϕ(N)

)Q · AR = AR,

where for the last equality, we used Euler’s Theorem (Theorem 1.25).

Exercise 1.27

Since gcd(102, 7) = 1, we can use the previous exercise and reduce the exponent modulo
6. So 10298 ≡7 1022. Furthermore, 102 can be reduced modulo 7. So 1022 ≡7 42. And
16 modulo 7 is 2, which is the answer.

16

Exercise 1.30

If x divides A and B, then it must divide A−B. In particular, gcd(A,B) divides both
B and A−B, and therefore gcd(A−B,B) ≥ gcd(A,B).

If x divides A − B and B, then it must divide A. In particular, gcd(A − B,B)
divides both A and B, and therefore gcd(A,B) ≥ gcd(A−B,B).

So we can conclude gcd(A,B) = gcd(A−B,B).
When A ≥ B, if we iteratively use the equality gcd(A,B) = gcd(A − B,B) to

subtract B from the larger number A, then we will eventually arrive at gcd(A,B) =
gcd(A mod B,B). For example:

gcd(6004, 6) = gcd(5998, 6)

= gcd(5992, 6)

= gcd(5986, 6)

· · ·
= gcd(4, 6).

So gcd(6004, 6) eventually ends up at gcd(6004 mod 6, 6).
gcd(A mod B,B) is obviously equal to gcd(B,A mod B). So one can show that

Euclid’s algorithm is correct by an induction argument, where the base case corresponds
to the base case of the recursive algorithm, and the induction step corresponds to the
recursive call.

Exercise 1.31

We claim that A mod B ≤ A/2. To see this, we case on whether A ≥ 2B. If A ≥ 2B,
then the claim is true because A mod B is always less than B. If A < 2B, then the
claim is true because A mod B = A−B < A− A/2 = A/2.

Now when we call the algorithm with input (A,B) and make a recursive call, the next
pair of inputs is (B,A mod B). Using the claim above, we have (A mod B) ·B ≤ AB/2.
So in each recursive call, the product of the inputs is going down by a factor of at least
2. And this implies the number of recursive calls is at most log2(AB), which is O(n) if
A and B are at most n-bits.

Exercise 1.33

Let G = gcd(A,B). If C is a miix of A and B, then C = kA + `B. Furthermore,
we know we can write A = xG for some integer x, and B = yG for some integer y.
Therefore

C = kA + `B = kxG + `yG = G(kx + `y),

which shows C is a multiple of G.

17

Exercise 1.34

Here is the extended Euclid’s algorithm.

Extended-Euclid(A,B):

• if B divides A, return (B, 0, 1)

• else:

– (G, k, `)← Extended-Euclid(B,A mod B)

– return (G, `, (k − ` · bA/Bc))

Here, we have modified Euclid’s algorithm to return a tuple of variables; Extended-
Euclid(A,B) = (G, k, `) where G = gcd(A,B) and G = k ·A+ ` ·B. By the correctness
of Euclid’s algorithm, we can conclude that the returned value G is the gcd (both
algorithms do the same calculations for G). We use induction on the number of steps
to argue correctness of the returned values (k, `).

Base Case: If B divides A, the algorithm correctly returns k = 0 and ` = 1.
Induction Step: Suppose the algorithm ran for s > 1 steps. By the induction

hypothesis, we can assume that G = k · B + ` · (A mod B). Since we can write
A = q · B + (A mod B) where q = bA/Bc, we can say G = k · B + `(A − q · B).
Thus, the returned tuple (G, `, k − ` · bA/Bc) is correct.

Let’s come back to the main question. The above algorithm shows that gcd(A,B)
is a miix of A and B. So if C is a multiple of gcd(A,B), it is also a miix of A and B.

Exercise 1.35

The previous two exercises imply that C is a miix of A and B if and only if C is a
multiple of gcd(A,B). Then,

A−1 exists ⇐⇒ ∃k such that kA ≡N 1

⇐⇒ ∃k such that N divides kA− 1

⇐⇒ ∃k, q such that kA− 1 = qN

⇐⇒ ∃k, q such that 1 = kA + (−q)N

⇐⇒ 1 is a miix of A and N

⇐⇒ gcd(A,N) = 1.

18

	Modular Arithmetic
	Modular operations: Basic definitions and properties
	Addition and subtraction
	Multiplication and division
	Exponentiation

	Modular operations: Computational complexity
	Addition and subtraction
	Multiplication and division
	Exponentiation
	Taking roots
	Taking logarithms

	Cryptography
	Private-key cryptographic system
	One-time pad
	Diffie-Hellman secret key exchange

	Public-key cryptographic system
	ElGamal public-key cryptographic system
	RSA public-key cryptographic system

