
CMU 15-251, Fall 2017
Great Ideas in Theoretical Computer Science

Course Notes: Main File

November 17, 2017

Please send comments and corrections to Anil Ada (aada@cs.cmu.edu).

Foreword

These notes are based on the lectures given by Anil Ada and Ariel Procaccia
for the Fall 2017 edition of the course 15-251 “Great Ideas in Theoretical
Computer Science” at Carnegie Mellon University. They are also closely
related to the previous editions of the course, and in particular, lectures
prepared by Ryan O’Donnell.

WARNING: The purpose of these notes is to complement the lectures.
These notes do not contain full explanations of all the material covered dur-
ing lectures. In particular, the intuition and motivation behind many con-
cepts and proofs are explained during the lectures and not in these notes.

There are various versions of the notes that omit certain parts of the
notes. Go to the course webpage to access all the available versions.

In the main version of the notes (i.e. the main document), each chapter
has a preamble containing the chapter structure and the learning goals. The
preamble may also contain some links to concrete applications of the topics
being covered. At the end of each chapter, you will find a short quiz for you
to complete before coming to recitation, as well as hints to selected exercise
problems.

Note that some of the exercise solutions are given in full detail, whereas
for others, we give all the main ideas, but not all the details. We hope the
distinction will be clear.

i

Acknowledgements

The course 15-251 was created by Steven Rudich many years ago, and we
thank him for creating this awesome course. Here is the webpage of an
early version of the course:
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251-s04/Site/.
Since then, the course has evolved. The webpage of the current version is
here:
http://www.cs.cmu.edu/~15251/.

Thanks to the previous instructors of 15-251, who have contributed a lot
to the development of the course: Victor Adamchik, Luis von Ahn, Anu-
pam Gupta, Venkatesan Guruswami, Bernhard Haeupler, John Lafferty,
Ryan O’Donnell, Ariel Procaccia, Daniel Sleator and Klaus Sutner.

Thanks to Eric Bae, Seth Cobb, Teddy Ding, Ellen Kim, Aditya Krish-
nan, Xinran Liu, Matthew Salim, Ticha Sethapakdi, Vanessa Siriwalothakul,
Natasha Vasthare, Jenny Wang, Ling Xu, Ming Yang, Stephanie You, Xingjian
Yu and Nancy Zhang for sending valuable comments and corrections on
an earlier draft of the notes. And thanks to Darshan Chakrabarti, Emilie
Guermeur, Udit Ranasaria, Rosie Sun and Wynne Yao for sending valuable
comments and corrections on the current draft.

ii

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251-s04/Site/
http://www.cs.cmu.edu/~15251/

Contents

1 Strings and Encodings 1
1.1 Alphabets and Strings . 3
1.2 Languages . 5
1.3 Encodings . 7
1.4 Computational Problems and Decision Problems 9

2 Deterministic Finite Automata 13
2.1 Basic Definitions . 15
2.2 Irregular Languages . 18
2.3 Closure Properties of Regular Languages 19

3 Turing Machines 25
3.1 Basic Definitions . 27
3.2 Decidable Languages . 32

4 Countable and Uncountable Sets 37
4.1 Basic Definitions . 39
4.2 Countable Sets . 40
4.3 Uncountable Sets . 42

5 Undecidable Languages 47
5.1 Existence of Undecidable Languages 49
5.2 Examples of Undecidable Languages 49
5.3 Undecidability Proofs by Reductions 52

6 Time Complexity 57
6.1 Big-O, Big-Omega and Theta . 59
6.2 Worst-Case Running Time of Algorithms 60
6.3 Complexity of Algorithms with Integer Inputs 62

7 The Science of Cutting Cake 67
7.1 The Problem and the Model . 69
7.2 Cake Cutting Algorithms in the Robertson-Webb Model 70

8 Introduction to Graph Theory 77
8.1 Basic Definitions . 79
8.2 Graph Algorithms . 83

8.2.1 Graph searching algorithms 83
8.2.2 Minimum spanning tree 84
8.2.3 Topological sorting . 86

9 Matchings in Graphs 91
9.1 Maximum Matchings . 93
9.2 Stable Matchings . 99

10 Boolean Circuits 107
10.1 Basic Definitions . 109

iii

10.2 3 Theorems on Circuits . 111

11 Polynomial-Time Reductions 119
11.1 Cook and Karp Reductions . 121
11.2 Hardness and Completeness . 127

12 Non-Deterministic Polynomial Time 131
12.1 Non-Deterministic Polynomial Time NP 133
12.2 NP-complete problems . 135
12.3 Proof of Cook-Levin Theorem . 139

13 Computational Social Choice 143
13.1 Basic Definitions and Results . 145

14 Approximation Algorithms 151
14.1 Basic Definitions . 153
14.2 Examples of Approximation Algorithms 154

15 Probability Theory 161
15.1 Probability I: The Basics . 163

15.1.1 Basic Definitions . 163
15.1.2 Three Useful Rules . 166
15.1.3 Independence . 167

15.2 Probability II: Random Variables 168
15.2.1 Basics of random variables 168
15.2.2 The most fundamental inequality in probability theory . 172
15.2.3 Three popular random variables 173

16 Randomized Algorithms 177
16.1 Monte Carlo and Las Vegas Algorithms 179
16.2 Monte Carlo Algorithm for the Minimum Cut Problem 180

iv

v

Chapter 1

Strings and Encodings

1

PREAMBLE

Chapter structure:

• Section 1.1 (Alphabets and Strings)

– Definition 1.1 (Alphabet, symbol/character)

– Definition 1.5 (String/word, empty string)

– Definition 1.9 (Length of a string)

– Definition 1.11 (Star operation on alphabets)

– Definition 1.16 (Reversal of a string)

– Definition 1.20 (Concatenation of strings)

– Definition 1.24 (Powers of a string)

– Definition 1.27 (Substring)

• Section 1.2 (Languages)

– Definition 1.29 (Language)

– Definition 1.37 (Reversal of a language)

– Definition 1.39 (Concatenation of languages)

– Definition 1.41 (Powers of a language)

– Definition 1.45 (Star operation on a language)

• Section 1.3 (Encodings)

– Definition 1.51 (Encoding of a set)

• Section 1.4 (Computational Problems and Decision Problems)

– Definition 1.61 (Computational problem)

– Definition 1.64 (Decision problem)

Chapter goals:

In the beginning, our goal is to build up, completely formally/mathematically,
the important notions related to computation and algorithms. Our starting
point is this chapter, which deals with how to formally represent data and
how to formally define the concept of a computational problem.

In theoretical computer science, every kind of data is represented/encoded
using finite-length strings. In this chapter, we introduce you to the formal
definitions related to strings and encodings of objects with strings. We also
present the definitions of “computational problem” and “decision prob-
lem”.

All the definitions in this chapter are at the foundation of the formal
study of computation.

2

1.1 Alphabets and Strings

Definition 1.1 (Alphabet, symbol/character).
An alphabet is a non-empty, finite set, and is usually denoted by Σ. The ele-
ments of Σ are called symbols or characters.

Example 1.2 (Unary alphabet).
A unary alphabet consists of one symbol. A common choice for that symbol is
1. So an example of a unary alphabet is Σ = {1}.

Example 1.3 (Binary alphabet).
A binary alphabet consists of two symbols. Often we represent those symbols
using 0 and 1. So an example of a binary alphabet is Σ = {0, 1}. Another
example of a binary alphabet is Σ = {a, b}where a and b are the symbols.

Example 1.4 (Ternary alphabet).
A ternary alphabet consists of three symbols. So Σ = {0, 1, 2} and Σ = {a, b, c}
are examples of ternary alphabets.

Definition 1.5 (String/word, empty string).
Given an alphabet Σ, a string (or word) over Σ is a (possibly infinite) sequence of
symbols, written as a1a2a3 . . ., where each ai ∈ Σ. The string with no symbols
is called the empty string and is denoted by ε.

Example 1.6 (Strings over the unary alphabet).
For Σ = {1}, the following is a list of 6 strings over Σ:

ε, 1, 11, 111, 1111, 11111.

Furthermore, the infinite sequence 111111 . . . is also a string over Σ.

Example 1.7 (Strings over the binary alphabet).
For Σ = {0, 1}, the following is a list of 8 strings over Σ:

ε, 0, 1, 00, 01, 10, 11, 000.

The infinite strings 000000 . . ., 111111 . . . and 010101 . . . are also examples of
strings over Σ.

Note 1.8 (Strings and quotation marks).
In our notation of a string, we do not use quotation marks. For instance, we
use the notation 1010 rather than “1010”, even though the latter notation us-
ing the quotation marks is the standard one in many programming languages.
Occasionally, however, we may use quotation marks to distinguish a string
like “1010” from another type of object with the representation 1010 (e.g. the
binary number 1010).

Definition 1.9 (Length of a string).
The length of a string w, denoted |w|, is the the number of symbols in w. If w
has an infinite number of symbols, then the length is undefined.

Example 1.10 (Lengths of 01001 and ε).
Let Σ = {0, 1}. The length of the word 01001, denoted by |01001|, is equal to
5. The length of ε is 0.

3

Definition 1.11 (Star operation on alphabets).
Let Σ be an alphabet. We denote by Σ∗ the set of all strings over Σ consisting
of finitely many symbols. Equivalently, using set notation,

Σ∗ = {a1a2 . . . an : n ∈ N, and ai ∈ Σ for all i}.

Example 1.12 ({a}∗).
For Σ = {a}, Σ∗ denotes the set of all finite-length words consisting of a’s. So

{a}∗ = {ε, a, aa, aaa, aaaa, aaaaa, . . .}.

Example 1.13 ({0, 1}∗).
For Σ = {0, 1}, Σ∗ denotes the set of all finite-length words consisting of 0’s
and 1’s. So

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, . . .}.

Note 1.14 (Finite vs infinite strings).
We often use the words “string” and “word” to refer to a finite-length string/word.
When we want to talk about infinite-length strings, we explicitly use the word
“infinite”.

Note 1.15 (Size of Σ∗).
By Definition 1.1 (Alphabet, symbol/character), an alphabet Σ cannot be the
empty set. This implies that Σ∗ is an infinite set since there are infinitely many
strings of finite length over a non-empty Σ.

Definition 1.16 (Reversal of a string).
For a string w = a1a2 . . . an, the reversal of w, denoted wR, is the string wR =
anan−1 . . . a1.

Example 1.17 (Reversal of 01001).
The reversal of 01001 is 10010.

Example 1.18 (Reversal of 1).
The reversal of 1 is 1.

Example 1.19 (Reversal of ε).
The reversal of ε is ε.

Definition 1.20 (Concatenation of strings).
If u and v are two strings in Σ∗, the concatenation of u and v, denoted by uv or
u · v, is the string obtained by joining together u and v.

Example 1.21 (Concatenation of 101 and 001).
If u = 101 and v = 001, then uv = 101001.

Example 1.22 (Concatenation of 101 and ε).
If u = 101 and v = ε, then uv = 101.

Example 1.23 (Concatenation of ε and ε).
If u = ε and v = ε, then uv = ε.

4

Definition 1.24 (Powers of a string).
For a word u ∈ Σ∗ and n ∈ N, the n’th power of u, denoted by un, is the word
obtained by concatenating u with itself n times.

Example 1.25 (Third power of 101).
If u = 101 then u3 = 101101101.

Example 1.26 (Zeroth power of a string).
For any string u, u0 = ε.

Definition 1.27 (Substring).
We say that a string u is a substring of string w if w = xuy for some strings x
and y.

Example 1.28 (101 as a substring).
The string 101 is a substring of 11011 and also a substring of 0101. On the
other hand, it is not a substring of 1001.

1.2 Languages

Definition 1.29 (Language).
Any (possibly infinite) subset L ⊆ Σ∗ is called a language over the alphabet Σ.

Example 1.30 (Language of even length strings).
Let Σ be an alphabet. Then L = {w ∈ Σ∗ : |w| is even} is a language.

Example 1.31 (A language with one word).
Let Σ = {0, 1}. Then L = {101} is a language.

Example 1.32 (Σ∗ as a language).
Let Σ be an alphabet. Then L = Σ∗ is a language.

Example 1.33 (Empty set as a language).
Let Σ be an alphabet. Then L = ∅ is a language.

Note 1.34 (Size of a language).
Since a language is a set, the size of a language refers to the size of that set. A
language can have finite or infinite size. This is not in conflict with the fact that
every language consists of finite-length strings.

Note 1.35 (∅ vs {ε}).
The language {ε} is not the same language as ∅. The former has size 1 whereas
the latter has size 0.

Exercise 1.36 (Structural induction on words).
Let language L ⊆ {0, 1}∗ be recursively defined as follows:

• ε ∈ L;

• if x, y ∈ L, then 0x1y0 ∈ L.

5

Show, using (structural) induction, that for any word w ∈ L, the number of 0’s
in w is exactly twice the number of 1’s in w.

Definition 1.37 (Reversal of a language).
Given a language L ⊆ Σ∗, we define its reversal, denoted LR, as the language

LR = {wR ∈ Σ∗ : w ∈ L}.

Example 1.38 (Reversal of {ε, 1, 1010}).
The reversal of the language {ε, 1, 1010} is {ε, 1, 0101}.

Definition 1.39 (Concatenation of languages).
Given two languages L1, L2 ⊆ Σ∗, we define their concatenation, denoted L1L2

or L1 · L2, as the language

L1L2 = {uv ∈ Σ∗ : u ∈ L1, v ∈ L2}.

Example 1.40 (Concatenation of {ε, 1} and {0, 01}).
The concatenation of languages {ε, 1} and {0, 01} is the language

{0, 01, 10, 101}.

Definition 1.41 (Powers of a language).
Given a language L ⊆ Σ∗ and n ∈ N, the n’th power of L, denoted Ln, is the
language obtained by concatenating L with itself n times, that is,1

Ln = L · L · L · · ·L︸ ︷︷ ︸
n times

.

Equivalently,

Ln = {u1u2 · · ·un ∈ Σ∗ : ui ∈ L for all i ∈ {1, 2, . . . , n}}.

Example 1.42 ({1}3).
The 3rd power of {1} is the language {111}.

Example 1.43 ({ε, 1}3).
The 3rd power of {ε, 1} is the language {ε, 1, 11, 111}.

Example 1.44 (L0).
The 0th power of any language L is the language {ε}.

Definition 1.45 (Star operation on a language).
Given a language L ⊆ Σ∗, we define the star of L, denoted L∗, as the language

L∗ =
⋃
n∈N

Ln.

Equivalently,

L∗ = {u1u2 · · ·un ∈ Σ∗ : n ∈ N, ui ∈ L for all i ∈ {1, 2, . . . , n}}.

Example 1.46 (Σ∗).
Given an alphabet Σ, consider the language L = Σ ⊆ Σ∗. Then L∗ is equal to
Σ∗.

1We can omit parentheses as the order in which the concatenation · is applied does not matter.

6

Example 1.47 ({00}∗).
If L = {00}, then L∗ is the language consisting of all words containing an even
number of 0’s and no other symbol.

Example 1.48 (({00}∗)∗).
Let L be the language consisting of all words containing an even number of 0’s
and no other symbol. Then L∗ = L.

Exercise 1.49 (Can you distribute star over intersection?).
Prove or disprove: If L1, L2 ⊆ {a, b}∗ are languages, then (L1∩L2)∗ = L∗1∩L∗2.

Exercise 1.50 (Can you interchange star and reversal?).
Is it true that for any language L, (L∗)R = (LR)∗? Prove your answer.

1.3 Encodings

Definition 1.51 (Encoding of a set).
Let A be a set (which is possibly countably infinite2), and let Σ be a alphabet.
An encoding of the elements of A, using Σ, is an injective function Enc : A →
Σ∗. We denote the encoding of a ∈ A by 〈a〉.3

If w ∈ Σ∗ is such that there is some a ∈ A with w = 〈a〉, then we say w is a
valid encoding of an element in A.

A set that can be encoded is called encodable.4

Example 1.52 (Decimal encoding of naturals).
When we (humans) communicate numbers among ourselves, we usually use
the base-10 representation, which corresponds to an encoding of N using the
alphabet Σ = {0, 1, 2, . . . , 9}. For example, we encode the number four as 4

and the number twelve as 12.

Example 1.53 (Binary encoding of naturals).
As you know, every number has a base-2 representation (which is also known
as the binary representation). This representation corresponds to an encoding
of N using the alphabet Σ = {0, 1}. For example, four is encoded as 100 and
twelve is encoded as 1100.

Example 1.54 (Binary encoding of integers).
An integer is a natural number together with a sign, which is either negative
or positive. Let Enc : N → {0, 1}∗ be any binary encoding of N. Then we can
extend this encoding to an encoding of Z, by defining Enc′ : Z → {0, 1}∗ as
follows:

Enc′(x) =

{
0Enc(x) if x ≥ 0,

1Enc(x) if x < 0.

Effectively, this encoding of integers takes the encoding of natural numbers
and precedes it with a bit indicating the integer’s sign.

2We assume you know what a countable set is, however, we will review this concept in a future
lecture.

3Note that this angle-bracket notation does not specify the underlying encoding function as the
particular choice of encoding function is often unimportant.

4Not every set is encodable. Can you figure out exactly which sets are encodable?

7

Example 1.55 (Unary encoding of naturals).
It is possible (and straightforward) to encode the natural numbers using the
alphabet Σ = {1} as follows. Let Enc(n) = 1n for all n ∈ N.

Example 1.56 (Ternary encoding of pairs of naturals).
Suppose we want to encode the setA = N×N using the alphabet Σ = {0, 1, 2}.
One way to accomplish this is to make use of a binary encoding Enc′ : N →
{0, 1}∗ of the natural numbers. With Enc′ in hand, we can define Enc : N×N→
{0, 1, 2}∗ as follows. For (x, y) ∈ N×N, Enc(x, y) = Enc′(x)2Enc′(y). Here the
symbol 2 acts as a separator between the two numbers. To make the separator
symbol advertise itself as such, we usually pick a symbol like # rather than 2.
So the ternary alphabet is often chosen to be Σ = {0, 1, #}.

Example 1.57 (Binary encoding of pairs of naturals).
Having a ternary alphabet to encode pairs of naturals was convenient since we
could use the third symbol as a separator. It is also relatively straightforward
to take that ternary encoding and turn it into a binary encoding, as follows.
Encode every element of the ternary alphabet in binary using two bits. For
instance, if the ternary alphabet is Σ = {0, 1, #}, then we could encode 0 as 00,
1 as 01 and # as 11. This mapping allows us to convert any encoded string
over the ternary alphabet into a binary encoding. For example, a string like
#0#1 would have the binary representation 11001101.

Example 1.58 (Ternary encoding of graphs).
Let A be the set of all undirected graphs.5 Every graph G = (V,E) can be
represented by its |V | by |V | adjacency matrix. In this matrix, every row cor-
responds to a vertex of the graph, and similarly, every column corresponds to
a vertex of the graph. The (i, j)’th entry contains a 1 if {i, j} is an edge, and
contains a 0 otherwise. Below is an example.

Such a graph can be encoded using a ternary alphabet as follows. Take the ad-
jacency matrix of the graph, view each row as a binary string, and concatenate
all the rows by putting a separator symbol between them. The encoding of the
above example would be

〈G〉 = 0101#1010#0101#1010.

Example 1.59 (Encoding of Python functions).
Let A be the set of all functions in the programming language Python. When-
ever we type up a Python function in a code editor, we are creating a string
representation/encoding of the function, where the alphabet is all the Unicode
symbols.6 For example, consider a Python function named absValue, which
we can write as

def absValue(N):

if (N < 0): return -N

else: return N

5We will define graphs formally in a future chapter, however, we assume you are already fa-
miliar with the concept.

6https://en.wikipedia.org/wiki/Unicode

8

https://en.wikipedia.org/wiki/Unicode

By writing out the function, we have already encoded it. More specifically,
〈absValue〉 is the string

def absValue(N):\n if (N < 0): return -N\n else: return N

Exercise 1.60 (Unary encoding of integers).
Describe an encoding of Z using the alphabet Σ = {1}.

1.4 Computational Problems and Decision Prob-

lems

Definition 1.61 (Computational problem).
Let Σ be an alphabet. Any function f : Σ∗ → Σ∗ is called a computational
problem over the alphabet Σ.

Example 1.62 (Addition as a computational problem).
Consider the function g : N × N → N defined as g(x, y) = x + y. This is a
function that expresses the addition problem in naturals. We can view g as
a computational problem over an alphabet Σ once we fix an encoding of the
domain N × N using Σ and an encoding of the codomain N using Σ. For
convenience, we take Σ = {0, 1, #}. Let Enc be the encoding of N × N as
described in Example 1.56 (Ternary encoding of pairs of naturals). Let Enc′ be
the encoding ofN as described in Example 1.53 (Binary encoding of naturals).
Note that Enc′ leaves the symbol # unused in the encoding. We now define
the computational problem f corresponding to g. If w ∈ Σ∗ is a word that
corresponds to a valid encoding of a pair of numbers (x, y) (i.e., Enc(x, y) = w),
then define f(w) to be Enc′(x + y). If w ∈ Σ∗ is not a word that corresponds
to a valid encoding of a pair of numbers (i.e., w is not in the image of Enc),
then define f(w) to be #. In the codomain, the # symbol serves as an “error”
indicator.

IMPORTANT 1.63 (Computational problem as mapping instances to solu-
tions).
A computational problem is often derived from a function g : I → S, where I
is a set of objects called instances and S is a set of objects called solutions. The
derivation is done through encodings Enc : I → Σ∗ and Enc′ : S → Σ∗. With
these encodings, we can create the computational problem f : Σ∗ → Σ∗. In
particular, if w = 〈x〉 for some x ∈ I , then we define f(w) to be Enc′(g(x)).

I S

Σ∗ Σ∗

g

Enc Enc′

f

One thing we have to be careful about is defining f(w) for a word w ∈ Σ∗

that does not correspond to an encoding of an object in I (such a word does
not correspond to an instance of the computational problem). To handle this,
we can identify one of the strings in Σ∗ as an error string and define f(w) to be
that string.

9

Definition 1.64 (Decision problem).
Let Σ be an alphabet. Any function f : Σ∗ → {0, 1} is called a decision problem
over the alphabet Σ. The codomain of the function is not important as long as
it has two elements. Other common choices for the codomain are {No,Yes},
{False,True} and {Reject,Accept}.

Example 1.65 (Primality testing as a decision problem).
Consider the function g : N → {False,True} such that g(x) = True if and only
if x is a prime number. We can view g as a decision problem over an alphabet
Σ once we fix an encoding of the domain N using Σ. Take Σ = {0, 1}. Let
Enc be the encoding of N as described in Example 1.53 (Binary encoding of
naturals). We now define the decision problem f corresponding to g. If w ∈ Σ∗

is a word that corresponds to an encoding of a prime number, then define
f(w) to be True. Otherwise, define f(w) to be False. (Note that in the case of
f(w) = False, either w is the encoding of a composite number, or w is not a
valid encoding of a natural number.

Note 1.66 (Decision problem as mapping instances to 0 or 1s).
As with a computational problem, a decision problem is often derived from a
function g : I → {0, 1}, where I is a set of instances. The derivation is done
through an encoding Enc : I → Σ∗, which allows us to define the decision
problem f : Σ∗ → {0, 1}. Any word w ∈ Σ∗ that does not correspond to an
encoding of an instance is mapped to 0 by f .

IMPORTANT 1.67 (Correspondence between decision problems and languages).

There is a one-to-one correspondence between decision problems and languages.
Let f : Σ∗ → {0, 1} be some decision problem. Now define L ⊆ Σ∗ to be the set
of all words in Σ∗ that f maps to 1. This L is the language corresponding to the
decision problem f . Similarly, if you take any language L ⊆ Σ∗, we can define
the corresponding decision problem f : Σ∗ → {0, 1} as f(w) = 1 if and only if
w ∈ L. We consider the set of languages and the set of decision problems to be
the same set of objects.

10

Quiz

1. LetL be the set of all strings of length at most 3 over the alphabet {a, b, c}.
What is |L|?

2. Let Σ be an alphabet. For which languages L ⊆ Σ∗ is it true that L · L is
infinite?

3. Let Σ be an alphabet. For which languages L ⊆ Σ∗ is it true that L∗ is
infinite?

4. True or false: The set of real numbers is encodable.

5. Consider the following problem. The input is an array A of n integers
together with a target integer t. The output is a subset S ⊆ {0, 1, . . . , n−
1} such that

∑
i∈S A[i] = t. If no such subset exists, the output is None.

Formulate this as a computational problem.

11

Hints to Selected Exercises

Exercise 1.49 (Can you distribute star over intersection?):
Disprove the statement by providing a counterexample.

Exercise 1.50 (Can you interchange star and reversal?):
Show (L∗)R = (LR)∗. To do this, you need to argue both (L∗)R ⊆ (LR)∗ and (LR)∗ ⊆ (L∗)R.

12

Chapter 2

Deterministic Finite Automata

13

PREAMBLE

Chapter structure:

• Section 15.1.1 (Basic Definitions)

– Definition 2.1 (Deterministic Finite Automaton (DFA))

– Definition 2.3 (Computation path for a DFA)

– Definition 2.5 (A DFA accepting a string)

– Definition 2.7 (Extended transition function)

– Definition 2.9 (Language recognized/accepted by a DFA)

– Definition 2.14 (Regular language)

• Section 2.2 (Irregular Languages)

– Theorem 2.17 (0n1n is not regular)

– Theorem 2.18 (A unary non-regular language)

• Section 2.3 (Closure Properties of Regular Languages)

– Theorem 2.23 (Regular languages are closed under union)

– Corollary 2.25 (Regular languages are closed under intersection)

– Theorem 2.30 (Regular languages are closed under concatena-
tion)

Chapter goals:

The goal of this chapter is to introduce you to a simple (and restricted)
model of computation known as deterministic finite automata. This model is
interesting to study in its own right, and has very nice applications, how-
ever, our main motivation to study this model is to use it as a stepping
stone towards formally defining the notion of an algorithm in its full gener-
ality. Treating deterministic finite automata as a warm-up, we would like
you to get comfortable with how one formally defines a model of computa-
tion, and then proves interesting theorems related to the model. Along the
way, you will start getting comfortable with using a bit more sophisticated
mathematical notation than you might be used to. You will see how mathe-
matical notation helps us express ideas and concepts accurately, succinctly
and clearly.

Applications:

• https://cstheory.stackexchange.com/questions/8539/how-practical-is-automata-theory

• http://cap.virginia.edu

14

https://cstheory.stackexchange.com/questions/8539/how-practical-is-automata-theory
http://cap.virginia.edu

2.1 Basic Definitions

Definition 2.1 (Deterministic Finite Automaton (DFA)).
A deterministic finite automaton (DFA) M is a 5-tuple

M = (Q,Σ, δ, q0, F),

where

• Q is a non-empty finite set
(which we refer to as the set of states);

• Σ is a non-empty finite set
(which we refer to as the alphabet of the DFA);

• δ is a function of the form δ : Q× Σ→ Q
(which we refer to as the transition function);

• q0 ∈ Q is an element of Q
(which we refer to as the start state);

• F ⊆ Q is a subset of Q
(which we refer to as the set of accepting states).

Example 2.2 (A 4-state DFA).
Below is an example of how we draw a DFA:

In this example, Σ = {0, 1}, Q = {q0, q1, q2, q3}, F = {q1, q2}. The labeled
arrows between the states encode the transition function δ, which can also be
represented with a table as below (row qi ∈ Q and column b ∈ Σ contains
δ(qi, b)).

0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

Definition 2.3 (Computation path for a DFA).
Let M = (Q,Σ, δ, q0, F) be a DFA and let w = w1w2 · · ·wn be a string over an
alphabet Σ (so wi ∈ Σ for each i ∈ {1, 2, . . . , n}). Then the computation path of
M with respect to w is a sequence of states

r0, r1, r2, . . . , rn,

where each ri ∈ Q, and such that

15

• r0 = q0;

• δ(ri−1, wi) = ri for each i ∈ {1, 2, . . . , n}.

We say that the computation path is accepting if rn ∈ F , and rejecting otherwise.

Example 2.4 (An example of a computation path).
Let M = (Q,Σ, δ, q0, F) be the DFA in Example 2.2 (A 4-state DFA) and let
w = 110110. Then the computation path of M with respect to w is

q0, q1, q2, q3, q2, q2, q3.

Since q3 is not in F , this is a rejecting computation path.

Definition 2.5 (A DFA accepting a string).
We say that DFA M = (Q,Σ, δ, q0, F) accepts a word w ∈ Σ∗ if the computation
path of M with respect to w is an accepting computation path. Otherwise, we
say that M rejects the string w.

Example 2.6 (An example of a DFA accepting a string).
Let M = (Q,Σ, δ, q0, F) be the DFA in Example 2.2 (A 4-state DFA) and let
w = 01101. Then the computation path of M with respect to w is

q0, q0, q1, q2, q3, q2.

This is an accepting computation path because the sequence ends with q2,
which is in F . Therefore M accepts w.

Definition 2.7 (Extended transition function).
Let M = (Q,Σ, δ, q0, F) be a DFA. The transition function δ : Q × Σ → Q can
be extended to δ∗ : Q× Σ∗ → Q, where δ∗(q, w) is defined as the state we end
up in if we start at q and read the string w. In fact, often the star in the notation
is dropped and δ is overloaded to represent both a function δ : Q×Σ→ Q and
a function δ : Q× Σ∗ → Q.

Note 2.8 (Alternative definition of a DFA accepting a string).
Let M = (Q,Σ, δ, q0, F) be a DFA. Using the notation above, we can say that a
word w is accepted by the DFA M if δ(q0, w) ∈ F .

Definition 2.9 (Language recognized/accepted by a DFA).
For a deterministic finite automaton M , we let L(M) denote the set of all
strings that M accepts, i.e. L(M) = {w ∈ Σ∗ : M accepts w}. We refer to
L(M) as the language recognized by M (or as the language accepted by M , or as
the language decided by M).1

Example 2.10 (Even number of 1’s).
The following DFA recognizes the language consisting of all binary strings that
contain an even number of 1’s.

1Here the word “accept” is overloaded since we also use it in the context of a DFA accepting
a string. However, this usually does not create any ambiguity. Note that the letter L is also over-
loaded since we often use it to denote a language L ⊆ Σ∗. In this definition, you see that it can
also denote a function that maps a DFA to a language. Again, this overloading should not create
any ambiguity.

16

Example 2.11 (Ends with 00).
The following DFA recognizes the language consisting of all binary strings that
end with 00.

Exercise 2.12 (Draw DFAs).
For each language below (over the alphabet Σ = {0, 1}), draw a DFA recogniz-
ing it.

(a) {110, 101}

(b) {0, 1}∗\{110, 101}

(c) {x ∈ {0, 1}∗ : x starts and ends with the same bit}

(d) {ε, 110, 110110, 110110110, . . .}

(e) {x ∈ {0, 1}∗ : x contains 110 as a substring}

Exercise 2.13 (Finite languages are regular).
Let L be a finite language, i.e., it contains a finite number of words . Show that
there is a DFA recognizing L.

Definition 2.14 (Regular language).
A language L ⊆ Σ∗ is called regular if there is a deterministic finite automaton
M such that L = L(M).

Example 2.15 (Some examples of regular languages).
All the languages in Exercise 2.12 (Draw DFAs) are regular languages.

Exercise 2.16 (Equal number of 01’s and 10’s).
Is the language

{w ∈ {0, 1}∗ : w contains an equal number of occurrences of 01 and 10 as substrings.}

regular?

17

2.2 Irregular Languages

Theorem 2.17 (0n1n is not regular).
Let Σ = {0, 1}. The language L = {0n1n : n ∈ N} is not regular.

Proof. Our goal is to show that L = {0n1n : n ∈ N} is not regular. The proof is
by contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automa-
ton M that recognizes L. Let k denote the number of states of M . For n ∈ N,
let rn denote the state that M reaches after reading 0n (i.e., rn = δ(q0, 0

n)).
By the pigeonhole principle,2 we know that there must be a repeat among
r0, r1, . . . , rk (a sequence of k + 1 states). In other words, there are indices
i, j ∈ {0, 1, . . . , k} with i 6= j such that ri = rj . This means that the string 0i

and the string 0j end up in the same state in M . Therefore 0iw and 0jw, for any
string w ∈ {0, 1}∗, end up in the same state in M . We’ll now reach a contradic-
tion, and conclude the proof, by considering a particular w such that 0iw and
0jw end up in different states.

Consider the string w = 1i. Then since M recognizes L, we know 0iw =
0i1i must end up in an accepting state. On the other hand, since i 6= j, 0jw =
0j1i is not in the language, and therefore cannot end up in an accepting state.
This is the desired contradiction.

Theorem 2.18 (A unary non-regular language).
Let Σ = {a}. The language L = {a2n : n ∈ N} is not regular.

Proof. Our goal is to show that L = {a2n : n ∈ N} is not regular. The proof is
by contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automa-
tonM that recognizes L. Let k denote the number of states ofM . For n ∈ N, let
rn denote the state thatM reaches after reading a2n (i.e. rn = δ(q0, a

2n)). By the
pigeonhole principle, we know that there must be a repeat among r0, r1, . . . , rk
(a sequence of k+ 1 states). In other words, there are indices i, j ∈ {0, 1, . . . , k}
with i < j such that ri = rj . This means that the string a2i and the string
a2j end up in the same state in M . Therefore a2iw and a2jw, for any string
w ∈ {a}∗, end up in the same state in M . We’ll now reach a contradiction,
and conclude the proof, by considering a particular w such that a2iw ends up
in an accepting state but a2jw ends up in a rejecting state (i.e. they end up in
different states).

Consider the string w = a2i . Then a2iw = a2ia2i = a2i+1

, and therefore
must end up in an accepting state. On the other hand, a2jw = a2ja2i = a2j+2i .
We claim that this word must end up in a rejecting state because 2j + 2i cannot
be written as a power of 2 (i.e., cannot be written as 2t for some t ∈ N). To see
this, note that since i < j, we have

2j < 2j + 2i < 2j + 2j = 2j+1,

which implies that if 2j+2i = 2t, then j < t < j+1. So 2j+2i cannot be written
as 2t for t ∈ N, and therefore a2j+2i leads to a reject state in M as claimed.

2The pigeonhole principle states that if n items are put inside m containers, and n > m, then
there must be at least one container with more than one item. The name pigeonhole principle comes
from thinking of the items as pigeons, and the containers as holes. The pigeonhole principle is
often abbreviated as PHP.

18

Exercise 2.19 (anbncn is not regular).
Let Σ = {a, b, c}. Prove that L = {anbncn : n ∈ N} is not regular.

Exercise 2.20 (c251anb2n is not regular).
Let Σ = {a, b, c}. Prove that L = {c251anb2n : n ∈ N} is not regular.

2.3 Closure Properties of Regular Languages

Exercise 2.21 (Are regular languages closed under complementation?).
Is it true that if L is regular, than its complement Σ∗\L is also regular? In other
words, are regular languages closed under the complementation operation?

Exercise 2.22 (Are regular languages closed under subsets?).
Is it true that if L ⊆ Σ∗ is a regular language, then any L′ ⊆ L is also a regular
language?

Theorem 2.23 (Regular languages are closed under union).
Let Σ be some finite alphabet. If L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then
the language L1 ∪ L2 is also regular.

Proof. Given regular languages L1 and L2, we want to show that L1 ∪ L2 is
regular. Since L1 and L2 are regular languages, by definition, there are DFAs
M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F

′) that recognize L1 and L2 re-
spectively (i.e. L(M) = L1 and L(M ′) = L2). To show L1 ∪ L2 is regular,
we’ll construct a DFA M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′) that recognizes L1 ∪ L2. The
definition of M ′′ will make use of M and M ′. In particular:

• the set of states is Q′′ = Q×Q′ = {(q, q′) : q ∈ Q, q′ ∈ Q′};

• the transition function δ′′ is defined such that for (q, q′) ∈ Q′′ and a ∈ Σ,

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a));

(Note that for w ∈ Σ∗, δ′′((q, q′), w) = (δ(q, w), δ′(q′, w)).)

• the initial state is q′′0 = (q0, q
′
0);

• the set of accepting states is F ′′ = {(q, q′) : q ∈ F or q′ ∈ F ′}.

This completes the definition of M ′′. It remains to show that M ′′ indeed rec-
ognizes the language L1 ∪ L2, i.e. L(M ′′) = L1 ∪ L2. We will first argue that
L1 ∪ L2 ⊆ L(M ′′) and then argue that L(M ′′) ⊆ L1 ∪ L2. Both inclusions will
follow easily from the definition of M ′′ and the definition of a DFA accepting
a string.

L1 ∪ L2 ⊆ L(M ′′): Suppose w ∈ L1 ∪ L2, which means w either belongs
to L1 or it belongs to L2. Our goal is to show that w ∈ L(M ′′). Without loss
of generality, assume w belongs to L1, or in other words, M accepts w (the
argument is essentially identical when w belongs to L2). So we know that
δ(q0, w) ∈ F . By the definition of δ′′, δ′′((q0, q

′
0), w) = (δ(q0, w), δ′(q′0, w)). And

since δ(q0, w) ∈ F , (δ(q0, w), δ′(q′0, w)) ∈ F ′′ (by the definition of F ′′). So w is
accepted by M ′′ as desired.

L(M ′′) ⊆ L1 ∪ L2: Suppose that w ∈ L(M ′′). Our goal is to show that
w ∈ L1 or w ∈ L2. Since w is accepted by M ′′, we know that δ′′((q0, q

′
0), w) =

(δ(q0, w), δ′(q′0, w)) ∈ F ′′. By the definition ofF ′′, this means that either δ(q0, w) ∈
F or δ′(q′0, w) ∈ F ′, i.e., w is accepted by M or M ′. This implies that either
w ∈ L(M) = L1 or w ∈ L(M ′) = L2, as desired.

19

Note 2.24 (On proof write-up).
Observe that the proof of Theorem 2.23 (Regular languages are closed under
union) contains very little information about how one comes up with such a
proof or what is the “right” intuitive interpretation of the construction. Many
proofs in the literature are actually written in this manner, which can be frus-
trating for the reader. We have explained the intuition and the cognitive pro-
cess that goes into discovering the above proof during class. Therefore we
chose not to include any of these details in the above write-up. However, we do
encourage you to include a “proof idea” component in your write-ups when
you believe that the intuition is not very transparent.

Corollary 2.25 (Regular languages are closed under intersection).
Let Σ be some finite alphabet. If L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then
the language L1 ∩ L2 is also regular.

Proof. We want to show that regular languages are closed under the intersec-
tion operation. We know that regular languages are closed under union (The-
orem 2.23 (Regular languages are closed under union)) and closed under com-
plementation (Exercise 2.21 (Are regular languages closed under complementation?)).
The result then follows since A ∩B = A ∪B.

Exercise 2.26 (Direct proof that regular languages are closed under difference).

Give a direct proof (without using the fact that regular languages are closed
under complementation, union and intersection) that if L1 and L2 are regular
languages, then L1\L2 is also regular.

Exercise 2.27 (Finite vs infinite union).

(a) Suppose L1, . . . , Lk are all regular languages. Is it true that their union⋃k
i=0 Li must be a regular language?

(b) Suppose L0, L1, L2, . . . is an infinite sequence of regular languages. Is it
true that their union

⋃
i≥0 Li must be a regular language?

Exercise 2.28 (Union of irregular languages).
Suppose L1 and L2 are not regular languages. Is it always true that L1 ∪ L2 is
not a regular language?

Exercise 2.29 (Regularity of suffixes and prefixes).
Suppose L ⊆ Σ∗ is a regular language. Show that the following languages are
also regular:

SUFFIXES(L) = {x ∈ Σ∗ : yx ∈ L for some y ∈ Σ∗},
PREFIXES(L) = {y ∈ Σ∗ : yx ∈ L for some x ∈ Σ∗}.

Theorem 2.30 (Regular languages are closed under concatenation).
If L1, L2 ⊆ Σ∗ are regular languages, then the language L1L2 is also regular.

20

Proof. Given regular languages L1 and L2, we want to show that L1L2 is regu-
lar. Since L1 and L2 are regular languages, by definition, there are DFAs M =
(Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F

′) that recognize L1 and L2 respec-
tively. To show L1L2 is regular, we’ll construct a DFA M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′)
that recognizes L1L2. The definition of M ′′ will make use of M and M ′.

Before we formally define M ′′, we will introduce a few key concepts and
explain the intuition behind the construction.

We know that w ∈ L1L2 if and only if there is a way to write w as uv where
u ∈ L1 and v ∈ L2. With this in mind, we first introduce the notion of a thread.
Given a word w = w1w2 . . . wn ∈ Σ∗, a thread with respect to w is a sequence of
states

r0, r1, r2, . . . , ri, si+1, si+2, . . . , sn,

where r0, r1, . . . , ri is an accepting computation path of M with respect to
w1w2 . . . wi, 3 and q′0, si+1, si+2, . . . , sn is a computation path (not necessar-
ily accepting) of M ′ with respect to wi+1wi+2 . . . wn. A thread like this cor-
responds to simulating M on w1w2 . . . wi (at which point we require that an
accepting state of M is reached), and then simulating M ′ on wi+1wi+2 . . . wn.
For each way of writing w as uv where u ∈ L1, there is a corresponding thread
for it. Note that w ∈ L1L2 if and only if there is a thread in which sn ∈ F ′. Our
goal is to construct the DFA M ′′ such that it keeps track of all possible threads,
and if one of the threads ends with a state in F ′, then M ′′ accepts.

At first, it might seem like one cannot keep track of all possible threads us-
ing only constant number of states. However this is not the case. Let’s identify a
thread with its sequence of sj ’s (i.e. the sequence of states fromQ′ correspond-
ing to the simulation of M ′). Consider two threads (for the sake of example,
let’s take n = 10):

s3, s4,s5, s6, s7, s8, s9, s10

s′5, s
′
6, s
′
7, s
′
8, s
′
9, s
′
10

If, say, si = s′i = q′ ∈ Q′ for some i, then sj = s′j for all j > i (in particular,
s10 = s′10). At the end, all we care about is whether s10 or s′10 is an accepting
state ofM ′. So at index i, we do not need to remember that there are two copies
of q′; it suffices to keep track of one copy. In general, at any index i, when we
look at all the possible threads, we want to keep track of the unique states that
appear at that index, and not worry about duplicates. Since we do not need
to keep track of duplicated states, what we need to remember is a subset of Q′

(recall that a set cannot have duplicated elements).
The construction of M ′′ we present below keeps track of all the threads

using constant number of states. Indeed, the set of states is4

Q′′ = Q× P(Q′) = {(q, S) : q ∈ Q,S ⊆ Q′},

where the first component keeps track of which state we are at in M , and the
second component keeps track of all the unique states of M ′ that we can be at
if we are following one of the possible threads.

Before we present the formal definition of M ′′, we introduce one more def-
inition. Recall that the transition function of M ′ is δ′ : Q′ × Σ → Q′. Using δ′

we define a new function δ′P : P(Q′)× Σ→ P(Q′) as follows. For S ⊆ Q′ and
a ∈ Σ, δ′P(S, a) is defined to be the set of all possible states that we can end up
at if we start in a state in S and read the symbol a. In other words,

δ′P(S, a) = {δ′(q′, a) : q′ ∈ S}.
3This means r0 = q0, ri ∈ F , and when the symbol wj is read, M transitions from state rj−1

to state rj . See Definition 2.3 (Computation path for a DFA)).
4Recall that for any set Q, the set of all subsets of Q is called the power set of Q, and is denoted

by P(Q).

21

It is appropriate to view δ′P as an extension/generalization of δ′.
Here is the formal definition of M ′′:

• The set of states is Q′′ = Q× P(Q′) = {(q, S) : q ∈ Q,S ⊆ Q′}.
(The first coordinate keeps track of which state we are at in the first ma-
chineM , and the second coordinate keeps track of the set of states we can
be at in the second machine M ′ if we follow one of the possible threads.)

• The transition function δ′′ is defined such that for (q, S) ∈ Q′′ and a ∈ Σ,

δ′′((q, S), a) =

{
(δ(q, a), δ′P(S, a)) if δ(q, a) 6∈ F,
(δ(q, a), δ′P(S, a) ∪ {q′0}) if δ(q, a) ∈ F.

(The first coordinate is updated according to the transition rule of the
first machine. The second coordinate is updated according to the tran-
sition rule of the second machine. Since for the second machine, we are
keeping track of all possible states we could be at, the extended transi-
tion function δ′P gives us all possible states we can go to when reading
a character a. Note that if after applying δ to the first coordinate, we get
a state that is an accepting state of the first machine, a new thread must
be created and kept track of. This is accomplished by adding q′0 to the
second coordinate.)

• The initial state is

q′′0 =

{
(q0, ∅) if q0 6∈ F,
(q0, {q′0}) if q0 ∈ F.

(Initially, if q0 6∈ F , then there are no threads to keep track of, so the sec-
ond coordinate is the empty set. On the other hand, if q0 ∈ F , then there
is already a thread that we need to keep track of – the one corresponding
to running the whole input word w on the second machine – so we add
q′0 to the second coordinate to keep track of this thread.)

• The set of accepting states is F ′′ = {(q, S) : q ∈ Q,S ⊆ Q′, S ∩ F ′ 6= ∅}.
(In other words, M ′′ accepts if and only if there is a state in the second
coordinate that is an accepting state of the second machine M ′. So M ′′

accepts if and only if one of the possible threads ends in an accepting
state of M ′.)

This completes the definition of M ′′.
To see that M ′′ indeed recognizes the language L1L2, i.e. L(M ′′) = L1L2,

note that by construction, M ′′ with input w, does indeed keep track of all the
possible threads. And it accepts w if and only if one of those threads ends in
an accepting state of M ′. The result follows since w ∈ L1L2 if and only if there
is a thread with respect to w that ends in an accepting state of M ′.

22

Quiz

1. Fix some alphabet Σ. How many DFAs are there with exactly one state?

2. Let L ⊆ {a}∗ be a language consisting of all strings of a’s of odd length
except length 15251. Is L regular?

3. Let L be the set of all strings in {0, 1}∗ that contain at least 15251 0’s and
at most 15251 1’s. Is L regular?

4. True or false: Let L1 ⊕ L2 denote the set of all words in either L1 or L2,
but not both. If L1 and L2 are regular, then so is L1 ⊕ L2.

5. True or false: For languages L and L′, if L ⊆ L′ and L is non-regular,
then L′ is non-regular.

6. True or false: If L ⊆ Σ∗ is non-regular, then L = Σ∗\L is non-regular.

23

Hints to Selected Exercises

Exercise 2.13 (Finite languages are regular):
First think about whether languages of size 1 are regular? Are languages of size 2 regular? (The
first part of Exercise (Draw DFAs) might help.) Can you generalize your idea to any finite size
language?

Exercise 2.16 (Equal number of 01’s and 10’s):
Yes, it is.

Exercise 2.21 (Are regular languages closed under complementation?):
The answer is yes. How can you construct a DFA recognizing Σ∗\L given that you have a DFA
recognizing L?

Exercise 2.22 (Are regular languages closed under subsets?):
The answer is no. Find a counter-example.

Exercise 2.27 (Finite vs infinite union):
The answer for the first part is yes, and the second part is no.

Exercise 2.28 (Union of irregular languages):
The answer is no. Find a counter-example.

24

Chapter 3

Turing Machines

25

PREAMBLE

Chapter structure:

• Section 15.1.1 (Basic Definitions)

– Definition 3.1 (Turing machine)

– Definition 3.6 (A TM accepting or rejecting a string)

– Definition 3.9 (Decider Turing machine)

– Definition 3.10 (Language accepted and decided by a TM)

– Definition 3.11 (Decidable language)

– Definition 3.18 (Universal Turing machine)

• Section 3.2 (Decidable Languages)

– Definition 3.22 (Languages related to encodings of DFAs)

– Theorem 3.23 (ACCEPTSDFA and SELF-ACCEPTSDFA are decid-
able)

– Theorem 3.24 (EMPTYDFA is decidable)

– Theorem 3.25 (EQDFA is decidable)

Chapter goals:

In this chapter, our main goal is to introduce the definition of a Turing ma-
chine, which is the standard mathematical model for any kind of computa-
tional device. As such, this definition is very foundational. As we discuss in
lecture, the physical Church-Turing thesis asserts that any kind of physical
device or phenomenon, when viewed as a computational process mapping
input data to output data, can be simulated by some Turing machine. Thus,
rigorously studying Turing machines does not just give us insights about
what our laptops can or cannot do, but also tells us what the universe can
and cannot do computationally.

This chapter kicks things off with examples of decidable languages (i.e.
decision problems that we can compute). Next chapter, we will start ex-
ploring the limitations of computation. Some of the examples we cover in
this chapter will serve as a warm up to other examples we will discuss in
the next chapter in the context of uncomputability.

26

3.1 Basic Definitions

Definition 3.1 (Turing machine).
A Turing machine (TM) M is a 7-tuple

M = (Q,Σ,Γ, δ, q0, qaccept, qreject),

where

• Q is a non-empty finite set
(which we refer to as the set of states);

• Σ is a non-empty finite set that does not contain the blank symbol t
(which we refer to as the input alphabet);

• Γ is a finite set such that t ∈ Γ and Σ ⊂ Γ
(which we refer to as the tape alphabet);

• δ is a function of the form δ : Q× Γ→ Q× Γ× {L,R}
(which we refer to as the transition function);

• q0 ∈ Q is an element of Q
(which we refer to as the initial state or starting state);

• qacc ∈ Q is an element of Q
(which we refer to as the accepting state);

• qrej ∈ Q is an element of Q such that qrej 6= qacc
(which we refer to as the rejecting state).

Example 3.2 (A 5-state TM).
Below is an example of how we draw a TM:

In this example, Σ = {a, b}, Γ = {a, b,t}, Q = {q0, qa, qb, qacc, qrej}. The labeled
arrows between the states encode the transition function δ. As an example, the
arrow from state q0 to qa represents δ(q0, a) = (qa,t,R). The above picture is
called the state diagram of the Turing machine.

Note 3.3 (Equivalence of Turing machines).
We’ll consider two Turing machines to be equivalent/same if they are the same
machine up to renaming the elements of the sets Q, Σ and Γ.

27

Note 3.4 (No transition out of accepting and rejecting states).
In the transition function δ of a TM, we don’t really care about how we define
the output of δ when the input state is qacc or qrej because once the computation
reaches one of these states, it stops. We explain this below in Definition 3.6 (A
TM accepting or rejecting a string).

IMPORTANT 3.5 (A Turing machine uses a tape).
A Turing Machine is always accompanied by a tape that is used as memory.
The tape is just a sequence of cells that can hold any symbol from the tape
alphabet. The tape can be defined so that it is infinite in two directions (so we
could imagine indexing the cells using the integers Z), or it could be infinite
in one direction, to the right (so we could imagine indexing the cells using the
natural numbersN). Initially, an input w1 . . . wn ∈ Σ∗ is put on the tape so that
symbol wi is placed on the cell with index i− 1. In these notes, we assume our
tape is infinite in two directions.

Definition 3.6 (A TM accepting or rejecting a string).
Let M be a Turing machine where Q is the set of states, t is the blank symbol,
and Γ is the tape alphabet.1 To understand howM ’s computation proceeds we
generally need to keep track of three things: (i) the state M is in; (ii) the con-
tents of the tape; (iii) where the tape head is. These three things are collectively
known as the “configuration” of the TM. More formally: a configuration for M
is defined to be a string uqv ∈ (Γ∪Q)∗, where u, v ∈ Γ∗ and q ∈ Q. This repre-
sents that the tape has contents · · ·tttuvttt· · · , the head is pointing at the
leftmost symbol of v, and the state is q. We say the configuration is accepting if
q is M ’s accept state and that it’s rejecting if q is M ’s reject state.2

Suppose that M reaches a certain configuration α (which is not accepting
or rejecting). Knowing just this configuration and M ’s transition function δ,
one can determine the configuration β that M will reach at the next step of the
computation. (As an exercise, make this statement precise.) We write

α `M β

and say that “α yields β (in M)”. If it’s obvious what M we’re talking about,
we drop the subscript M and just write α ` β.

Given an input x ∈ Σ∗ we say that M(x) halts if there exists a sequence of
configurations (called the computation trace) α0, α1, . . . , αT such that:

(i) α0 = q0x, where q0 is M ’s initial state;

(ii) αt `M αt+1 for all t = 0, 1, 2, . . . , T − 1;

(iii) αT is either an accepting configuration (in which case we say M(x) ac-
cepts) or a rejecting configuration (in which case we say M(x) rejects).

Otherwise, we say M(x) loops.

IMPORTANT 3.7 (Turing machines can loop forever).
Given any DFA and any input string, the DFA always halts and makes a de-
cision to either reject or accept the string. The same is not true for Turing ma-
chines. It is possible that a Turing machine does not make a decision when
given an input string, and instead, loops forever. So given a TM M and an
input string x, there are 3 options when we run M on x:

1Supernerd note: we will always assume Q and Γ are disjoint sets.
2There are some technicalities: The string u cannot start with t and the string v cannot end

with t. This is so that the configuration is always unique. Also, if v = ε it means the head is
pointing at the t immediately to the right of u.

28

• M accepts x;

• M rejects x;

• M loops forever.

This is an important distinction between DFAs and TMs.

Exercise 3.8 (Practice with configurations).

(a) Suppose M = (Q,Σ,Γ, δ, q0, qaccept, qreject) is a Turing machine. We want
you to formally define α `M β. More precisely, suppose α = uqv, where
q ∈ Q \ {qaccept, qreject}. Precisely describe β.

(b) Let M denote the Turing machine shown below, which has input alpha-
bet Σ = {0} and tape alphabet Γ = {0, x,t}. (Note on notation: A tran-
sition label usually has two symbols, one corresponding to the symbol
being read, and the other corresponding to the symbol being written. If
a transition label has one symbol, the interpretation is that the symbol
being read and written is exactly the same.)

q0 q1 q2

q3
qaccqrej

q4

t → R

x→ R t → R

t → R

0→ t, R 0→ x,R

x→ R

t → R

0→ L, x→ L

0→ R 0→ x,R

x→ R

t → L

x→ R

We want you to prove that M accepts the input 0000 using the defini-
tion on the previous page. More precisely, we want you to write out the
computation trace

α0 `M α1 `M · · · `M αT

for M(0000). You do not have to justify it; just make sure to get T and
α0, . . . , αT correct!

Definition 3.9 (Decider Turing machine).
A Turing machine is called a decider if it halts on all inputs.

29

Definition 3.10 (Language accepted and decided by a TM).
LetM be a Turing machine (not necessarily a decider). We denote by L(M) the
set of all strings that M accepts, and we call L(M) the language accepted by M .
When M is a decider, we say that M decides the language L(M).

Definition 3.11 (Decidable language).
A language L is called decidable (or computable) if L = L(M) for some decider
Turing machine M .

Exercise 3.12 (A simple decidable language).
Give a description of the language decided by the TM shown in the example
corresponding to Definition 3.1 (Turing machine).

Exercise 3.13 (Drawing TM state diagrams).
For each language below, draw the state diagram of a TM that decides the
language. You can use any finite tape alphabet Γ containing the elements of Σ
and the symbol t.

(a) L = {0n1n : n ∈ N}, where Σ = {0, 1}.

(b) L = {0n : n is a nonnegative integer power of 2}, where Σ = {0}.

IMPORTANT 3.14 (The Church-Turing Thesis).
The Church-Turing Thesis (CTT)3 states that any computation that can be con-
ducted in this universe (constrained by the laws of physics of course), can be
carried out by a TM. There are a couple of important things to highlight. First,
CTT says nothing about the efficiency of the simulation.4 Second, CTT is not
a mathematical statement, but a physical claim about the universe we live in
(similar to claiming that the speed of light is constant). The implications of
CTT is far-reaching. For example, CTT claims that any computation that can
be carried out by a human can be carried out by a TM. Other implications are
discussed in lecture.

Note 3.15 (Low-level, medium-level, high-level descriptions of TMs).
A low-level description of a TM is given by specifying the 7-tuple in its defini-
tion. This information is often presented using a picture of its state diagram.
A medium-level description includes an English description of the movement
and behavior of the tape head, as well as how the contents of the tape is chang-
ing, as the computation is being carried out. A high-level description is pseu-
docode or an algorithm written in English. Usually, an algorithm is written in
a way so that a human could read it, understand it, and carry out its steps. By
CTT, there is a TM that can carry out the same computation. Unless explicitly
stated otherwise, you can present a TM using a high-level description.

3The statement we are using here is often called the Physical Church-Turing Thesis and is more
general than the original Church-Turing Thesis. In the original Church-Turing Thesis, computa-
tion is considered to correspond to a human following step-by-step instructions.

4As an example, quantum computers can be simulated by TMs, but in certain cases, we believe
that the simulation can be exponentially slower.

30

Note 3.16 (Encodings of machines).
In Chapter 1 we saw that we can use the notation 〈·〉 to denote an encoding
of objects belonging to any countable set. For example, if D is a DFA, we can
write 〈D〉 to denote the encoding of D as a string. If M is a TM, we can write
〈M〉 to denote the encoding of M . There are many ways one can encode DFAs
and TMs. We will not be describing a specific encoding scheme as this detail
will not be important for us.5

Recall that when we want to encode a tuple of objects, we use the comma
sign. For example, if M1 and M2 are two Turing machines, we write 〈M1,M2〉
to denote the encoding of the tuple (M1,M2). As another example, if M is a
TM and x ∈ Σ∗, we can write 〈M,x〉 to denote the encoding of the tuple (M,x).

IMPORTANT 3.17 (Code is data).
The fact that we can encode different types of objects with strings has the corol-
lary that a Turing machine, or any piece of code, can be viewed as a string, and
therefore as data. This means code can take as input other code (in fact, code
can take itself as the input). This point of view has several important impli-
cations, one of which is the fact that we can come up with a Turing machine,
which given as input the description of any Turing machine, can simulate it.
This simulator Turing machine is called a universal Turing machine.

Definition 3.18 (Universal Turing machine).
Let Σ be some finite alphabet. A universal Turing machine U is a Turing machine
that takes 〈M,x〉 as input, where M is a TM and x is a word in Σ∗, and has the
following high-level description:

M : Turing machine. x: string in Σ∗.
U(〈M,x〉):

1 Simulate M on input x (i.e. run M(x)).
2 If it accepts, accept.
3 If it rejects, reject.

Note that if M(x) loops forever, then U loops forever as well. To make sure
M always halts, we can add a third input, an integer k, and have the universal
machine simulate the input TM for at most k steps.

IMPORTANT 3.19 (Checking the input type).
When we give a high-level description of a TM, we often assume that the input
given is of the correct form/type. For example, with the Universal TM above,
we assumed that the input was the encoding 〈M,x〉where M is a TM and x is
an input string for M . But technically, the input to the universal TM could be
any finite-length string. What do we do if the input string does not correspond
to a valid encoding of an expected type of input object?

Even though this is not explicitly written, we will implicitly assume that
the first thing our machine does is check whether the input is a valid encoding
of an object with the expected type. If it is not, the machine rejects. If it is, then
it will carry on with the specified instructions.

The important thing to keep in mind is that in our descriptions of Turing
machines, this step of checking whether the input string has the correct form
(i.e. that it is a valid encoding) will never be explicitly written, and we don’t
expect you to explicitly write it either. That being said, be aware that this check
is implicitly there.

5As an example, if P is some Python program, we can take 〈P 〉 to be the string that represents
the source code of the program. A DFA or a TM can also be viewed as a piece of code (as discussed
in lecture). So we could define an encoded DFA or TM to be the string that represents that code.

31

3.2 Decidable Languages

Exercise 3.20 (Decidability is closed under intersection and union).
Let L and K be decidable languages. Show that L ∩ K and L ∪ K are also
decidable by presenting high-level descriptions of TMs deciding them.

Exercise 3.21 (Decidable language based on pi).
Let L ⊆ {3}∗ be defined as follows: x ∈ L if and only if x appears somewhere
in the decimal expansion of π. For example, the strings ε, 3, and 33 are all
definitely in L, because

π = 3.1415926535897932384626433 . . .

Prove that L is decidable. No knowledge in number theory is required to solve
this question.

Definition 3.22 (Languages related to encodings of DFAs).
Fix some alphabet Σ. We define the following languages:

ACCEPTSDFA = {〈D,x〉 : D is a DFA that accepts the string x},
SELF-ACCEPTSDFA = {〈D〉 : D is a DFA that accepts the string 〈D〉},

EMPTYDFA = {〈D〉 : D is a DFA with L(D) = ∅},
EQDFA = {〈D1, D2〉 : D1 and D2 are DFAs with L(D1) = L(D2)}.

Theorem 3.23 (ACCEPTSDFA and SELF-ACCEPTSDFA are decidable).
The languages ACCEPTSDFA and SELF-ACCEPTSDFA are decidable.

Proof. Our goal is to show that ACCEPTSDFA and SELF-ACCEPTSDFA are
decidable languages. To show that these languages are decidable, we will give
high-level descriptions of TMs deciding them.

For ACCEPTSDFA, the decider is essentially the same as a universal TM:

D: DFA. x: string.
M(〈D,x〉):

1 Simulate D on input x (i.e. run D(x)).
2 If it accepts, accept.
3 If it rejects, reject.

It is clear that this correctly decides ACCEPTSDFA.
For SELF-ACCEPTSDFA, we just need to slightly modify the above ma-

chine:

D: DFA.
M(〈D〉):

1 Simulate D on input 〈D〉 (i.e. run D(〈D〉)).
2 If it accepts, accept.
3 If it rejects, reject.

Again, it is clear that this correctly decides SELF-ACCEPTSDFA.

32

Theorem 3.24 (EMPTYDFA is decidable).
The language EMPTYDFA is decidable.

Proof. Our goal is to show EMPTYDFA is decidable and we will do so by con-
structing a decider for EMPTYDFA.

A decider for EMPTYDFA takes as input 〈D〉 for some DFAD = (Q,Σ, δ, q0, F),
and needs to determine if L(D) = ∅. In other words, it needs to determine if
there is any string that D accepts. If we view the DFA as a directed graph,6

then notice that the DFA accepts some string if and only if there is a directed
path from q0 to some state in F . Therefore, the following decider decides
EMPTYDFA correctly.

D: DFA.
M(〈D〉):

1 Build a directed graph from 〈D〉.
2 Run a graph search algorithm starting from the starting

state of D.
3 If a node corresponding to an accepting state is reached,

reject.
4 Else, accept.

Theorem 3.25 (EQDFA is decidable).
The language EQDFA is decidable.

Proof. Our goal is to show that EQDFA is decidable. We will do so by construct-
ing a decider for EQDFA.

Our argument is going to use the fact that EMPTYDFA is decidable (The-
orem 3.24 (EMPTYDFA is decidable)). In particular, the decider we present for
EQDFA will use the decider for EMPTYDFA as a subroutine. Let M denote a
decider TM for EMPTYDFA.

A decider for EQDFA takes as input 〈D1, D2〉, where D1 and D2 are DFAs.
It needs to determine if L(D1) = L(D2) (i.e. accept if L(D1) = L(D2) and reject
otherwise). We can determine if L(D1) = L(D2) by looking at their symmetric
difference7

(L(D1) ∩ L(D2)) ∪ (L(D1) ∩ L(D2)).

Note that L(D1) = L(D2) if and only if the symmetric difference is empty. Our
decider for EQDFA will construct a DFAD such that L(D) = (L(D1)∩L(D2))∪
(L(D1) ∩ L(D2)), and then run M(〈D〉) to determine if L(D) = ∅. This then
tells us if L(D1) = L(D2).

To give a bit more detail, observe that given D1 and D2, we can

• construct DFAsD1 andD2 that accept L(D1) and L(D2) respectively (see
Exercise 2.21 (Are regular languages closed under complementation?));

• construct a DFA that accepts L(D1) ∩ L(D2) by using the (constructive)
proof that regular languages are closed under the intersection operation;8

6Even though we have not formally defined the notion of a graph yet, we do assume you are
familiar with the concept from a prerequisite course and that you have seen some simple graph
search algorithms like Breadth-First Search or Depth-First Search.

7The symmetric difference of sets A and B is the set of all elements that belong to either A or
B, but not both. In set notation, it corresponds to (A ∩B) ∪ (A ∩B).

8The constructive proof gives us a way to construct the DFA accepting L(D1) ∩ L(D2) given
D1 and D2.

33

• construct a DFA that accepts L(D1) ∩ L(D2) by using the proof that reg-
ular languages are closed under the intersection operation;

• construct a DFA, call itD, that accepts (L(D1)∩L(D2))∪(L(D1)∩L(D2))
by using the constructive proof that regular languages are closed under
the union operation.

The decider for EQDFA is as follows.

D1: DFA. D2: DFA.
M ′(〈D1, D2〉):

1 Construct DFA D as described above.
2 Run M(〈D〉).
3 If it accepts, accept.
4 If it rejects, reject.

By our discussion above, the decider works correctly.

IMPORTANT 3.26 (Decidability through reductions).
Suppose L andK are two languages andK is decidable. We say that solving L
reduces to solvingK if given a deciderMK forK, we can construct a decider for
L that uses MK as a subroutine, thereby establishing L is also decidable. For
example, the proof of Theorem 3.25 (EQDFA is decidable) shows that solving
EQDFA reduces to solving EMPTYDFA. Reduction is a powerful tool to expand
the landscape of decidable languages.

Exercise 3.27 (Practice with decidability through reductions).

(a) Let L = {〈D1, D2〉 : D1 and D2 are DFAs with L(D1) (L(D2)}.9 Show
that L is decidable.

(b) LetK = {〈D〉 : D is a DFA that accepts wR whenever it accepts w}, where
wR denotes the reversal of w. Show that K is decidable. For this question,
you can use the fact given a DFA D, there is an algorithm to construct a
DFA D′ such that L(D′) = L(D)R = {wR : w ∈ L(D)}.

9Note on notation: for sets A and B, we write A (B if A ⊆ B and A 6= B.

34

Quiz

1. True or false: A TM can have an infinite number of states.

2. True or false: It is possible that in the definition of a TM, Σ = Γ, where Σ
is the input alphabet, and Γ is the tape alphabet.

3. True or false: On every input, any TM either accepts or rejects.

4. True or false: Consider a TM such that the starting state q0 is also the
accepting state qaccept. It is possible that this TM does not halt on some
inputs.

5. Is the following statement true, false, or hard to determine with the knowl-
edge we have so far? ∅ is decidable.

6. Is the following statement true, false, or hard to determine with the knowl-
edge we have so far? Σ∗ is decidable.

7. True or false: L ⊆ Σ∗ is undecidable if and only if Σ∗\L is undecidable.

8. Is the following statement true, false, or hard to determine with the knowl-
edge we have so far? The language {〈M〉 : M is a TM with L(M) = ∅} is
decidable.

35

Hints to Selected Exercises

Exercise 3.21 (Decidable language based on pi):
Case on the different possibilities that L could be. For example, one option is that L = {3}∗, but
there are other options too. Show that in all cases L is decidable.

Exercise 3.27 (Practice with decidability through reductions):
Part (a): You may want to use a decider for EMPTYDFA and a decider for EQDFA.
Part (b): You may want to use a decider for EQDFA together with the given fact in the descrip-
tion of the problem (i.e. given any DFA D, there is an algorithm to construct DFA D′ such that
L(D′) = L(D)R).

36

Chapter 4

Countable and Uncountable Sets

37

PREAMBLE

Chapter structure:

• Section 15.1.1 (Basic Definitions)

– Definition 4.1 (Injection, surjection, and bijection)

– Theorem 4.2 (Relationships between different types of functions)

– Definition 4.4 (Comparison of cardinality of sets)

– Definition 4.6 (Countable and uncountable sets)

– Theorem 4.7 (Characterization of countably infinite sets)

• Section 4.2 (Countable Sets)

– Proposition 4.10 (Z× Z is countable)

– Proposition 4.11 (Q is countable)

– Proposition 4.12 (Σ∗ is countable)

– Proposition 4.14 (The set of Turing machines is countable)

– Proposition 4.15 (The set of polynomials with rational coefficients
is countable)

• Section 4.3 (Uncountable Sets)

– Theorem 4.17 (Cantor’s Theorem)

– Corollary 4.18 (P(N) is uncountable)

– Corollary 4.19 (The set of languages is uncountable)

– Definition 4.20 (Σ∞)

– Theorem 4.21 ({0, 1}∞ is uncountable)

Chapter goals:

In this chapter, we would like to remind you the concepts of countable and
uncountable sets, as well as the general techniques involved in countability
and uncountability proofs. Even though it may seem like we are diverging
from the main discussion on Turing machines and decidability, we’ll see in
the next chapter that the concepts in this chapter are intimately related to
the concepts of decidability and undecidability. Countable and uncount-
able sets, together with the diagonalization proof technique for showing a
set is uncountable, have major applications in proving the limits of compu-
tation.

38

4.1 Basic Definitions

Definition 4.1 (Injection, surjection, and bijection).
Let A and B be two (possibly infinite) sets.

• A function f : A → B is called injective if for any a, a′ ∈ A such that
a 6= a′, we have f(a) 6= f(a′). We write A ↪→ B if there exists an injective
function from A to B.

• A function f : A → B is called surjective if for all b ∈ B, there exists an
a ∈ A such that f(a) = b. We write A � B if there exists a surjective
function from A to B.

• A function f : A → B is called bijective (or one-to-one correspondence) if it
is both injective and surjective. We write A↔ B if there exists a bijective
function from A to B.

Theorem 4.2 (Relationships between different types of functions).
Let A,B and C be three (possibly infinite) sets. Then,

(a) A ↪→ B if and only if B � A;

(b) if A ↪→ B and B ↪→ C, then A ↪→ C;

(c) A↔ B if and only if A ↪→ B and B ↪→ A.

Exercise 4.3 (Exercise with injections and surjections).
Prove parts (a) and (b) of the above theorem.

Definition 4.4 (Comparison of cardinality of sets).
Let A and B be two (possibly infinite) sets.

• We write |A| = |B| if A↔ B.

• We write |A| ≤ |B| if A ↪→ B, or equivalently, if B � A.1

• We write |A| < |B| if it is not the case that |A| ≥ |B|.2

Note 4.5 (Sanity checks for comparing cardinality of sets).
Theorem 4.2 (Relationships between different types of functions) justifies the
use of the notation =, ≤, ≥, < and >. The properties we would expect to hold
for this type of notation indeed do hold. For example, |A| ≤ |B| and |B| ≤ |A|
if and only if |A| = |B|. If |A| ≤ |B| ≤ |C|, then |A| ≤ |C|. If |A| ≤ |B| < |C|,
then |A| < |C|, and so on.

Definition 4.6 (Countable and uncountable sets).

• A set A is called countable if |A| ≤ |N|.

• A set A is called countably infinite if it is countable and infinite.

• A set A is called uncountable if it is not countable, i.e. |A| > |N|.
1Even though not explicitly stated, |B| ≥ |A| has the same meaning as |A| ≤ |B|.
2Similar to above, |B| > |A| has the same meaning as |A| < |B|.

39

Theorem 4.7 (Characterization of countably infinite sets).
A set A is countably infinite if and only if |A| = |N|.

Exercise 4.8 (Proof of the characterization of countably infinite sets).
Prove the above theorem.

Note 4.9 (Only two options for countable sets).
The above theorem implies that if A is countable, there are two options: either
A is finite, or |A| = |N|.

4.2 Countable Sets

Proposition 4.10 (Z× Z is countable).
The set Z× Z is countable.

Proof. We want to show that Z×Z is countable. We will do so by listing all the
elements of Z× Z such that every element eventually appears in the list. This
implies that there is a surjective function f from N to Z × Z: f(i) is defined
to be the i’th element in the list. Since there is a surjection from N to Z × Z,
|Z× Z| ≤ |N|, and Z× Z is countable.3

We now describe how to list the elements of Z × Z. Consider the plot of
Z × Z on a 2-dimensional grid. Starting at (0, 0) we list the elements of Z × Z
using a spiral shape, as shown below.

(The picture shows only a small part of the spiral.) Since we have a way to list
all the elements such that every element eventually appears in the list, we are
done.

Proposition 4.11 (Q is countable).
The set of rational numbersQ is countable.

3Note that it is not a requirement that we give an explicit formula for f(i). In fact, sometimes
in such proofs, an explicit formula may not exist. This does not make the proof any less rigorous.

Also note that this proof highlights the fact that the notion of countable is equivalent to the
notion of listable, which can be informally defined as the ability to list the elements of the set so
that every element eventually appears in the list.

40

Proof. We want to show Q is countable. We will make use of the previous
proposition to establish this. In particular, every element of Q can be written
as a fraction a/b where a, b ∈ Z. In other words, there is a surjection from
Z×Z toQ that maps (a, b) to a/b (if b = 0, map (a, b) to say 0). This shows that
|Q| ≤ |Z×Z|. Since Z×Z is countable, i.e. |Z×Z| ≤ |N|,Q is also countable,
i.e. |Q| ≤ |N|.

Proposition 4.12 (Σ∗ is countable).
Let Σ be a finite set. Then Σ∗ is countable.

Proof. Recall that Σ∗ denotes the set of all words/strings over the alphabet Σ
with finitely many symbols. We want to show Σ∗ is countable. We will do so
by presenting a way to list all the elements of Σ∗ such that eventually all the
elements appear in the list.

For each n = 0, 1, 2, . . ., let Σn denote the set of words in Σ∗ that have length
exactly n. Note that Σn is a finite set for each n, and Σ∗ is a union of these sets:
Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · . This gives us a way to list the elements of Σ∗ so that
any element of Σ∗ eventually appears in the list. First list the elements of Σ0,
then list the elements of Σ1, then list the elements of Σ2, and so on. This way
of listing the elements gives us a surjective function f from N to Σ∗: f(i) is
defined to be the i’th element in the list. Since there is a surjection from N to
Σ∗, |Σ∗| ≤ |N|, and Σ∗ is countable.

IMPORTANT 4.13 (The CS method of showing countability).
One of the most powerful techniques for showing that a set A is countable is
to show that A is encodable (i.e., there is an injective function Enc : A → Σ∗

for some finite alphabet Σ). This is because if A is encodable, then |A| ≤ |Σ∗| ≤
|N|. So if the set A is such that you can “write down” each element of A using
a finite number of symbols, then A is countable. We call this method the “CS
method” of showing countability.

Proposition 4.14 (The set of Turing machines is countable).
The set of all Turing machines {M : M is a TM} is countable.

Proof. Let T = {M : M is a TM}. We want to show that T is countable. We
will do so by using the CS method of showing a set is countable.

Given any Turing machine, there is a way to encode it with a finite length
string because each component of the 7-tuple has a finite description. In par-
ticular, the mapping M 7→ 〈M〉, where 〈M〉 ∈ Σ∗, for some finite alphabet Σ, is
an injective map (two distinct Turing machines cannot have the same encod-
ing). Therefore |T | ≤ |Σ∗|. And since Σ∗ is countable (Proposition 4.12 (Σ∗ is
countable)), i.e., |Σ∗| ≤ |N|, the result follows.

Proposition 4.15 (The set of polynomials with rational coefficients is count-
able).
The set of all polynomials in one variable with rational coefficients is countable.

Proof. Let Q[x] denote the set of all polynomials in one variable with rational
coefficients. We want to show that Q[x] is countable and we will do so using
the CS method. Let

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, /, x}.

41

Then observe that every element of Q[x] can be written as a string over this
alphabet. For example,

2x3 - 1/34x2 + 99/100x1 + 22/7

represents the polynomial

2x3 − 1/34x2 + 99/100x+ 22/7.

This implies that there is a surjective map from Σ∗ to Q[x]. And therefore
|Q[x]| ≤ |Σ∗|. Since Σ∗ is countable, i.e. |Σ∗| ≤ |N|,Q[x] is also countable.

Exercise 4.16 (Practice with countability proofs).
Show that the following sets are countable.

(a) Z× Z× Z.

(b) The set of all functions f : A→ N, where A is a finite set.

4.3 Uncountable Sets

Theorem 4.17 (Cantor’s Theorem).
For any set A, |P(A)| > |A|.

Proof. We want to show that for any (possibly infinite) setA, we have |P(A)| >
|A|. The proof that we present here is called the diagonalization argument. The
proof is by contradiction. So assume that there is some setA such that |P(A)| ≤
|A|. By definition, this means that there is a surjective function fromA to P(A).
Let f : A → P(A) be such a surjection. So for any S ∈ P(A), there exists an
s ∈ A such that f(s) = S. Now consider the set

S = {a ∈ A : a 6∈ f(a)}.

Since S is a subset of A, S ∈ P(A). So there is an s ∈ A such that f(s) = S. But
then if s 6∈ S, by the definition of S, s is in f(s) = S, which is a contradiction.
If s ∈ S, then by the definition of S, s is not in f(s) = S, which is also a
contradiction. So either way, we get a contradiction, as desired.

Corollary 4.18 (P(N) is uncountable).
The set P(N) is uncountable.

Corollary 4.19 (The set of languages is uncountable).
Let Σ be a finite set with |Σ| > 0. Then P(Σ∗) is uncountable.

Proof. We want to show that P(Σ∗) is uncountable, where Σ is a non-empty
finite set. For such a Σ, note that Σ∗ is a countably infinite set (Proposition 4.12
(Σ∗ is countable)). So by Theorem 4.7 (Characterization of countably infinite
sets), we know |Σ∗| = |N|. Theorem 4.17 (Cantor’s Theorem) implies that
|Σ∗| < |P(Σ∗)|. So we have |N| = |Σ∗| < |P(Σ∗)|, which shows, by the defini-
tion of uncountable sets, that P(Σ∗) is uncountable.

42

Definition 4.20 (Σ∞).
Let Σ be some finite alphabet. We denote by Σ∞ the set of all infinite length
words over the alphabet Σ. Note that Σ∗ ∩ Σ∞ = ∅.

Theorem 4.21 ({0, 1}∞ is uncountable).
The set {0, 1}∞ is uncountable.

Proof. Our goal is to show that {0, 1}∞ is uncountable. One can prove this
simply by observing that {0, 1}∞ ↔ P(N), and using Corollary 4.18 (P(N) is
uncountable). Here, we will give a direct proof using a diagonalization argu-
ment. The proof is by contradiction, so assume that {0, 1}∞ is countable. By
definition, this means that |{0, 1}∞| ≤ |N|, i.e. there is a surjective map f from
N to {0, 1}∞. Consider the table in which the i’th row corresponds to f(i).
Below is an example.

(The elements in the diagonal are highlighted.) Using f , we construct an
element a of {0, 1}∞ as follows. If the i’th symbol of f(i) is 1, then the i’th
symbol of a is defined to be 0. And if the i’th symbol of f(i) is 0, then the
i’th symbol of a is defined to be 1. Notice that the i’th symbol of f(i), for
i = 1, 2, 3, . . . corresponds to the diagonal elements in the above table. So we
are creating this element a of {0, 1}∞ by taking the diagonal elements, and
flipping their value.

Now notice that the way a is constructed implies that it cannot appear as
a row in this table. This is because a differs from f(1) in the first symbol, it
differs from f(2) in the second symbol, it differs from f(3) in the third symbol,
and so on. So it differs from every row of the table and hence cannot appear
as a row in the table. This leads to the desired contradiction because f is a
surjective function, which means every element of {0, 1}∞, including a, must
appear in the table.

Exercise 4.22 (Uncountable sets are closed under supersets).
Prove that if A is uncountable and A ⊆ B, then B is also uncountable.

IMPORTANT 4.23 (Uncountability through {0, 1}∞).
One of the most powerful techniques for showing that a set A is uncountable
is to show that |A| ≥ |{0, 1}∞|, i.e. there is a surjection from A to {0, 1}∞, or
equivalently, there is an injection from {0, 1}∞ toA. One strategy for establish-
ing this is to identify a subset of A that is in one-to-one correspondence with
{0, 1}∞.

43

Exercise 4.24 (Practice with uncountability proofs).
Show that the following sets are uncountable.

(a) The set of all bijective functions fromN toN.

(b) {x1x2x3 . . . ∈ {1, 2}∞ : for all n ≥ 1,
∑n

i=1 xi 6≡ 0 mod 4}

44

Quiz

1. True or false: {0, 1}∗ ∩ {0, 1}∞ = ∅.

2. True of false: |{0, 1, 2}∗| = |Q×Q|.

3. True of false: |P({0, 1}∞)| = |P(P({0, 1}∞))|.

4. True of false: The set of all non-regular languages is countable.

5. True or false: There is a surjection from {0, 1}∞ to {0, 1, 2, 3}∞.

45

Hints to Selected Exercises

Exercise 4.8 (Proof of the characterization of countably infinite sets):
One of the directions should be relatively straightforward. For the other direction, given A which
is countable and infinite, try to find a way to order the elements of A. Then the bijection with N
can be: n maps to the n’th element of A in the defined order.

Exercise 4.16 (Practice with countability proofs):
Use the CS method for both parts.

Exercise 4.24 (Practice with uncountability proofs):
In both cases, try to identify a subset of the set that is in one-to-one correspondence with {0, 1}∞.

46

Chapter 5

Undecidable Languages

47

PREAMBLE

Chapter structure:

• Section 5.1 (Existence of Undecidable Languages)

– Theorem 5.1 (Almost all languages are undecidable)

• Section 5.2 (Examples of Undecidable Languages)

– Definition 5.3 (Halting problem)

– Theorem 5.4 (Turing’s Theorem)

– Definition 5.6 (Languages related to encodings of TMs)

– Theorem 5.7 (ACCEPTS is undecidable)

– Theorem 5.8 (EMPTY is undecidable)

– Theorem 5.9 (EQ is undecidable)

• Section 5.3 (Undecidability Proofs by Reductions)

– Theorem 5.14 (HALTS ≤ EMPTY)

– Theorem 5.15 (EMPTY ≤ HALTS)

Chapter goals:

In this chapter, we formally prove that almost all languages are undecid-
able using the countability and uncountability concepts from the previous
chapter. We also present (with proofs) several explicit examples of unde-
cidable languages. By the Church-Turing Thesis, these results highlight the
inherint limitations of computation.

An important tool in showing that a language is undecidable is the con-
cept of a reduction. We present this technique in this chapter. Reductions
play an extremely important role in computer science. In fact, we will re-
visit them in a future chapter (in the context of the famous P vs NP prob-
lem.)

Our gaol in this chapter is for you to get comfortable with undecidability
proofs and the concept of reductions, as they are at the core of the study of
computation.

48

5.1 Existence of Undecidable Languages

Theorem 5.1 (Almost all languages are undecidable).
Fix some alphabet Σ. There are languages L ⊆ Σ∗ that are not decidable.

Proof. To prove the result, we simply observe that the set of all languages is
uncountable whereas the set of decidable languages is countable. First, con-
sider the set of all languages. Since a language L is defined to be a subset of
Σ∗, the set of all languages is P(Σ∗). By Corollary 4.19 (The set of languages
is uncountable), we know that this set is uncountable. Now consider the set
of all decidable languages, which we’ll denote by D. Let T be the set of all
TMs. By Proposition 4.14 (The set of Turing machines is countable), we know
that T is countable. Furthermore, the mapping M 7→ L(M) can be viewed as
a surjection from T to D (if M is not a decider, just map it to ∅). So |D| ≤ |T |.
Since T is countable, this shows D is countable and completes the proof.

Note 5.2 (Constructive vs non-constructive proofs).
The argument above is called non-constructive because it does not present an
explicit undecidable language. A constructive argument would prove the un-
decidability of an explicit language. We present such an argument below (The-
orem 5.4 (Turing’s Theorem)).

5.2 Examples of Undecidable Languages

Definition 5.3 (Halting problem).
The halting problem is defined as the decision problem corresponding to the
language HALTS = {〈M,x〉 : M is a TM which halts on input x}.

Theorem 5.4 (Turing’s Theorem).
The language HALTS is undecidable.

Proof. Our goal is to show that HALTS is undecidable. The proof is by con-
tradiction, so assume that HALTS is decidable. By definition, this means that
there is a decider TM, call it MHALTS, that decides HALTS. We construct a new
TM, which we’ll call MTURING, that uses MHALTS as a subroutine. The descrip-
tion of MTURING is as follows:

M : TM.
MTURING(〈M〉):

1 Run MHALTS(〈M,M〉).
2 If it accepts, go into an infinite loop.
3 If it rejects, accept.

We get the desired contradiction once we consider what happens when we
feed MTURING as input to itself, i.e. when we run MTURING(〈MTURING〉).

If MHALTS(〈MTURING,MTURING〉) accepts, then MTURING(〈MTURING〉) is sup-
posed to halt by the definition of MHALTS. However, from the description of
MTURING above, we see that it goes into an infinite loop. This is a contra-
diction. The other option is that MHALTS(〈MTURING,MTURING〉) rejects. Then
MTURING(〈MTURING〉) is supposed to lead to an infinite loop. But from the de-
scription of MTURING above, we see that it accepts, and therefore halts. This is
a contradiction as well.

49

Note 5.5 (Diagonalization argument for undecidability).
The above proof is called a diagonalization argument as it is very similar to the
proof of Cantor’s theorem (Theorem 4.17 (Cantor’s Theorem)). As in the proof
of Theorem 4.21 ({0, 1}∞ is uncountable), we can present the above proof using
a table and flipping its diagonal elements to get the desired contradiction. We
do so below.

Reproof: The proof is by contradiction, so assume that HALTS is decidable.
By definition, this means that there is a decider TM, call itMHALTS, that decides
HALTS.

The set of all Turing machines is countable (Proposition 4.14 (The set of Tur-
ing machines is countable)). Let M1,M2, . . . be a listing of all Turing machines
in some arbitrary order. We now consider a table in which row i corresponds
to Mi and column i corresponds to 〈Mi〉. At entry corresponding to row i
and column j, we indicate whether Mi(〈Mj〉) halts or loops forever. If it loops
forever, we put a∞ symbol, and if it halts, we put H .

We now create a new row in this table by taking the diagonal elements of the
table and flipping their value (an ∞ is flipped to an H , and an H is flipped
to an∞). Notice that MTURING constructed in the previous proof corresponds
exactly to this new row we have created. We are able to constructMTURING (and
therefore the row it corresponds to) because we have a decider for HALTS. The
contradiction is reached because on the one hand, MTURING should appear as a
row in the table since all the Turing machines are listed. On the other hand, the
row of MTURING differs from every row in the table (by construction, it differs
from row i in the i’th column), and therefore cannot be in the table.

Definition 5.6 (Languages related to encodings of TMs).
We define the following languages:

ACCEPTS = {〈M,x〉 : M is a TM that accepts the input x},

EMPTY = {〈M〉 : M is a TM with L(M) = ∅},

EQ = {〈M1,M2〉 : M1 and M2 are TMs with L(M1) = L(M2)}.

Theorem 5.7 (ACCEPTS is undecidable).
The language ACCEPTS is undecidable.

Proof. We want to show that ACCEPTS is undecidable. The proof is by contra-
diction, so assume ACCEPTS is decidable and let MACCEPTS be a decider for it.
We will use this decider to come up with a decider for HALTS. Since HALTS
is undecidable (Theorem 5.4 (Turing’s Theorem)), this argument will allow us
to reach a contradiction.

Here is our decider for HALTS:

50

M : TM. x: string.
MHALTS(〈M,x〉):

1 Run MACCEPTS(〈M,x〉).
2 If it accepts, accept.
3 Construct string 〈M ′〉 by flipping the accept and reject

states of 〈M〉.
4 Run MACCEPTS(〈M ′, x〉).
5 If it accepts, accept.
6 If it rejects, reject.

We now argue that this machine indeed decides HALTS. To do this, we’ll
show that no matter what input is given to our machine, it always gives the
correct answer.

First let’s assume we get any input 〈M,x〉 such that 〈M,x〉 ∈ HALTS. In
this case our machine is supposed to accept. Since M(x) halts, we know that
M(x) either ends up in the accepting state, or it ends up in the rejecting state.
If it ends up in the accepting state, then MACCEPTS(〈M,x〉) accepts (on line 1 of
our machine’s description), and so our program accepts and gives the correct
answer on line 2. If on the other hand,M(x) ends up in the rejecting state, then
M ′(x) ends up in the accepting state. Therefore MACCEPTS(〈M ′, x〉) accepts (on
line 4 of our machine’s description), and so our program accepts and gives the
correct answer on line 5.

Now let’s assume we get any input 〈M,x〉 such that 〈M,x〉 6∈ HALTS. In
this case our machine is supposed to reject. Since M(x) does not halt, it never
reaches the accepting or the rejecting state. By the construction of M ′, this also
implies that M ′(x) never reaches the accepting or the rejecting state. There-
fore first MACCEPTS(〈M,x〉) (on line 1 of our machine’s description) will reject.
And then MACCEPTS(〈M ′, x〉) (on line 4 of our machine’s description) will re-
ject. Thus our program will reject as well, and give the correct answer on line
6.

We have shown that no matter what the input is, our machine gives the
correct answer and decides HALTS. This is the desired contradiction and we
conclude that ACCEPTS is undecidable.

Theorem 5.8 (EMPTY is undecidable).
The language EMPTY is undecidable.

Proof. We want to show that EMPTY is undecidable. The proof is by contradic-
tion, so suppose EMPTY is decidable, and let MEMPTY be a decider for it. Using
this decider, we will construct a decider for ACCEPTS. However, we know
that ACCEPTS is undecidable (Theorem 5.7 (ACCEPTS is undecidable)), so
this argument will allow us to reach a contradiction.

We construct a TM that decides ACCEPTS as follows.

M : TM. x: string.
MACCEPTS(〈M,x〉):

1 Construct the following string, which we call 〈M ′〉.
2 ”M ′(y):
3 Run M(x).
4 If it accepts, accept.
5 If it rejects, reject.”
6 Run MEMPTY(〈M ′〉).

51

7 If it accepts, reject.
8 If it rejects, accept.

We now argue that this machine indeed decides ACCEPTS. To do this, we’ll
show that no matter what input is given to our machine, it always gives the
correct answer.

First let’s assume we get an input 〈M,x〉 such that 〈M,x〉 ∈ ACCEPTS, i.e.
x ∈ L(M). Then observe that L(M ′) = Σ∗, because for any input y, M ′(y) will
accept. When we run MEMPTY(〈M ′〉) on line 6, it rejects, and so our machine
accepts and gives the correct answer.

Now assume that we get an input 〈M,x〉 such that 〈M,x〉 6∈ ACCEPTS, i.e.
x 6∈ L(M). Then either M(x) rejects, or loops forever. If it rejects, then M ′(y)
rejects for any y. If it loops forever, then M ′(y) gets stuck on line 3 for any y. In
both cases, L(M ′) = ∅. When we run MEMPTY(〈M ′〉) on line 6, it accepts, and
so our machine rejects and gives the correct answer.

Our machine always gives the correct answer, so we are done.

Theorem 5.9 (EQ is undecidable).
The language EQ is undecidable.

Proof. The proof is by contradiction, so assume EQ is decidable, and let MEQ
be a decider for it. Using this decider, we will construct a decider for EMPTY.
However, EMPTY is undecidable (Theorem 5.8 (EMPTY is undecidable)), so
this argument allows us to reach the desired contradiction.

We construct a TM that decides EMPTY as follows.

M : TM.
MEMPTY(〈M〉):

1 Construct the string 〈M ′〉 where M ′ is a TM that rejects
every input.

2 Run MEQ(〈M,M ′〉).
3 If it accepts, accept.
4 If it rejects, reject.

It is not difficult to see that this machine indeed decides EMPTY. Notice
that L(M ′) = ∅. So when we run MEQ(〈M,M ′〉) on line 2, we are deciding
whether L(M) = L(M ′), i.e. whether L(M) = ∅.

Exercise 5.10 (Practice with undecidability proofs).
Show that the following languages are undecidable.

(a) EMPTY-HALTS = {〈M〉 : M is a TM and M(ε) halts}.

(b) FINITE = {〈M〉 : M is a TM that accepts finitely many strings.}

5.3 Undecidability Proofs by Reductions

IMPORTANT 5.11 (Undecidability proofs by reduction).
In the last section, we have used the same proof technique over and over again.
It will be convenient to abstract away this technique and give it a name. Fix
some alphabet Σ. Let A and B be two languages. We say that A reduces to B,
written A ≤ B, if we are able to do the following: assume B is decidable (for

52

the sake of argument), and then show that A is decidable by using the decider
for B as a black-box subroutine. Here the languages A and B may or may not
be decidable to begin with. But observe that if A ≤ B and B is decidable, then
A is also decidable. Equivalently, taking the contrapositive, if A ≤ B and A is
undecidable, then B is also undecidable. So when A ≤ B, we think of B as
being at least as hard as A with respect to decidability (which justifies using
the less-than-or-equal-to sign).

Note 5.12 (Turing reductions).
In the literature, the above idea is formalized using the notion of a Turing re-
duction (with the corresponding symbol ≤T). In order to define it formally, we
need to define Turing machines that have access to an oracle. This level of detail
will not be important for us, so we choose to omit the formal definition in our
notes.

Note 5.13 (Already established reductions).
The proofs of Theorem 5.7 (ACCEPTS is undecidable), Theorem 5.8 (EMPTY
is undecidable), and Theorem 5.9 (EQ is undecidable) correspond to HALTS ≤
ACCEPTS, ACCEPTS ≤ EMPTY and EMPTY ≤ EQ respectively.

Theorem 5.14 (HALTS ≤ EMPTY).
HALTS ≤ EMPTY.

Proof. (This can be considered as an alternative proof of Theorem 5.8 (EMPTY
is undecidable).) We want to show that deciding HALTS reduces to deciding
EMPTY. For this, we assume EMPTY is decidable. Let MEMPTY be a decider for
EMPTY. We need to construct a TM that decides HALTS. We do so now.

M : TM. x: string.
MHALTS(〈M,x〉):

1 Construct the following string, which we call 〈M ′〉.
2 ”M ′(y):
3 Run M(x).

4 Ignore the output and accept.”
5 Run MEMPTY(〈M ′〉).
6 If it accepts, reject.
7 If it rejects, accept.

We now argue that this machine indeed decides HALTS. First consider an
input 〈M,x〉 such that 〈M,x〉 ∈ HALTS. Then L(M ′) = Σ∗ since in this case
M ′ accepts every string. So when we run MEMPTY(〈M ′〉) on line 8, it rejects,
and our machine accepts and gives the correct answer.

Now consider an input 〈M,x〉 such that 〈M,x〉 6∈ HALTS. Then notice
that whatever input is given to M ′, it gets stuck in an infinite loop when it
runs M(x). Therefore L(M ′) = ∅. So when we run MEMPTY(〈M ′〉) on line 8, it
accepts, and our machine rejects and gives the correct answer.

53

Theorem 5.15 (EMPTY ≤ HALTS).
EMPTY ≤ HALTS.

Proof. We want to show that deciding EMPTY reduces to deciding HALTS.
For this, we assume HALTS is decidable. Let MHALTS be a decider for HALTS.
Using it, we need to construct a decider for EMPTY. We do so now.

M : TM.
MEMPTY(〈M〉):

1 Construct the following string, which we call 〈M ′〉.
2 ”M ′(x):
3 For t = 1, 2, 3, . . .:
4 For each y with |y| ≤ t:
5 Simulate M(y) for at most t steps.
6 If it accepts, accept.”
7 Run MHALTS(〈M ′, ε〉).
8 If it accepts, reject.
9 If it rejects, accept.

We now argue that this machine indeed decides EMPTY. First consider an
input 〈M〉 such that 〈M〉 ∈ EMPTY. Observe that the only way M ′ halts is
if M(y) accepts for some string y. This cannot happen since L(M) = ∅. So
M ′(x), for any x, does not halt (note that M ′ ignores its input). This means that
when we run MHALTS(〈M ′, ε〉), it rejects, and so our decider above accepts, as
desired.

Now consider an input 〈M〉 such that 〈M〉 6∈ EMPTY. This means that
there is some word y such that M(y) accepts. Note that M ′, by construction,
does an exhaustive search, so if such a y exists, then M ′ will eventually find it,
and accept. SoM ′(x) halts for any x. When we runMHALTS(〈M ′, ε〉), it accepts,
and our machine rejects and gives the correct answer.

Exercise 5.16 (Practice with reduction definition).
Let A,B ⊆ {0, 1}∗ be languages. Prove or disprove the following claims.

(a) If A ≤ B then B ≤ A.

(b) If A ≤ B and B is regular, then A is regular.

Exercise 5.17 (Practice with reduction proofs).
Show the following.

(a) ACCEPTS ≤ HALTS.

(b) HALTS ≤ EQ.

54

Quiz

1. True or false: For languages K and L, if K ≤ L, then L is undecidable.

2. True or false: The set of undecidable languages is countable.

3. True or false: If a language L is undecidable, then L is infinite.

4. True or false: Σ∗ ≤ ∅.

5. True or false: HALTS ≤ Σ∗.

55

Hints to Selected Exercises

Exercise 5.10 (Practice with undecidability proofs):
As usual, the proofs will be by contradiction. In both cases, show how to decide HALTS given a
decider for the language in question.

Exercise 5.16 (Practice with reduction definition):
Both parts are false.

56

Chapter 6

Time Complexity

57

PREAMBLE

Chapter structure:

• Section 6.1 (Big-O, Big-Omega and Theta)

– Definition 6.1 (Big-O)

– Definition 6.3 (Big-Omega)

– Definition 6.5 (Theta)

– Proposition 6.6 (Logarithms in different bases)

• Section 6.2 (Worst-Case Running Time of Algorithms)

– Definition 6.9 (Worst-case running time of an algorithm)

– Definition 6.13 (Names for common growth rates)

– Proposition 6.16 (Intrinsic complexity of {0k1k : k ∈ N})

• Section 6.3 (Complexity of Algorithms with Integer Inputs)

– Definition 6.20 (Integer addition and integer multiplication prob-
lems)

Chapter goals:

So far, we have formally defined what a computational/decision problem
is, what an algorithm is, and saw that most (decision) problems are unde-
cidable. We also saw some explicit and interesting examples of undecid-
able problems. Nevertheless, it turns out that many problems that we care
about are actually decidable. So the next natural thing to study is the com-
putational complexity of problems. If a problem is decidable, but the most
efficient algorithm solving it takes vigintillion computational steps even for
reasonably sized inputs, then practically speaking, that problem is still un-
decidable.

Our goal in this chapter is to introduce the right language to express and
analyze the running time of algorithms, which in return helps us determine
which problems are practically decidable, and which problems are (or seem
to be) practically undecidable.

Most of the ideas in this chapter will probably be familiar to you at some
level as most introductory computer science courses do talk about (asymp-
totic) running time of algorithms. Nevertheless, it is important to specify
some of the details that we will be using as we slowly start approaching
the famous P vs NP question, which is a question about the computational
complexity of problems.

58

6.1 Big-O, Big-Omega and Theta

Definition 6.1 (Big-O).
For f : R+ → R+ and g : R+ → R+, we write f(n) = O(g(n)) if there exist
constants C > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≤ Cg(n).

In this case, we say that f(n) is big-O of g(n).

Exercise 6.2 (Practice with big-O).
Show that 3n2 + 10n+ 30 is O(n2).

Definition 6.3 (Big-Omega).
For f : R+ → R+ and g : R+ → R+, we write f(n) = Ω(g(n)) if there exist
constants c > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≥ cg(n).

In this case, we say that f(n) is big-Omega of g(n).

Exercise 6.4 (Practice with big-Omega).
Show that n!2 is Ω(nn).

Definition 6.5 (Theta).
For f : R+ → R+ and g : R+ → R+, we write f(n) = Θ(g(n)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)).

This is equivalent to saying that there exists constants c, C, n0 > 0 such that for
all n ≥ n0,

cg(n) ≤ f(n) ≤ Cg(n).

In this case, we say that f(n) is Theta of g(n).1

Proposition 6.6 (Logarithms in different bases).
For any constant b > 1,

logb n = Θ(log n).

Proof. It is well known that logb n = loga n
loga b . In particular logb n = log2 n

log2 b . Then
taking c = C = 1

log2 b and n0 = 1, we see that c log2 n ≤ logb n ≤ C log2 n for all
n ≥ n0. Therefore logb n = Θ(log2 n).

Note 6.7 (Does the base of a logarithm matter?).
Since the base of a logarithm only changes the value of the log function by a
constant factor, it is usually not relevant in big-O, big-Omega or Theta notation.
So most of the time, when you see a log function present inside O(·), Ω(·),
or Θ(·), the base will be ignored. E.g. instead of writing lnn = Θ(log2 n),
we actually write lnn = Θ(log n). That being said, if the log appears in the
exponent, the base matters. For example, nlog2 5 is asymptotically different
from nlog3 5.

Exercise 6.8 (Practice with Theta).
Show that log2(n!) = Θ(n log n).

1The reason we don’t call it big-Theta is that there is no separate notion of little-theta, whereas
little-o o(·) and little-omega ω(·) have meanings separate from big-O and big-Omega. We don’t
cover little-o and little-omega in this course.

59

6.2 Worst-Case Running Time of Algorithms

Definition 6.9 (Worst-case running time of an algorithm).
Suppose we are using some computational model in which what constitutes a
step in an algorithm is understood. Suppose also that for any input x, we have
an explicit definition of its length. The worst-case running time of an algorithm
A is a function TA : N→ N defined by

TA(n) = max
instances/inputs x

of length n

number of steps A takes on input x.

We drop the subscript A and just write T (n) when A is clear from the context.

IMPORTANT 6.10 (Input length).
We use n to denote the input length. Unless specified otherwise, n is defined
to be the number of bits in a reasonable binary encoding of the input. It is also
common to define n in other ways. For example, if the input is an array or a
list, n can denote the number of elements.

IMPORTANT 6.11 (Our model when measuring running time).
In the Turing machine model, a step in the computation corresponds to one ap-
plication of the transition function of the machine. However, when measuring
running time, often we will not be considering the Turing machine model.

If we don’t specify a particular computational model, by default, our model
will be closely related to the Random Access Machine (RAM) model. Com-
pared to TMs, this model aligns better with the architecture of the computers
we use today. We will not define this model formally, but instead point out
two properties of importance.

First, given a string or an array, accessing any index counts as 1 step.
Second, arithmetic operations count as 1 step as long as the numbers in-

volved are “small”. We say that a number y is small if it can be upper bounded
by a polynomial in n, the input length. That is, y is small if there is some con-
stant k such that y is O(nk). As an example, suppose we have an algorithm A
that contains a line like x = y+ z, where y and z are variables that hold integer
values. Then we can count this line as a single step if y and z are both small.
Note that whether a number is small or not is determined by the length of the
input to the algorithm A.

We say that a number is large, if it is not small, i.e., if it cannot be upper
bounded by a polynomial in n. In cases where we are doing arithmetic oper-
ations involving large numbers, we have to consider the algorithms used for
the arithmetic operations and figure out their running time. For example, in
the line x = y+z, if y or z is a large number, we need to specify what algorithm
is being used to do the addition and what its running time is. A large number
should be treated as a string of digits/characters. Arithmetic operations on
large numbers should be treated as string manipulation operations and their
running time should be figured out accordingly.

Note 6.12 (Asymptotic complexity).
The expression of the running time of an algorithm using big-O, big-Omega or
Theta notation is referred to as asymptotic complexity estimate of the algorithm.

60

Definition 6.13 (Names for common growth rates).

Constant time: T (n) = O(1).

Logarithmic time: T (n) = O(log n).

Linear time: T (n) = O(n).

Quadratic time: T (n) = O(n2).

Polynomial time: T (n) = O(nk) for some constant k > 0.

Exponential time: T (n) = O(2n
k

) for some constant k > 0.

Exercise 6.14 (Composing polynomial time algorithms).
Suppose that we have an algorithm A that runs another algorithm A′ once as
a subroutine. We know that the running time of A′ is O(nk), k ≥ 1, and the
work done by A is O(nt), t ≥ 1, if we ignore the subroutine A′ (i.e., we don’t
count the steps taken by A′). What kind of upper bound can we give for the
total running-time of A (which includes the work done by A′)?

Note 6.15 (Intrinsic complexity).
The intrinsic complexity of a computational problem refers to the asymptotic
time complexity of the most efficient algorithm that computes the problem.2

Proposition 6.16 (Intrinsic complexity of {0k1k : k ∈ N}).
The intrinsic complexity of L = {0k1k : k ∈ N} is Θ(n).

Proof. We want to show that the intrinsic complexity of L = {0k1k : k ∈ N}
is Θ(n). The proof has two parts. First, we need to argue that the intrinsic
complexity is O(n). Then, we need to argue that the intrinsic complexity is
Ω(n).

To show that L has intrinsic complexity O(n), all we need to do is present
an algorithm that decides L in time O(n). We leave this as an exercise to the
reader.

To show that L has intrinsic complexity Ω(n), we show that no matter what
algorithm is used to decide L, the number of steps it takes must be at least n.
We prove this by contradiction, so assume that there is some algorithm A that
decidesL using n−1 steps or less. Consider the input x = 0k1k (where n = 2k).
Since A uses at most n− 1 steps, there is at least one index j with the property
that A does not access x[j]. Let x′ be the input that is the same as x, except the
j’th coordinate is reversed. Since A does not access the j’th coordinate, it has
no way of distinguishing between x and x′. In other words, A behaves exactly
the same when the input is x or x′. But this contradicts the assumption that A
correctly decides L because A should accept x and reject x′.

Exercise 6.17 (TM complexity of {0k1k : k ∈ N}).
In the TM model, a step corresponds to one application of the transition func-
tion. Show that L = {0k1k : k ∈ N} can be decided by a TM in time O(n log n).
Is this statement directly implied by Proposition 6.16 (Intrinsic complexity of
{0k1k : k ∈ N})?

Exercise 6.18 (Is polynomial time decidability closed under concatenation?).
Assume the languages L1 and L2 are decidable in polynomial time. Prove or
give a counter-example: L1L2 is decidable in polynomial time.

2For certain computational problems, the intrinsic complexity may not be well-defined. In
some cases, there can be a sequence of algorithms that solve a certain computational problem,
where each algorithm in the sequence is asymptotically more efficient than the one before.

61

6.3 Complexity of Algorithms with Integer Inputs

IMPORTANT 6.19 (Integer inputs are large numbers).
Given a computational problem with an integer input x, notice that x is a large
number (if x is n bits long, its value can be about 2n, so it cannot be upper
bounded by a polynomial in n). Therefore arithmetic operations involving x
cannot be treated as 1-step operations. Computational problems with integer
input(s) are the most common examples in which we have to deal with large
numbers, and in these situations, one should be particularly careful about an-
alyzing running time.

Definition 6.20 (Integer addition and integer multiplication problems).
In the integer addition problem, we are given two n-bit numbers x and y, and the
output is their sum x+ y. In the integer multiplication problem, we are given two
n-bit numbers x and y, and the output is their product xy.

Note 6.21 (Algorithms for integer addition).
Consider the following algorithm for the integer addition problem (we’ll as-
sume the inputs are natural numbers for simplicity).

x: natural number. y: natural number.
Addition(〈x, y〉):

1 For i = 1 to x:
2 y = y + 1.
3 Return y.

This algorithm has a loop that repeats x many times. Since x is an n-bit
number, the worst-case complexity of this algorithm is Ω(2n).

In comparison, the following well-known algorithm for integer addition
has time complexity O(n).

x: natural number. y: natural number.
Addition(〈x, y〉):

1 carry = 0.
2 For i = 0 to n− 1:
3 columnSum = x[i] + y[i] + carry.
4 z[i] = columnSum%2.
5 carry = (columnSum− z[i])/2.
6 z[n] = carry.
7 Return z.

Note that the arithmetic operations inside the loop are all O(1) time since
the numbers involved are all bounded (i.e., their values do not depend on n).
Since the loop repeats n times, the overall complexity is O(n).

It is easy to see that the intrinsic complexity of integer addition is Ω(n)
since it takes at least n steps to write down the output, which is either n or
n + 1 bits long. Therefore we can conclude that the intrinsic complexity of
integer addition is Θ(n). The same is true for integer subtraction.

62

Exercise 6.22 (Running time of the factoring problem).
Consider the following problem: Given as input a positive integer N , output a
non-trivial factor3 of N if one exists, and output False otherwise. Give a lower
bound using the Ω(·) notation for the running-time of the following algorithm
solving the problem:

N : natural number.
Non-Trivial-Factor(〈N〉):

1 For i = 2 to N − 1:
2 If N%i == 0: Return i.
3 Return False.

Note 6.23 (Grade-school algorithms for multiplication and division).
The grade-school algorithms for the integer multiplication and division prob-
lems have time complexity O(n2). You may use these facts in your arguments
without proof.

Note 6.24 (The best-known multiplication algorithm).
The best known multiplication algorithm has running time that is extremely
close to O(n log n). So there are much smarter ways to do multiplication than
the grade-school algorithm.

Exercise 6.25 (251st root).
Consider the following computational problem. Given as input a number
A ∈ N, output bA1/251c. Determine whether this problem can be computed
in worst-case polynomial-time, i.e. O(nk) time for some constant k, where
n denotes the number of bits in the binary representation of the input A. If
you think the problem can be solved in polynomial time, give an algorithm in
pseudocode, explain briefly why it gives the correct answer, and argue care-
fully why the running time is polynomial. If you think the problem cannot be
solved in polynomial time, then provide a proof.

3A non-trivial factor is a factor that is not equal to 1 or the number itself.

63

Quiz

1. True or false: nlog2 5 = Θ(nlog3 5).

2. True or false: nlog2 n = Ω(n15251).

3. True or false: f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

4. True or false: Let Σ = {0, 1} and let L = {0n : n ∈ N+}. There is a Turing
Machine A deciding L whose running time TA satisfies “TA(n) is O(n)”.

5. True or false: Continuing previous question, every Turing Machine B
that decides L has running time TB satisfying “TB(n) is Ω(n)”.

6. What is the running time of the following algorithm in terms of n, the
input length, using the big-O notation?

def isPrime(N):

if (N < 2):

return False

if (N == 2):

return True

if (N mod 2 == 0):

return False

maxFactor = ceiling(N**0.5)

for factor in range(3,maxFactor+1,2):

if (N mod factor == 0):

return False

return True

64

Hints to Selected Exercises

Exercise 6.17 (TM complexity of {0k1k : k ∈ N}):
Think about logn iterations with each iteration being O(n) steps.

Exercise 6.18 (Is polynomial time decidability closed under concatenation?):
The statement is true.

Exercise 6.22 (Running time of the factoring problem):
It is not a polynomial-time algorithm.

Exercise 6.25 (251st root):
Binary search.

65

66

Chapter 7

The Science of Cutting Cake

67

PREAMBLE

Chapter structure:

• Section 7.1 (The Problem and the Model)

– Definition 7.1 (Cake cutting problem)

– Proposition 7.2 (An observation about the Vi’s)

– Proposition 7.3 (Envy-freeness implies proportionality)

– Definition 7.4 (The Robertson-Webb model)

• Section 7.2 (Cake Cutting Algorithms in the Robertson-Webb Model)

– Proposition 7.5 (Cut and Choose algorithm for 2 players)

– Theorem 7.6 (Dubins-Spanier Algorithm)

– Theorem 7.8 (Even-Paz Algorithm)

– Theorem 7.10 (Edmonds-Pruhs Theorem)

Chapter goals:

In this chapter, we turn our attention to a different computational model
related to an important social concern about how to fairly allocate divisible
resources under some constraints. There are a couple of goals of this chap-
ter. First, it provides a completely new model of computation with its own
rules on what counts a computational step and what the input length is. As
such, we hope that this will expand your horizon on what we can view as
a computational process, and how we can measure its complexity. Second,
this chapter presents one of the many real-world applications of theoretical
computer science. Finding fair ways of dividing limited resources is very
important, and studying this problem mathematically rigorously provides
provable solutions.

Applications:

• http://procaccia.info/papers/cakesurvey.cacm.pdf

• http://www.spliddit.org

68

http://procaccia.info/papers/cakesurvey.cacm.pdf
http://www.spliddit.org

7.1 The Problem and the Model

Definition 7.1 (Cake cutting problem).
We refer to the interval [0, 1] ⊂ R as the cake, and the set N = {1, 2, . . . , n} as
the set of players. A piece of cake is any set X ⊆ [0, 1] which is a finite union
of disjoint intervals. Let X denote the set of all possible pieces of cake. Each
player i ∈ N has a valuation function Vi : X → R that satisfies the following 4
properties.

• Normalized: Vi([0, 1]) = 1.

• Non-negative: For any X ∈ X , Vi(X) ≥ 0.

• Additive: For X,Y ∈ X with X ∩ Y = ∅, Vi(X ∪ Y) = Vi(X) + Vi(Y).

• Divisible: For every interval I ⊆ [0, 1] and 0 ≤ λ ≤ 1, there exists a
subinterval I ′ ⊆ I such that Vi(I ′) = λVi(I).

The goal is to find an allocation A1, A2, . . . , An, where for each i, Ai is a piece
of cake allocated to player i. The allocation is assumed to be a partition of
the cake [0, 1], i.e., the Ai’s are disjoint and their union is [0, 1]. There are 2
properties desired about the allocation:

• Proportionality: For all i ∈ N , Vi(Ai) ≥ 1/n.

• Envy-Freeness: For all i, j ∈ N , Vi(Ai) ≥ Vi(Aj).

Proposition 7.2 (An observation about the Vi’s).
Let A1, . . . , An be an allocation in the cake cutting problem. Then for each player i,
we have

∑
j∈N Vi(Aj) = 1.

Proof. Given any player i, our goal is to show that
∑

j∈N Vi(Aj) = 1. This will
follow from the additivity and normality properties of the valuation functions.

First, recall that the Ai’s form a partition of [0, 1]. So

A1 ∪A2 ∪ · · · ∪An = [0, 1],

and the Ai’s are pairwise disjoint. Now take an arbitrary player i. By the
normality property, we know Vi([0, 1]) = 1. Combining this with the additivity
property, we have

1 = Vi([0, 1]) = Vi(A1 ∪A2 ∪ · · · ∪An) = Vi(A1) + Vi(A2) + · · ·+ Vi(An),

i.e.,
∑

j∈N Vi(Aj) = 1.

Proposition 7.3 (Envy-freeness implies proportionality).
If an allocation is envy-free, then it is proportional.

Proof. Let’s assume we have an allocation A1, . . . , An that is envy-free. We
want to show that it must also be proportional. Take an arbitrary player i. By
the previous proposition, we have

∑
j∈N Vi(Aj) = 1. Therefore, there must be

k ∈ N such that Vi(Ak) ≥ 1/n (otherwise the sum could not be 1). The envy-
freeness property implies that Vi(Ai) ≥ Vi(Ak), and so Vi(Ai) ≥ 1/n. This
establishes that the allocation must be proportional.

69

Definition 7.4 (The Robertson-Webb model).
We use the Robertson-Webb model to express cake cutting algorithms and
measure their running times. In this model, the input size is considered to
be the number of players n. There is a referee who is allowed to make two
types of queries to the players:

• Evali(x, y), which returns Vi([x, y]),

• Cuti(x, α), which returns y such that Vi([x, y]) = α.
(If no such y exists, it returns “None”.)

The referee follows an algorithm/strategy and chooses the queries that she wants
to make. What the referee chooses as a query depends only on the results
of the queries she has made before. At the end, she decides on an allocation
A1, A2, . . . , An, and the allocation depends only on the outcomes of the queries.
The time complexity of the algorithm, T (n), is the number of queries she makes
for n players and the worst possible Vi’s. So

T (n) = max
(V1,...,Vn)

number of queries when the valuations are (V1, . . . , Vn).

7.2 Cake Cutting Algorithms in the Robertson-Webb

Model

Proposition 7.5 (Cut and Choose algorithm for 2 players).
When n = 2, there is always an allocation that is proportional and envy-free.

Proof. Given n = 2 players, we will describe a way to allocate the cake so that
it is proportional and envy-free. We first describe how to find the allocation.
We then argue why that allocation is envy-free and proportional.

We can describe how the allocation is found in the following way. The
first player marks a point y in the cake so that V1([0, y]) = V1([y, 1]) = 1/2
(this can be done because of the divisibility property). Then player 2 chooses
the piece (among [0, y] and [y, 1]) that he values more. The remaining piece is
what player 1 gets. In the Robertson-Webb model, this algorithm corresponds
to the following. The referee first queries Cut1(0, 1/2). Say this returns the
value y. Then the referee queries Eval2(0, y) and Eval2(y, 1).1 Whichever gives
the larger value, referee assigns that piece to player 2. The remaining piece is
assigned to player 1.2

The allocation is envy-free: From player 1’s perspective, both players get a
piece of the cake of value 1/2. Therefore V1(A1) ≥ V1(A2) is satisfied. From
player 2’s perspective, since he gets to choose the piece of larger value to him,
V2(A2) ≥ V2(A1) is satisfied. (Also note that we must have V2(A2) > 1/2.)

The allocation is proportional: It is not hard to see that the algorithm is
proportional since each player gets a piece of value at least 1/2.

Theorem 7.6 (Dubins-Spanier Algorithm).
There is an algorithm of time complexity Θ(n2) that produces an allocation for the cake
cutting problem that satisfies the proportionality property.

1In fact, just querying Eval2(0, y) is enough.
2It is common to describe a cake cutting algorithm in terms of what players do to agree on an

allocation. In the Robertson-Webb model we have described, this would correspond to a referee
applying Eval and Cut queries to determine the allocation. The two points of views are equivalent
as long as the actions of the players can be described using Eval and Cut queries.

70

Proof. Our goal is to describe a cake cutting algorithm with Θ(n2) complexity
that produces a proportional allocation. We first describe the algorithm. We
then argue that it indeed produces a proportional allocation. Finally, we show
that its complexity is Θ(n2).

The algorithm is as follows. The referee first makes n queries: Cuti(0, 1/n)
for all i. She computes the minimum among these values, which we’ll denote
by y. Let’s assume j is the player that corresponds to the minimum value.
Then the referee assigns Aj = [0, y]. So player j gets a piece that she values at
1/n. After this, we remove player j, and repeat the process on the remaining
cake. So in the next stage, the referee makes n − 1 queries, Cuti(y, 1/n) for
i 6= j, figures out the player corresponding to the minimum value, and assigns
her the corresponding piece of the cake, which she values at 1/n. This repeats
until there is one player left. The last player gets the piece that is left.3

We have to show that the algorithm’s time complexity is Θ(n2) and that it
produces a proportional allocation. First we show that the allocation is propor-
tional. Notice that if the queries that the referee makes never return “None”,
then at each iteration, until one player is left, the player j who is removed is
assigned Aj such that Vj(Aj) = 1/n. So it suffices to argue that:

(i) the queries never return “None”,

(ii) the last player, call it `, gets A` such that V`(A`) ≥ 1/n.

To show (i), assume we have just completed iteration k, where k ∈ {1, 2, . . . , n−
1}. Let j be an arbitrary player who has not been removed yet. The important
observation is that all the pieces that have been removed so far have value at
most 1/n to player j (take a moment to verify this). So the cake remaining after
iteration k has value at least 1− (k/n) ≥ 1/n for player j. This argument holds
for any k ∈ {1, 2, . . . , n − 1} and any player j that remains after iteration k.
So the queries never return “None”. Part (ii) actually follows from the same
argument. The cake remaining after iteration n− 1 has value at least 1− (n−
1)/n = 1/n for the last player. This completes the proof that the allocation is
proportional.

Now we show that the time complexity is Θ(n2). To do this, we’ll first argue
that the number of queries is O(n2), and then argue that it is Ω(n2). Note that
the algorithm has n iterations, and at iteration i, it makes n + 1 − i queries.
There is one exception, which is the last iteration when only one player is left.
In that case, we don’t make any queries. So the total number of queries is

n+ (n− 1) + (n− 2) + · · ·+ 2.

We can upper bound this as follows:

n+ (n− 1) + (n− 2) + · · ·+ 2 ≤ n+ n+ · · ·+ n︸ ︷︷ ︸
n times

= n2.

This implies that the number of queries is O(n2). We can also lower bound the
number of queries by lower bounding the first n/2 terms in the sum by n/2:

n+ (n− 1) + (n− 2) + · · ·+ 2 ≥ n

2
+
n

2
+ · · ·+ n

2︸ ︷︷ ︸
n/2 times

=
n2

4
.

This implies that the number of queries is Ω(n2). Hence, the number of queries
is Θ(n2).

3Note that it is perfectly fine to describe an algorithm in a paragraph as long as you explain
clearly what the algorithm does. A pseudocode is not required.

71

Exercise 7.7 (Practice with cutting cake).
Design a cake cutting algorithm for a set of players N = {1, . . . , n} that finds
an allocationAwith the property that there exists a permutation/bijection πA :
N → N such that for all i ∈ N, Vi(Ai) ≥ 1

2π(i) . In words, there is an order on the
players such that the first player has value at least 1/2 for her piece, the second
player has value at least 1/4, and so on. The complexity of your algorithm in
the Robertson-Webb model should be O(n2).

Theorem 7.8 (Even-Paz Algorithm).
Assume n is a power of 2, i.e., n = 2t for some t ∈ N. There is an algorithm of time
complexity Θ(n log n) that produces an allocation for the cake cutting problem that
satisfies the proportionality property.

Proof. Our goal is to present a cake cutting algorithm with Θ(n log n) complex-
ity that produces a proportional allocation. The assumption that n is a power
of 2 is there for simplicity in describing and analyzing the algorithm. Below,
we first present the algorithm. Next we show that its complexity is Θ(n log n).
And finally, we show that it produces a proportional allocation.

Our algorithm will be recursive, so we give some flexibility for the input
by allowing it to consist of an interval [x, y] ⊆ [0, 1] and a subset of players S ⊆
{1, 2, . . . , n}. Our algorithm’s name is EP, and we would initially call it with
input in which [x, y] = [0, 1] and S = {1, 2, . . . , n}. Below is the description of
EP. A verbal explanation of what the algorithm does follows its description.

[x, y]: interval in [0, 1]. k: integer in {0, 1, 2, . . . , n}.
S: subset of {1, 2, . . . , n}with |S| = k.
EP(〈[x, y], k, S〉):

1 If k = 1 and S = {i} for some i, then let Ai = [x, y].
2 Else:
3 For i ∈ S, let zi = Cuti(x,Evali(x, y)/2).
4 Sort the zi so that zi1 ≤ zi2 ≤ · · · ≤ zik . Let z∗ = zik/2 .
5 Run EP(〈[x, z∗], k/2, {i1, . . . , ik/2}〉).
6 Run EP(〈[z∗, y], k/2, {ik/2+1, . . . , ik}〉).

The base case of the algorithm is when there is only one player. In this case
we give the whole piece [x, y] to that player. Otherwise, each player i makes a
mark zi such that Vi([x, zi]) = 1

2Vi([x, y]). Let z∗ denote the n/2 mark from the
left. We first recurse on [x, z∗] and the left n/2 players, and then we recurse on
[z∗, y] and the right n/2 players.

We have to show that the algorithm’s time complexity is Θ(n log n) and that
it produces a proportional allocation. First we show that the time complexity
T (n) is Θ(n log n). Observe that the recursive relation that T (n) satisfies is

T (1) = 0, T (n) = 2n+ 2T (n/2) for n > 1.

The base case corresponds to line 1 of the algorithm, and in this case, we don’t
make any queries. In T (n) = 2n + 2T (n/2), the 2n comes from line 3 where
we make 2 queries for each player. The 2T (n/2) comes from the two recursive
calls on lines 5 and 6. To solve the recursion, i.e., to figure out the formula for
T (n), we draw the associated recursion tree.

72

The root (top) of the tree corresponds to the input S = {1, 2, . . . , n} and
is therefore labeled with an n. This branches off into two nodes, one corre-
sponding to each recursive call. These nodes are labeled with n/2 since they
correspond to recursive calls in which |S| = n/2. Those nodes further branch
off into two nodes, and so on, until at the very bottom, we end up with nodes
corresponding to inputs S with |S| = 1. The number of queries made for each
node of the tree is provided with a label on top of the node. For example, at the
root (top), we make 2n queries before we do our recursive calls. This is why
we put a 2n on top of that node. Similarly, every other node can be labeled.
We can divide the nodes of the tree into levels according to how far a node is
from the root. So the root corresponds to level 0, the nodes it branches off to
correspond to level 1, and so on. Observe that level j has exactly 2j nodes. The
nodes that are at level j make 2n/2j queries. Therefore, the total number of
queries made for level j is 2n. The only exception is the last level. The nodes at
the last level correspond to the base case and don’t make any queries. In total,
there are exactly 1+log2 n levels (since we are counting the root as well). Thus,
the total number of queries, and hence the time complexity, is exactly 2n log2 n,
which is Θ(n log n).

We now prove that the allocation obtained by the algorithm is proportional.
Observe that when we make the recursive call on [x, z∗] and the left n/2 play-
ers, all these players value [x, z∗] at least at 1/2. Similarly, when we make the
recursive call on [z∗, y] and the right n/2 players, all these players value [z∗, y]
at least at 1/2. This property is preserved at each level of the recursion in the
following way. At level ` of the recursion, the players are divided into groups
of size n/2`. If each player values the corresponding interval at least at 1/2`,
then at level ` + 1, the players will value the interval that they are “assigned
to” at least at 1/2`+1. In particular, when ` = log2 n, each group is a single-
ton, and each player gets assigned a piece of cake that she values at least at
1/2log2 n = 1/n. This shows that the allocation is proportional.

Exercise 7.9 (Finding an envy-free allocation).
We say that a valuation function V is piecewise constant if there are points
x1, x2, . . . , xk ∈ [0, 1] such that 0 = x1 < x2 < · · · < xk = 1 and for each
i ∈ {1, 2, . . . , k− 1}, V ([xi, xi+1]) is uniformly distributed over [xi, xi+1].4 Sup-
pose we have n players such that each player has a piecewise constant valua-
tion function. Show that in this case, an envy-free allocation always exists.

4Uniformly distributed means that if we were to take any subinterval I of [xi, xi+1] whose
density/size is α fraction of the density/size of [xi, xi+1], then V (I) = α · V ([xi, xi+1]).

73

Theorem 7.10 (Edmonds-Pruhs Theorem).
Any algorithm that produces an allocation satisfying the proportionality property
must have time complexity Ω(n log n).

74

Quiz

1. True or false: When there are two players, an envy-free allocation can be
found using a single query in the Robertson-Webb model.

2. True or false: In the allocation output by the Even-Paz algorithm, there
always exists a player who is not envious.

3. True or false: In the allocation output by the Dubins-Spanier algorithm,
there always exists a player who is not envious.

An allocation is called equitable if Vi(Ai) = Vk(Ak) for any two players i
and k.

4. True or false: Any equitable allocation is proportional.

5. True or false: Any envy-free allocation is equitable.

75

Hints to Selected Exercises

Exercise 7.7 (Practice with cutting cake):
Modify Dubins-Spanier algorithm.

Exercise 7.9 (Finding an envy-free allocation):
For each player, make a mark for the points x1, . . . , xk describing their piecewise constant valua-
tion function. How should you distribute the subinterval between any two adjacent marks?

76

Chapter 8

Introduction to Graph Theory

77

PREAMBLE

Chapter structure:

• Section 15.1.1 (Basic Definitions)

– Definition 8.1 (Undirected graph)

– Definition 8.6 (Neighborhood of a vertex)

– Definition 8.8 (d-regular graphs)

– Theorem 8.9 (Handshake Theorem)

– Definition 8.11 (Paths and cycles)

– Definition 8.12 (Connected graph, connected component)

– Theorem 8.13 (Min number of edges to connect a graph)

– Definition 8.14 (Tree, leaf, internal node)

– Definition 8.19 (Directed graph)

– Definition 8.21 (Neighborhood, out-degree, in-degree, sink, source)

• Section 8.2 (Graph Algorithms)

– Definition 8.23 (Arbitrary-first search (AFS) algorithm)

– Definition 8.25 (Breadth-first search (BFS) algorithm)

– Definition 8.27 (Depth-first search (DFS) algorithm)

– Definition 8.31 (Minimum spanning tree (MST) problem)

– Theorem 8.33 (MST cut property)

– Theorem 8.34 (Jarnı́k-Prim algorithm for MST)

– Definition 8.38 (Topological order of a directed graph)

– Definition 8.41 (Topological sorting problem)

– Lemma 8.42 (Acyclic directed graph has a sink)

– Theorem 8.45 (Topological sort via DFS)

Chapter goals:

In the study of computational complexity of languages and computational
problems, graphs play a very fundamental role. This is because an enor-
mous number of computational problems that arise in computer science
can be abstracted away as problems on graphs, which model pairwise rela-
tions between objects. This is great for various reasons. For one, this kind
of abstraction removes unnecessary distractions about the problem and al-
lows us to focus on its essence. Second, there is a huge literature on graph
theory, so we can use this arsenal to better understand the computational
complexity of graph problems. Applications of graphs are too many and
diverse to list here, but we’ll name a few to give you an idea: communi-
cation networks, finding shortest routes in various settings, finding match-
ings between two sets of objects, social network analysis, kidney exchange
protocols, linguistics, topology of atoms, and compiler optimization.

Our goal in this chapter is to introduce you to graph theory by providing
the basic definitions and some well-known graph algorithms.

78

8.1 Basic Definitions

Definition 8.1 (Undirected graph).
An undirected graph1 G is a pair (V,E), where

• V is a finite non-empty set called the set of vertices (or nodes),

• E is a set called the set of edges, and every element of E is of the form
{u, v} for distinct u, v ∈ V .

Example 8.2 (A graph with 6 vertices and 4 edges).
Let G = (V,E) where

V = {v1, v2, v3, v4, v5, v6}

and
E = {{v1, v2}, {v1, v3}, {v2, v3}, {v4, v5}}.

We usually draw graphs in a way such that a vertex corresponds to a dot and
an edge corresponds to a line connecting two dots. For example, the graph we
have defined can be drawn as follows:

Note 8.3 (n and m).
Given a graph G = (V,E), we usually use n to denote the number of vertices
|V | and m to denote the number of edges |E|.

IMPORTANT 8.4 (Representations of graphs).
There are two common ways to represent a graph. Let v1, v2, . . . , vn be some ar-
bitrary ordering of the vertices. In the adjacency matrix representation, a graph
is represented by an n× n matrix A such that

A[i, j] =

{
1 if {vi, vj} ∈ E,
0 otherwise.

The adjacency matrix representation is not always the best representation of
a graph. In particular, it is wasteful if the graph has very few edges. For
such graphs, it can be preferable to use the adjacency list representation. In
the adjacency list representation, you are given an array of size n and the i’th
entry of the array contains a pointer to a linked list of vertex i’s neighbors.

Exercise 8.5 (Max number of edges in a graph).
In an n-vertex graph, what is the maximum possible value for the number of
edges in terms of n?

1Often the word “undirected” is omitted.

79

Definition 8.6 (Neighborhood of a vertex).
Let G = (V,E) be a graph, and e = {u, v} ∈ E be an edge in the graph. In
this case, we say that u and v are neighbors or adjacent. We also say that u and
v are incident to e. For v ∈ V , we define the neighborhood of v, denoted N(v),
as the set of all neighbors of v, i.e. N(v) = {u : {v, u} ∈ E}. The size of the
neighborhood, |N(v)|, is called the degree of v, and is denoted by deg(v).

Example 8.7 (Example of neighborhood and degree).
Consider Example 8.2 (A graph with 6 vertices and 4 edges). We have N(v1) =
{v2, v3}, deg(v1) = deg(v2) = deg(v3) = 2, deg(v4) = deg(v5) = 1, and
deg(v6) = 0.

Definition 8.8 (d-regular graphs).
A graphG = (V,E) is called d-regular if every vertex v ∈ V satisfies deg(v) = d.

Theorem 8.9 (Handshake Theorem).
Let G = (V,E) be a graph. Then∑

v∈V
deg(v) = 2m.

Proof. Our goal is to show that the sum of the degrees of all the vertices is
equal to twice the number of edges. We will use a double counting argument to
establish the equality. This means we will identify a set of objects and count it
size in two different ways. One way of counting it will give us

∑
v∈V deg(v),

and the second way of counting it will give us 2m. This then immediately
implies that

∑
v∈V deg(v) = 2m.

We now proceed with the double counting argument. For each vertex
v ∈ V , put a “token” on all the edges it is incident to. We want to count the total
number of tokens. Every vertex v is incident to deg(v) edges, so the total num-
ber of tokens put is

∑
v∈V deg(v). On the other hand, each edge {u, v} in the

graph will get two tokens, one from vertex u and one from vertex v. So the total
number of tokens put is 2m. Therefore it must be that

∑
v∈V deg(v) = 2m.

Exercise 8.10 (Application of Handshake Theorem).
Is it possible to have a party with 251 people in which everyone knows exactly
5 other people in the party?

Definition 8.11 (Paths and cycles).
Let G = (V,E) be a graph. A path of length k in G is a sequence of distinct
vertices

v0, v1, . . . , vk

such that {vi−1, vi} ∈ E for all i ∈ {1, 2, . . . , k}. In this case, we say that the
path is from vertex v0 to vertex vk.

A cycle of length k (also known as a k-cycle) in G is a sequence of vertices

v0, v1, . . . , vk−1, v0

such that v0, v1, . . . , vk−1 is a path, and {v0, vk−1} ∈ E. In other words, a cycle
is just a “closed” path. The starting vertex in the cycle is not important. So for
example,

v1, v2, . . . , vk−1, v0, v1

80

would be considered the same cycle. Also, if we list the vertices in reverse
order, we consider it to be the same cycle. For example,

v0, vk−1, vk−2 . . . , v1, v0

represents the same cycle as before.
A graph that contains no cycles is called acyclic.

Definition 8.12 (Connected graph, connected component).
Let G = (V,E) be a graph. We say that two vertices in G are connected if there
is a path between those two vertices. We say that G is connected if every pair of
vertices in G is connected.

A subset S ⊆ V is called a connected component of G if G restricted to S, i.e.
the graphG′ = (S,E′ = {{u, v} ∈ E : u, v ∈ S}), is a connected graph, and S is
disconnected from the rest of the graph (i.e. {u, v} 6∈ E when u ∈ S and v 6∈ S).
Note that a connected graph is a graph with only one connected component.

Theorem 8.13 (Min number of edges to connect a graph).
Let G = (V,E) be a connected graph with n vertices and m edges. Then m ≥ n− 1.
Furthermore, m = n− 1 if and only if G is acyclic.

Proof. We first prove that a connected graph with n vertices and m edges satis-
fies m ≥ n−1. Take G and remove all its edges. This graph consists of isolated
vertices and therefore contains n connected components. Let’s now imagine a
process in which we put back the edges of G one by one. The order in which
we do this does not matter. At the end of this process, we must end up with
just one connected component since G is connected. When we put back an
edge, there are two options. Either

(i) we connect two different connected components by putting an edge be-
tween two vertices that are not already connected, or

(ii) we put an edge between two vertices that are already connected, and
therefore create a cycle.

Observe that if (i) happens, then the number of connected components goes
down by 1. If (ii) happens, the number of connected components remains the
same. So every time we put back an edge, the number of connected compo-
nents in the graph can go down by at most 1. Since we start with n connected
components and end with 1 connected component, (i) must happen at least
n− 1 times, and hence m ≥ n− 1. This proves the first part of the theorem. We
now prove m = n− 1⇐⇒ G is acyclic.

m = n − 1 =⇒ G is acyclic: If m = n − 1, then (i) must have happened
at each step since otherwise, we could not have ended up with one connected
component. Note that (i) cannot create a cycle, so in this case, our original
graph must be acyclic.

G is acyclic =⇒ m = n− 1: To prove this direction (using the contraposi-
tive), assumem > n−1. We know that (i) can happen at most n−1 times. So in
at least one of the steps, (ii) must happen. This implies G contains a cycle.

Definition 8.14 (Tree, leaf, internal node).
A graph satisfying two of the following three properties is called a tree:

(i) connected,

(ii) m = n− 1,

81

(iii) acyclic.

A vertex of degree 1 in a tree is called a leaf. And a vertex of degree more than
1 is called an internal node.

Exercise 8.15 (Equivalent definitions of a tree).
Show that if a graph has two of the properties listed in Definition 8.14 (Tree,
leaf, internal node), then it automatically has the third as well.

Exercise 8.16 (A tree has at least 2 leaves).
Let T be a tree with at least 2 vertices. Show that T must have at least 2 leaves.

Exercise 8.17 (Max degree is at most number of leaves).
Let T be a tree with L leaves. Let ∆ be the largest degree of any vertex in T .
Prove that ∆ ≤ L.

Note 8.18 (Root, parent, child, sibling, etc.).
Given a tree, we can pick an arbitrary node to be the root of the tree. In a
rooted tree, we use “family tree” terminology: parent, child, sibling, ancestor,
descendant, lowest common ancestor, etc. (We assume you are already familiar
with these terms.)

Definition 8.19 (Directed graph).
A directed graph G is a pair (V,A), where

• V is a finite set called the set of vertices (or nodes),

• A is a finite set called the set of directed edges (or arcs), and every element
of A is a tuple (u, v) for u, v ∈ V . If (u, v) ∈ A, we say that there is a
directed edge from u to v. Note that (u, v) 6= (v, u) unless u = v.

Note 8.20 (Drawing directed graphs).
Below is an example of how we draw a directed graph:

Definition 8.21 (Neighborhood, out-degree, in-degree, sink, source).
Let G = (V,A) be a directed graph. For u ∈ V , we define the neighborhood
of u, N(u), as the set {v ∈ V : (u, v) ∈ A}. The out-degree of u, denoted
degout(u), is |N(u)|. The in-degree of u, denoted degin(u), is the size of the set
{v ∈ V : (v, u) ∈ A}. A vertex with out-degree 0 is called a sink. A vertex with
in-degree 0 is called a source.

Note 8.22 (Paths and cycles in directed graphs).
The notions of paths and cycles naturally extend to directed graphs. For exam-
ple, we say that there is a path from u to v if there is a sequence of distinct
vertices u = v0, v1, . . . , vk = v such that (vi−1, vi) ∈ A for all i ∈ {1, 2, . . . , k}.

82

8.2 Graph Algorithms

8.2.1 Graph searching algorithms

Definition 8.23 (Arbitrary-first search (AFS) algorithm).
The arbitrary-first search algorithm, denoted AFS, is the following generic al-
gorithm for searching a given graph. Below, “bag” refers to an arbitrary data
structure that allows us to add and retrieve objects.

G = (V,E): graph. s: vertex in V .
AFS(〈G, s〉):

1 Put s into bag.
2 While bag is non-empty:
3 Pick an arbitrary vertex v from bag.
4 If v is unmarked:
5 Mark v.
6 For each neighbor w of v:
7 Put w into bag.

Note that when a vertex w is added to the bag, it gets there because it is the
neighbor of a vertex v that has been just marked by the algorithm. In this case,
we’ll say that v is the parent of w (and w is the child of v). Explicitly keeping
track of this parent-child relationship is convenient, so we modify the above
algorithm to keep track of this information. Below, a tuple of vertices (v, w)
has the meaning that vertex v is the parent of w. The initial vertex s has no
parent, so we denote this situation by (⊥, s).

G = (V,E): graph. s: vertex in V .
AFS(〈G, s〉):

1 Put (⊥, s) into bag.
2 While bag is non-empty:
3 Pick an arbitrary tuple (p, v) from bag.
4 If v is unmarked:
5 Mark v.
6 parent(v) = p.
7 For each neighbor w of v:
8 Put (v, w) into bag.

Note 8.24 (Traversing all the vertices in the graph).
Note that AFS(G, s) visits all the vertices in the connected component that s is
a part of. If we want to traverse all the vertices in the graph, and the graph has
multiple connected components, then we can do:

G = (V,E): graph.
AFS2(〈G〉):

1 For v not marked as visited:
2 Run AFS(〈G, v〉).

83

Definition 8.25 (Breadth-first search (BFS) algorithm).
The breadth-first search algorithm, denoted BFS, is AFS where the bag is chosen
to be a queue data structure.

Note 8.26 (Running time of BFS).
The running time of BFS(G, s) is O(m), where m is the number of edges of the
input graph. If we do a BFS for each connected component, the total running
time is O(m + n), where n is the number of vertices.2 (We are assuming the
graph is given as an adjacency list.)

Definition 8.27 (Depth-first search (DFS) algorithm).
The depth-first search algorithm, denoted DFS, is AFS where the bag is chosen
to be a stack data structure.

Note 8.28 (Recursive DFS).
There is a natural recursive representation of the DFS algorithm, as follows.

G = (V,E): graph. s: vertex in V .
DFS(〈G, s〉):

1 Mark s.
2 For each neigbor v of s:
3 If v is unmarked:
4 Run DFS(〈G, v〉).

Note 8.29 (Running time of DFS).
The running time of DFS(G, s) is O(m), where m is the number of edges of the
input graph. If we do a DFS for each connected component, the total running
time is O(m + n), where n is the number of vertices. (We are assuming the
graph is given as an adjacency list.)

Note 8.30 (Search algorithms on directed graphs).
The search algorithms presented above can be applied to directed graphs as
well.

8.2.2 Minimum spanning tree

Definition 8.31 (Minimum spanning tree (MST) problem).
In the minimum spanning tree problem, the input is a connected undirected graph
G = (V,E) together with a cost function c : E → R+. The output is a subset
of the edges of minimum total cost such that, in the graph restricted to these
edges, all the vertices of G are connected.3 For convenience, we’ll assume that
the edges have unique edge costs, i.e. e 6= e′ =⇒ c(e) 6= c(e′).

2Take a moment to reflect on why this is the case.
3Obviously this subset of edges would not contain a cycle since if it did, we could remove any

edge on the cycle, preserve the connectivity property, and obtain a cheaper set. Therefore, this set
forms a tree.

84

Note 8.32 (Unique edges costs imply unique MST).
With unique edge costs, the minimum spanning tree is unique.

Theorem 8.33 (MST cut property).
Suppose we are given an instance of the MST problem. For any V ′ ⊆ V , let e =
{u,w} be the cheapest edge with the property that u ∈ V ′ and w ∈ V \V ′. Then e
must be in the minimum spanning tree.

Proof. Let T be the minimum spanning tree. The proof is by contradiction, so
assume that e = {u,w} is not in T . Since T spans the whole graph, there must
be a path from u to w in T . Let e′ = {u′, w′} be the first edge on this path such
that u′ ∈ V ′ and w′ ∈ V \V ′. Let Te−e′ = (T\{e′}) ∪ {e}. If Te−e′ is a spanning
tree, then we reach a contradiction because Te−e′ has lower cost than T (since
c(e) < c(e′)).

Te−e′ is a spanning tree: Clearly Te−e′ has n − 1 edges (since T has n − 1
edges). So if we can show that Te−e′ is connected, this would imply that Te−e′
is a tree and touches every vertex of the graph, i.e., Te−e′ is a spanning tree.
Consider any two vertices s, t ∈ V . There is a unique path from s to t in T .
If this path does not use the edge e′ = {u′, w′}, then the same path exists in
Te−e′ , so s and t are connected in Te−e′ . If the path does use e′ = {u′, w′}, then
instead of taking the edge {u′, w′}, we can take the following path: take the
path from u′ to u, then take the edge e = {u,w}, then take the path from w
to w′. So replacing {u′, w′} with this path allows us to construct a sequence
of vertices starting from s and ending at t, such that each consecutive pair of
vertices is an edge. Therefore s and t are connected.

Theorem 8.34 (Jarnı́k-Prim algorithm for MST).
There is an algorithm that solves the MST problem in polynomial time.

Proof. We first present the algorithm which is due to Jarnı́k and Prim. Given
an undirected graph G = (V,E) and a cost function c : E → R+:

G = (V,E): graph. c : E → R+: edge costs.
MST(〈G, c〉):

1 V ′ = {u} (for some arbitrary u ∈ V)
2 E′ = ∅.
3 While V ′ 6= V :
4 Let {u, v} be the minimum cost edge such that u ∈ V ′

but v 6∈ V ′.
5 Add {u, v} to E′.
6 Add v to V ′.

85

7 Output E′.

By Theorem 8.33 (MST cut property), the algorithm always adds an edge
that must be in the MST. The number of iterations is n − 1, so all the edges of
the MST are added to E′. Therefore the algorithm correctly outputs the unique
MST.

The running time of the algorithm can be upper bounded by O(nm) be-
cause there are O(n) iterations, and the body of the loop can be done in O(m)
time.

Exercise 8.35 (MST with negative costs).
Suppose an instance of the Minimum Spanning Tree problem is allowed to
have negative costs for the edges. Explain whether we can use the Jarnı́k-Prim
algorithm to compute the minimum spanning tree in this case.

Exercise 8.36 (Maximum spanning tree).
Consider the problem of computing the maximum spanning tree, i.e., a span-
ning tree that maximizes the sum of the edge costs. Explain whether the Jarnı́k-
Prim algorithm solves this problem if we modify it so that at each iteration, the
algorithm chooses the edge between V ′ and V \V ′ with the maximum cost.

Exercise 8.37 (Kruskal’s algorithm).
Consider the following algorithm for the MST problem (which is known as
Kruskal’s algorithm). Start with MST being the empty set. Go through all the
edges of the graph one by one from the cheapest to the most expensive. Add
the edge to the MST if it does not create a cycle. Show that this algorithm
correctly outputs the MST.

8.2.3 Topological sorting

Definition 8.38 (Topological order of a directed graph).
A topological order of an n-vertex directed graph G = (V,A) is a bijection f :
V → {1, 2, . . . , n} such that if (u, v) ∈ A, then f(u) < f(v).

Example 8.39 (Example of topological order).
On the left, we have a directed graph, and on the right, we represent the topo-
logical order of the graph.

Here, f(e) = 1, f(d) = 2, f(a) = 3, f(b) = 4, and f(c) = 5.

86

Exercise 8.40 (Cycle implies no topological order).
Show that if a directed graph has a cycle, then it does not have a topological
order.

Definition 8.41 (Topological sorting problem).
In the topological sorting problem, the input is a directed acyclic graph, and the
output is a topological order of the graph.

Lemma 8.42 (Acyclic directed graph has a sink).
If a directed graph is acyclic, then it has a sink vertex.

Proof. By contrapositive: If a directed graph has no sink vertices, then it means
that every vertex has an outgoing edge. Start with any vertex, and follow an
outgoing edge to arrive at a new vertex. Repeat this process. At some point,
you have to visit a vertex that you have visited before. This forms a cycle.

Note 8.43 (Topological sort - naı̈ve algorithm).
The following algorithm solves the topological sorting problem in polynomial
time.

G = (V,A): directed acyclic graph.
Top-Sort-Naive(〈G〉):

1 p = |V |.
2 While p ≥ 1:
3 Find a sink vertex v and remove it from G.
4 f(v) = p.
5 p = p− 1.
6 Output f .

Exercise 8.44 (Topological sort, correctness of naı̈ve algorithm).
Show the algorithm above correctly solves the topological sorting problem,
i.e., show that for (u, v) ∈ A, f(u) < f(v). What is the running time of this
algorithm?

Theorem 8.45 (Topological sort via DFS).
There is a O(n+m)-time algorithm that solves the topological sorting problem.

Proof. The algorithm is a slight variation of DFS.

G = (V,A): directed acyclic graph.
Top-Sort(〈G〉):

1 p = |V |.
2 For v not marked as visited:
3 Run DFS’(〈G, v〉).

87

G = (V,A): directed graph. v: v ∈ V .
DFS’(〈G, v〉):

1 Mark v as “visited”.
2 For each neighbor u of v:
3 If u is not marked visited:
4 Run DFS’(〈G, u〉).
5 f(v) = p.
6 p = p− 1.

4 Output f .

The running time is the same as DFS. To show the correctness of the algo-
rithm, all we need to show is that for (u, v) ∈ A, f(u) < f(v). There are two
cases to consider.

• Case 1: u is visited before v. In this case observe that DFS(〈G, v〉) will
finish before DFS(〈G, u〉). Therefore f(v) will be assigned a value before
f(u), and so f(u) < f(v).

• Case 2: v is visited before u. Notice that we cannot visit u from DFS(〈G, v〉)
because that would imply that there is a cycle. Therefore DFS(〈G, u〉) is
called after DFS(〈G, v〉) is completed. As before, f(v) will be assigned a
value before f(u), and so f(u) < f(v).

88

Quiz

1. True or false: For a graph G = (V,E), if for any u, v ∈ V there exists a
unique path from u to v, then G is a tree.

2. True or false: Depth-first-search algorithm runs in O(n) time for a con-
nected graph, where n is the number of vertices of the input graph.

3. True or false: If a graph on n vertices has n − 1 edges, then it must be
acyclic.

4. True or false: If a graph on n vertices has n − 1 edges, then it must be
connected.

5. True or false: If a graph on n vertices has n − 1 edges, then it must be a
tree.

6. True or false: The degree sum of a graph is
∑

v∈V deg(v). Every tree on n
vertices has exactly the same degree sum.

7. True or false: In a directed graph a self-loop, i.e. an edge of the form
(u, u), is allowed by the definition.

8. True or false: Every directed graph has a topological order.

9. True or false: Suppose a graph has 2 edges with the same cost. Then there
are at least 2 MSTs of the graph.

10. True or false: Let G be a 5-regular graph (i.e. a graph in which every
vertex has degree exactly 5). It is possible that G has 15251 edges.

89

Hints to Selected Exercises

Exercise 8.15 (Equivalent definitions of a tree):
Make use of Theorem (Min number of edges to connect a graph) and its proof.

Exercise 8.16 (A tree has at least 2 leaves):
Use the Handshake Theorem.

Exercise 8.17 (Max degree is at most number of leaves):
There are at least 3 different solutions to this problem. One uses the Handshake Theorem. Another
uses induction on the number of vertices.

Exercise 8.35 (MST with negative costs):
Yes, we can.

Exercise 8.36 (Maximum spanning tree):
Yes, it does. Consider multiplying the costs by −1.

Exercise 8.37 (Kruskal’s algorithm):
The correctness of the algorithm follows from the MST cut property. Show by induction that every
time the algorithm decides to add an edge, it adds one that must be in the MST (by the MST cut
property).

90

Chapter 9

Matchings in Graphs

91

PREAMBLE

Chapter structure:

• Section 9.1 (Maximum Matchings)

– Definition 9.1 (Matching – maximum, maximal, perfect)

– Definition 9.5 (Maximum matching problem)

– Definition 9.6 (Augmenting path)

– Theorem 9.9 (Characterization for maximum matchings)

– Definition 9.12 (Bipartite graph)

– Definition 9.14 (k-colorable graphs)

– Theorem 9.17 (Characterization of bipartite graphs)

– Theorem 9.18 (Finding a maximum matching in bipartite graphs)

– Theorem 9.20 (Hall’s Theorem)

– Corollary 9.21 (Characterization of bipartite graphs with perfect
matchings)

• Section 9.2 (Stable Matchings)

– Definition 9.24 (Complete graph)

– Definition 9.25 (Stable matching problem)

– Theorem 9.26 (Gale-Shapley proposal algorithm)

– Definition 9.27 (Best and worst valid partners)

– Theorem 9.28 (Gale-Shapley is male optimal)

Chapter goals:

In this chapter, we continue our discussion on graphs and turn our atten-
tion to finding various kinds of matchings in graphs. Algorithms to find
matchings are used a lot in real-world applications, and we discuss some
of these applications in lecture. One of our goals is to show you connec-
tions between abstract graph theoretic concepts and real-world problems.
Another goal is to present some clever algorithms that solve matching prob-
lems which are applicable to many different settings. This chapter will ex-
pand your toolkit for reasoning about graphs and help you build more in-
tuition about them.

92

9.1 Maximum Matchings

Definition 9.1 (Matching – maximum, maximal, perfect).
A matching in a graph G = (V,E) is a subset of the edges that do not share an
endpoint. A maximum matching in G is a matching with the maximum number
of edges among all possible matchings. A maximal matching is a matching with
the property that if we add any other edge to the matching, it is no longer a
matching.1 A perfect matching is a matching that covers all the vertices of the
graph.

Example 9.2 (Examples of matchings).
Consider the following graph.

Note that the empty set and a set with only one edge is always a matching. The
setM = {{v1, v5}, {v4, v7}} is a maximal matching with 2 edges, since we if we
tried to add another edge to this set, it would no longer be a matching. On
the other hand, this maximal matching is not a maximum matching because
there is another matching with 3 edges: M ′ = {{v1, v6}, {v3, v5}, {v4, v7}}. This
graph does not have a perfect matching. One easy way to see this is that it has
an odd number of vertices, and any graph with an odd number of vertices
cannot have a perfect matching.

Note 9.3 (Size of a matching).
The size of a matching M refers to the number of edges in the matching, and
is denoted by |M |. Note that this coincides with the size of the set that M
represents.

Exercise 9.4 (Number of perfect matchings in a complete graph).
Let n be even, and let G be the complete graph2 on n vertices. How many
different perfect matchings does G contain?

Definition 9.5 (Maximum matching problem).
In the maximum matching problem the input is an undirected graph G = (V,E)
and the output is a maximum matching in G.

Definition 9.6 (Augmenting path).
Let G = (V,E) be a graph and let M ⊆ E be a matching in G. An augmenting
path in G with respect to M is a path such that

(i) the path is an alternating path, which means that the edges in the path
alternate between being in M and not in M
(a single edge which is not in M satisfies this property),

1Note that a maximal matching is not necessarily a maximum matching, but a maximum
matching is always a maximal matching.

2A complete graph is a graph in which every possible edge is present.

93

(ii) the first and last vertices in the path are not a part of the matching M .

Example 9.7 (Augmenting path example).
Consider the following graph.

LetM be the matching {{v1, v5}, {v3, v6}, {v4, v8}}. Then the path (v2, v5, v1, v7)
is an augmenting path with respect to M .

Note 9.8 (Edge cases for augmenting paths).
An augmenting path does not need to contain all the edges in M . It is also
possible that it does not contain any of the edges of M . A single edge {u, v}
where u and v are not matched is an augmenting path.

Theorem 9.9 (Characterization for maximum matchings).
Let G = (V,E) be a graph. A matching M ⊆ E is maximum if and only if there is no
augmenting path in G with respect to M .

Proof. The statement we want to prove is equivalent to the following. Given a
graph G = (V,E), a matching M ⊆ E is not maximum if and only if there is an
augmenting path in G with respect to M . There are two directions to prove.
First direction: Suppose there is an augmenting path in G with respect to M .
Then we want to show that M is not maximum. Let the augmenting path be
v1, v2, . . . , vk:

The highlighted edges represent edges in M . By the definition of an augment-
ing path, we know that v1 and vk are not matched by M . Since v1 and vk are
not matched and the path is alternating, the number of edges on this path that
are in the matching is one less than the number of edges not in the matching.
To see thatM is not a maximum matching, observe that we can obtain a bigger
matching by flipping the matched and unmatched edges on the augmenting
path. In other words, if an edge on the path is in the matching, we remove
it from the matching, and if an edge on the path is not in the matching, we
put it in the matching. This gives us a matching larger than M , so M is not
maximum.
Second direction: We now prove the other direction. In particular, we want to
show that if M is not a maximum matching, then we can find an augmenting
path in G with respect to M . Let M∗ denote a maximum matching in G. Since
M is not maximum, we know that |M | < |M∗|. We define the set S to be the set
of edges contained inM∗ orM , but not both. That is, S = (M∗∪M)\(M∗∩M).
If we color the edges in M with blue, and the edges in M∗ with red, then
S consists of edges that are colored either blue or red, but not both (i.e. no
purple edges). Below is an example:

94

(Horizontal edges correspond to the red edges. The rest is blue.) Our goal is to
find an augmenting path with respect to M in S (i.e., with respect to the blue
edges), and once we do this, the proof will be complete.

We now proceed to find an augmenting path with respect to M in S. To do
so, we make a couple of important observations about S. First, notice that each
vertex that is a part of S has degree 1 or 2 because it can be incident to at most
one edge in M and at most one edge in M∗. If the degree was more than 2, M
and M∗ would not be matchings. We make two claims:

(i) Because every vertex has degree 1 or 2, S consists of disjoint paths and
cycles.

(ii) The edges in these paths and cycles alternate between blue and red.

The proof of the first claim is omitted and is left as an exercise for the reader.
The second claim is true because if the edges were not alternating, i.e., if there
were two red or two blue edges in a row, then this would imply the red edges
or the blue edges don’t form a matching (remember that in a matching no two
edges can share an endpoint).

Since M∗ is a bigger matching than M , we know that S has more red edges
than blue edges. Observe that the cycles in S must have even length, because
otherwise the edges cannot alternate between blue and red. Therefore the cy-
cles have an equal number of red and blue edges. This implies that there must
be a path in S with more red edges than blue edges. In particular, this path
starts and ends with a red edge. This path is an augmenting path with re-
spect to M (i.e., the blue edges), since it is clearly alternating between edges
in M and edges not in M , and the endpoints are unmatched with respect to
M . So using the assumption that M is not maximum, we were able to find an
augmenting path with respect to M . This completes the proof.

Exercise 9.10 (Graphs with max degree at most 2).
Let G = (V,E) be a graph such that all vertices have degree at most 2. Then
prove that G consists of disjoint paths and cycles (where we count an isolated
vertex as a path of length 0).

Exercise 9.11 (A tree can have at most one perfect matching).
Show that a tree can have at most one perfect matching.

Definition 9.12 (Bipartite graph).
A graph G = (V,E) is called bipartite if there is a partition3 of V into sets X
and Y such that all the edges in E have one endpoint in X and the other in
Y . Sometimes the bipartition is given explicitly and the graph is denoted by
G = (X,Y,E).

Example 9.13 (Bipartite graph example).
Below is an example of a bipartite graph.

3Recall that a partition of V into X and Y means that X and Y are disjoint and X ∪ Y = V .

95

Definition 9.14 (k-colorable graphs).
Let G = (V,E) be a graph. Let k ∈ N+. A k-coloring of V is just a map χ : V →
C where C is a set of cardinality k. (Usually the elements of C are called colors.
If k = 3 then C = {red,green, blue} is a popular choice. If k is large, we often
just call the “colors” 1, 2, . . . , k.) A k-coloring is said to be legal for G if every
edge in E is bichromatic, meaning that its two endpoints have different colors.
(I.e., for all {u, v} ∈ E it is required that χ(u) 6= χ(v).) Finally, we say that G is
k-colorable if it has a legal k-coloring.

Example 9.15 (A 3-colorable graph).
The graph below is 3-colorable. We can color the vertex at the center green,
and color the outer vertices with blue and red by alternating those two colors.

Note 9.16 (2-colorability is equivalent to bipartiteness).
A graph G = (V,E) is bipartite if and only if it is 2-colorable. The 2-coloring
corresponds to partitioning the vertex set V into X and Y such that all the
edges have one endpoint in X and the other in Y .

Theorem 9.17 (Characterization of bipartite graphs).
A graph is bipartite if and only if it contains no odd-length cycles.

Proof. There are two directions to prove.
(=⇒): For this direction, we want to show that if a graph is bipartite, then it
contains no odd-length cycles. We prove the contrapositive. Observe that it is
impossible to 2-color an odd-length cycle. So if a graph contains an odd-length
cycle, the graph cannot be 2-colored, and therefore cannot be bipartite.
(⇐=): For this direction, we want to show that if a graph does not contain an
odd-length cycle, then it is bipartite. So suppose the graph contains no cycles
of odd length. Without loss of generality, assume the graph is connected (if it
is not, we can apply the argument to each connected component separately).
For u, v ∈ V , let dist(u, v) denote the length of the shortest path from u to v (or
from v to u). Pick a starting vertex/root s and consider the “BFS tree” rooted
at s. In this tree, level 0 corresponds to s, and level i corresponds to all vertices
v with dist(s, v) = i. Color odd-indexed levels blue, and color even-indexed
levels red.

96

The proof is done once we show that this is a valid 2-coloring of the graph.
To show this, we’ll argue that no edge has its endpoints colored the same color.
There are two types of edges we need to worry about that could potentially
have its endpoints colored the same color. We consider each type below.

First, there could potentially be an edge between two vertices u and v at
the same level. Let’s assume such an edge exists. Let w be the lowest common
ancestor of u and v. Note that dist(u,w) = dist(v, w), so the path from w to u,
plus the path from w to v, plus the edge {u, v}, form an odd-length cycle. This
is a contradiction.

Second, we need to consider the possibility that there is an edge between
a vertex u at level i and a vertex v at level i + 2k for some k > 0. However,
the existence of such an edge implies that dist(s, v) ≤ i + 1, which contradicts
the fact that v is at level i + 2k. So this type of edge cannot exist either. This
completes the proof.

Theorem 9.18 (Finding a maximum matching in bipartite graphs).
There is a polynomial time algorithm to solve the maximum matching problem in bi-
partite graphs.

Proof. Let G = (X,Y,E) be the input graph. The high level steps of the algo-
rithm is as follows.

• Let M = {{x, y}}where {x, y} ∈ E is an arbitrary edge.

• Repeat until there is no augmenting path with respect to M :

– Find an augmenting path with respect to M .
– Update M according to the augmenting path (swapping matched

and unmatched edges along the path).

Every time we find an augmenting path, we increase the size of our match-
ing by one. When there are no more augmenting paths, we stop and correctly
output a maximum matching (the correctness follows from Theorem 9.9 (Char-
acterization for maximum matchings)). The only unclear step of the algorithm
is finding an augmenting path with respect to M . And we explain how to do
this step below. But before we do that, note that if this step can be done in
polynomial time, then the overall running time of the algorithm is polynomial
time since the loop repeats O(n) times and the work done in each iteration is
polynomial time.

We now show how to find an augmenting path (given G = (X,Y,E) and
M ⊆ E):

• Direct edges in E\M from X to Y .

• Direct edges in M from Y to X .

• For each unmatched x ∈ X :

– Run DFS(G, x).
– If you hit an unmatched y ∈ Y , output the path from x to y.

• Output “no augmenting path found.”

Notice that the goal of the algorithm is to find a directed path from an un-
matched x ∈ X to an unmatched y ∈ Y . The correctness of this part follows
from the following observation: There is an augmenting path with respect to
M if and only if there is a directed path (in the modified graph) from an un-
matched vertex x inX to an unmatched vertex y in Y . (We leave it to the reader
to verify this.) The running time is polynomial time since the loop repeats at
most O(n) times, and the work done in each iteration is polynomial time.

97

Note 9.19 (Finding a maximum matching in non-bipartite graphs).
The high-level algorithm above presented in the proof of Theorem 9.18 (Find-
ing a maximum matching in bipartite graphs) is in fact applicable to general
(not necessarily bipartite) graphs. However, the step of finding an augment-
ing path with respect to a matching turns out to be much more involved, and
therefore we do not cover it in this chapter. See https://en.wikipedia.org/

wiki/Blossom_algorithm if you would like to learn more.

Theorem 9.20 (Hall’s Theorem).
Let G = (X,Y,E) be a bipartite graph. For a subset S of the vertices, let N(S) =⋃

v∈S N(v). Then G has a matching covering all the vertices in X if and only if for all
S ⊆ X , we have |S| ≤ |N(S)|.

Proof. There are two directions to prove.
(=⇒): For this direction, we need to show that if G has a matching covering
all the vertices in X , then every S ⊆ X satisfies |S| ≤ |N(S)|. We consider the
contrapositive. So suppose there is some S ⊆ X such that |S| > |N(S)|. The
vertices in S can only be matched to vertices in N(S), and since |S| > |N(S)|,
there cannot be a matching that covers every element in S. And this implies
there cannot be a matching covering every element of X .
(⇐=): For this direction, we need to show that if every S ⊆ X satisfies |S| ≤
|N(S)|, then there is a matching that covers all the vertices in X . We will prove
the contrapositive. So assume there is no matching that covers all the vertices
in X . Our goal is to find some S ⊆ X such that |S| > |N(S)|.

In order to identify such a set S, we need to make a couple of definitions.
Let M be a maximum matching and let x ∈ X be an element that it does not
cover. We turn G into a directed graph as follows: direct all edges not in M
from X to Y , and direct all edges in M from Y to X . We define L ⊆ X to be
the set of vertices in X that you can reach by a directed path starting at x (L
does not include x). And we define R ⊆ Y to be the set of all vertices in Y that
you can reach by a directed path starting at x. Here is an illustration:

We will show that for S = L ∪ {x}, we have |S| > |N(S)|. We need two claims
to argue this.

Claim 1: |L| = |R|.
Proof : Each ` ∈ L is matched to some r ∈ R because the only way we can
reach an ` ∈ L is through an edge in the matching. Conversely, each r ∈ R
must be matched to some ` ∈ L since if this was not true, i.e., if there was an
unmatched r ∈ R, that would imply that the path from x to r is an augmenting
path, and this would contradict the fact that M is a maximum matching (The-
orem 9.9 (Characterization for maximum matchings)). Since every element of
L is matched by M to an element of R and vice versa, there is a one-to-one
correspondence between L and R, i.e., |L| = |R|.

Claim 2: In the original undirected graph, N(L ∪ {x}) ⊆ R.
(In fact, N(L ∪ {x}) = R but we only need one side of the inclusion.)
Proof : For any ` ∈ L ∪ {x}, we want to argue that N(`) ⊆ R. First consider the
case that ` = x. Then all the neighbors of x must be in R since all the edges

98

https://en.wikipedia.org/wiki/Blossom_algorithm
https://en.wikipedia.org/wiki/Blossom_algorithm

incident to x are directed from left to right. So N(x) ⊆ R, as desired. Now
consider any ` ∈ L. We want to argue that all the neighbors of ` must be in R.
To argue about the neighbors of `, we look at all the edges incident to `. In this
set of edges incident to `, exactly one edge e is in the matching M . Note that
e ∈ M is directed from Y to X , and must be incident to some r ∈ R because
the only way to reach ` is through some r ∈ R via e. If we now look at all the
other edges incident to `, note that they must be directed from X to Y , and
the vertices K ⊆ Y that they are incident to must be in R. This is because by
definition of L, ` ∈ L is reachable from x, which means the vertices inK would
also be reachable from x, and therefore would be in R (by the definition of R).
This shows that every neighbor of ` is in R, and completes the proof of Claim
2.

Combining Claim 1 and Claim 2 above, we have

|L ∪ {x}| > |R| ≥ |N(L ∪ {x})|,

i.e., for S = L ∪ {x}, |S| > |N(S)|, as desired.

Corollary 9.21 (Characterization of bipartite graphs with perfect matchings).
Let G = (X,Y,E) be a bipartite graph. Then G has a perfect matching if and only if
|X| = |Y | and for any S ⊆ X , we have |S| ≤ |N(S)|.

Note 9.22 (Hall’s Theorem when the two parts have equal size).
Sometimes people call the above corollary Hall’s Theorem.

Exercise 9.23 (Practice with perfect matchings).

(a) Let G be a bipartite graph on 2n vertices such that every vertex has de-
gree at least n. Prove that G must contain a perfect matching.

(b) Let G = (X,Y,E) be a bipartite graph with |X| = |Y |. Show that if G is
connected and every vertex has degree at most 2, then G must contain a
perfect matching.

9.2 Stable Matchings

Definition 9.24 (Complete graph).
A graph G = (V,E) is called complete if E contains all the possible edges, i.e.,
{u, v} ∈ E for any distinct u, v ∈ V . A bipartite graph G = (X,Y,E) is called
complete if E contains all the possible edges between X vertices and Y ver-
tices.

Definition 9.25 (Stable matching problem).
An instance of the stable matching problem is a complete bipartite graph G =
(X,Y,E) with |X| = |Y |, and a preference list for each node of the graph. A
preference list for a node inX is an ordering of the Y vertices, and a preference
list for a node in Y is an ordering of the X vertices. Below is an example of an
instance of the stable matching problem:

99

The output of the stable matching problem is a stable matching, which is defined
as a matching that satisfies two properties:

(i) The matching is a perfect matching.

(ii) There are no unstable pairs. A pair of vertices (x, y) where x ∈ X and
y ∈ Y is called unstable if they are not matched to each other, but they
both prefer each other to the partners they are matched to.

Theorem 9.26 (Gale-Shapley proposal algorithm).
There is a polynomial time algorithm which, given an instance of the stable matching
problem, always returns a stable matching.

Proof. We first describe the algorithm (which is called the Gale-Shapley algo-
rithm). For the sake of clear exposition, we refer to the elements of X as men,
and the elements of Y as women.

While there is a male m in X not matched, do the following:

• Let m be an arbitrary unmatched man.

• Let w be the highest ranked woman on m’s preference list to whom m
has not “proposed” yet.

• Let m “propose” to w.

• If w is unmatched or w prefers m over her current partner, match m and
w. (The previous partner of w, if there was any, is now unmatched.)

The theorem will follow once we show the following 3 things:

(a) the number of iterations in the algorithm is at most n2, where n = |X| =
|Y |;

(b) the algorithm always outputs a perfect matching;

(c) there are no unstable pairs with respect to this matching.

Part (a) implies that the algorithm is polynomial time. Parts (b) and (c) imply
that the matching returned by the algorithm is a stable matching.

Proof of (a): Notice that the number of iterations in the algorithm is equal
to the total number of proposals made. No man proposes to a woman more
than once, so each man makes at most n proposals. There are n men in total,
so the total number of proposals is at most n2.

Proof of (b): The proof is by contradiction, so suppose the algorithm does
not output a perfect matching. This means that some man, call it m, is not
matched to any woman. The proof can be broken down as follows:

m is not matched at the end =⇒ all women must be matched at the end
=⇒ all men must be matched at the end.

100

This obviously leads to the desired contradiction. The second implication is
quite simple: since there are an equal number of men and women, the only
way all the women can be matched at the end is if all the men are matched.
To show the first implication, notice that since m is not matched at the end, he
got rejected by all the women he proposed to. Either he got rejected because
the woman preferred her current partner, or he got rejected by a woman that
he was already matched with. Either way, all the women that m proposed to
must have been matched to someone at some point in the algorithm. But once
a woman is matched, she never goes back to being unmatched. So at the end
of the algorithm, all the women must be matched.

Proof of (c): We first make a crucial observation. As the algorithm proceeds,
a man can only go down in his preference list, and a woman can only go up in
her preference list. Now consider any pair (m,w) where m ∈ X , w ∈ Y , and
m and w are not matched by the algorithm. We want to show that this pair is
not unstable. Let w′ be the woman that m is matched to, and let m′ be the man
that w is matched to.

There are two cases to consider:

(i) m proposed to w at some point in the algorithm,

(ii) m never proposed to w.

If (i) happened, then w must have rejected m at some point, which implies w
must prefer m′ over m (recall w can only go up in her preference list). This
implies w does not prefer m over her current partner, and so (m,w) is not
unstable. If (ii) happened, then w′ must be higher on the preference list of m
than w (recall m can only go down in his preference list). This implies m does
not prefer w over his current partner, and so (m,w) is not unstable. So in either
case, (m,w) is stable, and we are done.

Definition 9.27 (Best and worst valid partners).
Consider an instance of the stable matching problem. We say that m ∈ X is
a valid partner of w ∈ Y (or w is a valid partner of m) if there is some stable
matching in which m and w are matched. For u ∈ X ∪ Y , we define the best
valid partner of u, denoted best(u), to be the highest ranked valid partner of
u. Similarly, we define the worst valid partner of u, denoted worst(u), to be the
lowest ranked valid partner of u.

Theorem 9.28 (Gale-Shapley is male optimal).
The Gale-Shapley algorithm always matches a malem ∈ X with its best valid partner,
i.e., it returns {(m, best(m)) : m ∈ X}.

Proof. The proof is by contradiction so assume that at the end of the Gale-
Shapley algorithm, there is some man not matched to his best valid partner.
This means that in the algorithm, some man gets rejected by a valid partner.
Consider the first time that this happens in the algorithm. Let m be this man
and w be the valid partner that rejects m. Let m′ be the man that w is matched
to right after rejecting m. Note that w prefers m′ over m.

101

Since w is a valid partner of m, by definition, there is some stable match-
ing in which m and w are matched. Let w′ be the match of m′ in this stable
matching.

We will now show that (m′, w) forms an unstable pair in the above stable
matching, so in fact, the matching cannot be stable. This is the desired contra-
diction.

We already know that w prefers m′ over m. So we just need to argue that
m′ prefers w over w′. And this is where we are going to use the assumption
that m is the first male in the Gale-Shapley algorithm to be rejected by a valid
partner. If m′ actually preferred w′ over w, than m′ would have to be rejected
by w′ in the algorithm as m′ later gets matched to w. This would mean m′ was
rejected by a valid partner before m was. Since we know this is not the case,
we know that m′ must prefer w over w′. This concludes the proof.

Note 9.29 (Interesting consequence of Gale-Shapley).
Note that it is not a priori clear at all that {(m, best(m)) : m ∈ X} would be a
matching, not to mention a stable matching.

Exercise 9.30 (Gale-Shapley is female pessimal).
Show that the Gale-Shapley algorithm always matches a female w ∈ Y with its
worst valid partner, i.e., it returns {(worst(w), w) : w ∈ Y }.

Exercise 9.31 (Is there a unique stable matching?).
Give a polynomial time algorithm that determines if a given instance of the
stable matching problem has a unique solution or not.

Exercise 9.32 (Identical preferences).
Suppose we are given an instance of the stable matching problem in which all
the men’s preferences are identical to each other, and all the women’s prefer-
ences are identical to each other. Prove or disprove: there is only one stable
matching for such an instance.

102

Exercise 9.33 (Stable roommates problem).
Consider the following variant of the stable matching problem. The input is a
complete graph on n vertices (not necessarily bipartite), where n is even. Each
vertex has a preference list over every other vertex in the graph. The goal is to
find a stable matching. Give an example to show that a stable matching does
not always exist.

103

Quiz

1. True or false: Given a matching M , there can be at most one augmenting
path with respect to M .

2. True of false: A matching M in a non-bipartite graph G is maximum if
and only if there is no augmenting path with respect to M .

3. True or false: The Gale-Shapley algorithm can output different matchings
based on the order of the men proposing.

4. True or false: For every stable matching instance, the male-optimal and
female-optimal stable matchings differ in at least one pairing.

5. True or false: Given an instance of the stable matching problem, it is not
possible for two males to have the same best valid partner.

6. True or false: The graph below is bipartite.

104

Hints to Selected Exercises

Exercise 9.10 (Graphs with max degree at most 2):
Induct on the number of vertices.

Exercise 9.11 (A tree can have at most one perfect matching):
There are various solutions. One approach is to go by contradiction and assume a tree has two
different perfect matchings. Then consider the symmetric difference between those perfect match-
ings.

Exercise 9.23 (Practice with perfect matchings):
For part (a), you can use Hall’s Theorem. For part (b), use Exercise (Graphs with max degree at
most 2).

Exercise 9.30 (Gale-Shapley is female pessimal):
Use a proof by contradiction and make use of Theorem (Gale-Shapley is male optimal).

Exercise 9.31 (Is there a unique stable matching?):
Use Theorem (Gale-Shapley is male optimal) and Exercise (Gale-Shapley is female pessimal).

Exercise 9.32 (Identical preferences):
There is indeed one stable matching.

Exercise 9.33 (Stable roommates problem):
Consider 4 nodes with one node being the least preferred for the others.

105

106

Chapter 10

Boolean Circuits

107

PREAMBLE

Chapter structure:

• Section 15.1.1 (Basic Definitions)

– Definition 10.3 (Boolean circuit)

– Definition 10.8 (Circuit family)

– Definition 10.9 (A circuit family deciding/computing a decision
problem)

– Definition 10.10 (Circuit size and complexity)

• Section 10.2 (3 Theorems on Circuits)

– Theorem 10.14 (O(2n) upper bound on circuit complexity)

– Proposition 10.15 (Number of Boolean functions)

– Theorem 10.16 (Shannon’s Theorem)

– Lemma 10.17 (Counting circuits)

– Theorem 10.20 (Efficient TM implies efficient circuit)

– Definition 10.21 (Complexity class P)

– Corollary 10.22 (A language in P has polynomial circuit com-
plexity)

Chapter goals:

In this chapter we introduce a new model of computation called Boolean
circuits. Boolean circuits have some desirable properties as a computational
model. For instance, arguably the definition of a circuit is simpler than a
Turing machine. Therefore many people find circuits easier to reason about.
Plus, they are closely related to the Turing machine model. In particular, as
we will see, if a language can be computed efficiently by a Turing machine,
then it can also be computed efficiently by circuits.

In addition to these desirable properties, Boolean circuits are a good
mathematical model to study parallel computation (even though we will
not do so in this course). Furthermore, real computers are built using digital
circuits, and therefore engineers like to study and understand circuits.

Our main motivation to study circuits, and to do it at this point in the
course, is that Boolean circuits are related to the famous P vs NP question
in various ways. In lecture, we explore one of these connections. In a future
chapter on NP and NP-completeness, we will explore another important
connection.

Our goal in this chapter is to introduce you to the Boolean circuit model
of computation, present the basic definitions regarding what it means for a
circuit to compute/decide a language and how we measure the complexity
of a circuit. Afterwards, we present 3 Theorems which we hope will give
you a big picture view on the Boolean circuit model and how it compares
to the Turing machine model.

108

10.1 Basic Definitions

Note 10.1 (Dividing the set of words by length).
For a finite alphabet Σ, Σn denotes all words in Σ∗ with length (i.e. number
of symbols) exactly n. Let f : {0, 1}∗ → {0, 1} be a decision problem. We
denote by fn : {0, 1}n → {0, 1} the restriction of f to words of length n (i.e. for

x ∈ {0, 1}n, fn(x)
def
= f(x)). So f can be thought of as a collection of functions

(f0, f1, f2, . . .). We’ll write f = (f0, f1, f2, . . .) as a shorthand for this.

Note 10.2 (Unary NOT, binary AND, binary OR).
We denote by ¬ the unary NOT operation, by ∧ the binary AND operation,
and by ∨ the binary OR operation. In particular, we can write the truth tables
of these operations as follows:

x ¬x
0 1
1 0

x y x ∧ y
0 0 0
0 1 0
1 0 0
1 1 1

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 1

Definition 10.3 (Boolean circuit).
A Boolean circuit with n-input variables (n ≥ 0) is a directed acyclic graph
with the following properties. Each node of the graph is called a gate and each
directed edge is called a wire. There are 5 types of gates that we can choose to
include in our circuit: AND gates, OR gates, NOT gates, input gates, and con-
stant gates. There are 2 constant gates, one labeled 0 and one labeled 1. These
gates have in-degree/fan-in1 0. There are n input gates, one corresponding to
each input variable. These gates also have in-degree/fan-in 0. An AND gate
corresponds to the binary AND operation ∧ and an OR gate corresponds to
the binary OR operation ∨. These gates have in-degree/fan-in 2. A NOT gate
corresponds to the unary NOT operation ¬, and has in-degree/fan-in 1. One of
the gates in the circuit is labeled as the output gate. Gates can have out-degree
more than 1, with the exception of the output gate, which has out-degree 0.

For each 0/1 assignment to the input variables, the Boolean circuit pro-
duces a one-bit output. The output of the circuit is the output of the gate that
is labeled as the output gate. The output is calculated naturally using the truth
tables of the operations corresponding to the gates. The input-output behavior
of the circuit defines a function f : {0, 1}n → {0, 1} and in this case, we say
that the circuit computes this function.

Example 10.4 (A circuit computing (x1 6= x2) ∧ (x3 6= x4)).
Below is an example of how we draw a circuit. In this example, n = 4.

1The in-degree of a gate is also known as the fan-in of the gate.

109

The output gate is the gate at the very top with an arrow that links to nothing.
The circuit outputs 1 if and only if x1 6= x2 and x3 6= x4.

Note 10.5 (Types of gates a circuit can have).
A Boolean circuit can be defined to have gates other than AND, OR, and NOT.
For example, we could define circuits to have XOR (exclusive-or) gates. How-
ever, restricting the gate options to AND, OR and NOT is a common and con-
venient choice. Unless specified otherwise, we will stick to this restriction in
these notes.

Exercise 10.6 (Drawing circuits).
Draw a circuit that computes the following functions.

(a) The parity function PAR : {0, 1}2 → {0, 1} on 2 variables, which is de-
fined as PAR(x1, x2) = 1 iff x1 + x2 is odd.

(b) The majority function MAJ : {0, 1}3 → {0, 1} on 3 variables, which is
defined as MAJ(x1, x2, x3) = 1 iff x1 + x2 + x3 ≥ 2.

Exercise 10.7 (NAND is “universal”).
Define a NAND gate as NAND(x, y) = ¬(x ∧ y). Show that any circuit with
AND, OR and NOT gates can be converted into an equivalent circuit (i.e. a
circuit computing the same function) that uses only NAND gates (in addition
to the input gates and constant gates). The size of this circuit should be at most
a constant times the size of the original circuit.

Definition 10.8 (Circuit family).
A circuit family C is a collection of circuits, (C0, C1, C2, . . .), such that each Cn

is a circuit that has access to n input gates.

Definition 10.9 (A circuit family deciding/computing a decision problem).
Let f : {0, 1}∗ → {0, 1} be a decision problem and let fn : {0, 1}n → {0, 1}
be the restriction of f to words of length n. We say that a circuit family C =
(C0, C1, C2, . . .) decides/computes f if Cn computes fn for every n.

110

Definition 10.10 (Circuit size and complexity).
The size of a circuit is defined to be the number of gates in the circuit, excluding
the constant gates 0 and 1. The size of a circuit family C = (C0, C1, C2, . . .) is a
function S : N→ N such that S(n) equals the size of Cn. The circuit complexity
of a decision problem f = (f0, f1, f2, . . .) is the size of the minimal circuit
family that decides f . In other words, the circuit complexity of f is defined
to be a function CCf : N → N such that CCf (n) is the minimum size of a
circuit computing fn. Using the correspondence between decision problems
and languages, we can also define the circuit complexity of a language in the
same manner.2

Note 10.11 (Defining the size of a circuit).
Sometimes the size of a circuit is defined to be the number of non-input, non-
constant gates (i.e., it is the number of gates not counting the input gates or the
constant gates). In these notes, we do count the input gates when computing
the size.

Exercise 10.12 (Circuit complexity of parity).
Let L ⊆ {0, 1}∗ be the set of words which contain an odd number of 1’s. Show
that the circuit complexity of L is Θ(n).

10.2 3 Theorems on Circuits

Exercise 10.13 (O(n2n) upper bound on circuit complexity).
Show that any language L can be computed by a circuit family of size O(n2n).

Theorem 10.14 (O(2n) upper bound on circuit complexity).
Any language L ⊆ {0, 1}∗ can be computed by a circuit family of size O(2n).

Proof. Let

Smax(n) = max
f :{0,1}n→{0,1}

size of the smallest circuit computing f.

Observe that the theorem follows once we show that Smax(n) = O(2n). Take
any function f : {0, 1}n → {0, 1}. Notice that we can write

f(x1, x2, . . . , xn) = (x1 ∧ f(1, x2, . . . , xn)) ∨ (¬x1 ∧ f(0, x2, . . . , xn)).

(This equality can be verified by considering the two cases x1 = 0 and x1 =
1. We leave this part to the reader.) Let C1 be the smallest size circuit that
computes f(1, x2, . . . , xn) and let C2 be the smallest size circuit that computes
f(0, x2, . . . , xn). Note that C1 and C2 compute functions on n−1 variables. We
can then construct a circuit for f(x1, x2, . . . , xn) by constructing a circuit for
(x1 ∧ f(1, x2, . . . , xn))∨ (¬x1 ∧ f(0, x2, . . . , xn)), as shown in the picture below.

2Note that circuit complexity corresponds to the intrinsic complexity of the language with re-
spect to the computational model of Boolean circuits. In the case of Boolean circuits, intrinsic
complexity (i.e. circuit complexity) is well-defined.

111

Since the circuits C1 and C2 compute functions on n − 1 variables, their
size is bounded by Smax(n − 1) each. Then the size of the above circuit is at
most 2Smax(n−1) + 5 (the extra 5 gates are for x1, the NOT gate, the two AND
gates, and the output OR gate). Our construction above works for any function
f : {0, 1}n → {0, 1}, so we can conclude that Smax(n) ≤ 2Smax(n − 1) + 5.
Observe that Smax(0) = 1. It is then easy to solve the recurrence and verify
that Smax(n) = O(2n) (we omit this part of the proof).

Proposition 10.15 (Number of Boolean functions).
The set of all functions of the form f : {0, 1}n → {0, 1} has size 22n .

Proof. A function of the form f : {0, 1}n → {0, 1} has 2n possible inputs. For
each input, we have 2 choices for the output, either 0 or 1. Therefore we have
22n different functions.

Theorem 10.16 (Shannon’s Theorem).
There exists a language L ⊆ {0, 1}∗ such that any circuit family computing L must
have size at least 2n/5n.

Proof. Our goal is to show that for all n, there is a function fn∗ : {0, 1}n → {0, 1}
which cannot be computed by a circuit of size less than 2n/5n. If we can do
this, then the decision problem f∗ = (f0

∗ , f
1
∗ , f

2
∗ , . . .) (see Note 10.1 (Dividing

the set of words by length)) corresponds to the language such that any circuit
family computing it must have size at least 2n/5n.

Fix an arbitrary n. To show that there is some function fn∗ : {0, 1}n → {0, 1}
which cannot be computed by a circuit of size less than 2n/5n, our strategy
will be as follows. We will show that the total number of circuits of size less
than 2n/5n is strictly less than the total number of functions f : {0, 1}n → {0, 1}.
Since one circuit computes one function, this implies that there are not enough
circuits of size less than 2n/5n to compute every possible function. So there
exists at least one function which cannot be computed by a circuit of size less
than 2n/5n.

From Proposition 10.15 (Number of Boolean functions) we know that the
total number of functions f : {0, 1}n → {0, 1} is 22n . In the next lemma
(Lemma 10.17 (Counting circuits)), we show that the number of possible cir-
cuits of size at most s is less than or equal to 25s log s. It is an easy exercise
(which we leave to the reader) to confirm that for s ≤ 2n/5n, 25s log s < 22n .
In other words, for s ≤ 2n/5n, there are more functions than circuits, and the
result follows.

112

Lemma 10.17 (Counting circuits).
The number of possible circuits of size at most s is less than or equal to 25s log s.

Proof. Let A be the set of circuits of size at most s. We want to show that
|A| ≤ 25s log s. Let B = {0, 1}5s log s. Recall that |A| ≤ |B| if and only if there
is a surjection from B to A (or equivalently an injection from A to B). Since
|B| = 25s log s, we are done once we show there is a surjection from B to A.

To show that there is a surjection, it suffices to show how to encode a circuit
of size at most s with a binary string of length 5s log s.3 The encoding is as
follows. Number the gates of the circuit 1, 2, . . . , s. Note that it takes log2 s
bits to write down the number of a gate in binary. We’ll assume that the first
gate corresponds to the output gate. For each gate of the circuit, write down in
binary:

(i) type of the gate (constant, input, OR, AND, NOT),

(ii) from which gates the inputs are coming from.

Once we know (i) and (ii) for every gate, we have all the information to re-
construct the circuit. Note that (i) takes 3 bits to specify, and (ii) takes 2 log s
bits.4 Since we do this for each gate in the circuit, the total number of bits is
s(3 + 2 log s), which can be upper bounded by 5s log s.

Note 10.18 (Almost all functions have exponential circuit complexity).
A minor adjustment to the proof of Theorem 10.16 (Shannon’s Theorem) allows
us to conclude that almost all Boolean functions f : {0, 1}n → {0, 1} cannot be
computed by a circuit with sub-exponential5 size.

Note 10.19 (Connecting circuit complexity to TM complexity).
The theorem below connects circuit complexity with running-time complexity
in the Turing machine computational model. The importance of the theorem
is highlighted in the corollary that comes after it. We will also make use of this
theorem in a future chapter to prove a very important theorem. We provide a
sketch of the proof for the curious reader, but you will not be responsible for
this proof.

Theorem 10.20 (Efficient TM implies efficient circuit).
Let L ⊆ {0, 1}∗ be a language which can be decided in O(T (n)) time. Then L can be
computed by a circuit family of size O(T (n)2).

Proof Sketch. 6

Let L be decided by a TM M in O(T (n)) time. For simplicity, we will as-
sume that M ’s tape is infinite in one direction (to the right) as opposed to infi-
nite in both directions.

Fix an arbitrary input length n. We want to design a circuit on n input bits
such that for the inputs accepted by M , the circuit will output 1, and for the
inputs rejected by M , the circuit will output 0. The size of our circuit will be
O(T (n)2).

3Note the similarity to the CS method for showing a set is countable. Here, instead of showing
that a set if countable, we are putting a finite upper bound on the size of a set using the CS method.
We do this by showing how to encode the elements of the set with finite length strings with an
explicit upper bound on the length.

4It is true that some gates take no input, but we will still use 2 log s bits to specify that.
5“Sub-exponential” means “smaller than exponential”.
6The diagrams in this proof are redrawings of the ones in https://lucatrevisan.wordpress.

com/2010/04/25/cs254-lecture-3-boolean-circuits/.

113

https://lucatrevisan.wordpress.com/2010/04/25/cs254-lecture-3-boolean-circuits/
https://lucatrevisan.wordpress.com/2010/04/25/cs254-lecture-3-boolean-circuits/

Let’s denote the input by x1, x2, . . . , xn. We know that when M runs on
this input, it goes through configurations (see Definition 3.6 (A TM accepting
or rejecting a string)) c1, c2, . . . , ct, where each configuration ci is of the form
uqv for u, v ∈ Γ∗, q ∈ Q. Here the number of steps M takes is t so t = O(T (n)).
Consider a t× t table where row i corresponds to ci.

Observe that we need at most t columns because the TM can use at most t
cells in t steps. Each cell contains two pieces of information: (i) a state name
or NONE (if no state is given), (ii) a symbol from Γ. Let’s call this table A. In
the table above, NONE is represented with a box 2, and the input is assumed
to be the all-1 string. Observe that the contents of a cell of the table Ai,j are
determined by the contents of Ai−1,j−1, Ai−1,j and Ai−1,j+1.

The transition function of TM M governs this transformation. Assume each
cell encodes k bits of information. Note that k is a constant because |Q| and
|Γ| are constant. So the transition function is of the form {0, 1}3k → {0, 1}k. It
determines the contents of a cell based on the contents of the three cells above
it and it can be implemented by a circuit of constant size since k is constant.7

(Note that we can allow our circuit to have multiple output gates, one for each
output bit of the function.) Let’s call this circuit C. Now we can build a circuit
that computes the answer given by M as shown in the picture below.

7Recall that any function can be computed by a circuit (Theorem 10.14 (O(2n) upper bound on
circuit complexity)).

114

The size of the circuit is at most ct2 for some constant c.

Definition 10.21 (Complexity class P).
We denote by P the set of all languages that can be decided in polynomial-time,
i.e., in time O(nk) for some constant k > 0.

Corollary 10.22 (A language in P has polynomial circuit complexity).
If L ∈ P, then L can be computed by a circuit family of polynomial size. Equivalently,
if L cannot be computed by a circuit family of polynomial size, then L 6∈ P.

115

Quiz

1. True or false: If a language can be computed by a circuit family of size
O(n2), then it can be decided in polynomial time by a Turing machine.

2. True or false: A unary language L ⊆ {0, 1}∗ is a language such that no
word in L contains a 1. Every unary language can be computed by a
circuit family of size O(n).

3. True or false: The circuit complexity of {0, 1}∗ is O(n).

4. Fix Σ = {0, 1}. Let (D0, D1, D2, . . .) be a family of DFAs. We say that a
DFA family like this computes a language L ⊆ {0, 1}∗ if for all n, Dn de-
cides Ln = L∩{0, 1}n. True or false: there is a DFA family that computes
HALTS.

5. True or false: Fix Σ = {0, 1}. Then there is a circuit family that computes
HALTS ⊆ Σ∗.

116

Hints to Selected Exercises

Exercise 10.7 (NAND is “universal”):
Show how to compute OR, AND, and NOT just with NAND gates.

Exercise 10.12 (Circuit complexity of parity):
Note that you need to show both an upper bound and a lower bound. For the upper bound, you
can construct a circuit family computing L. Assume for simplicity that n is a power of 2 and try to
think of a recursive construction. For the lower bound, focus on the input gates.

Exercise 10.13 (O(n2n) upper bound on circuit complexity):
See the solution, which is actually more like a hint rather than a complete solution.

117

118

Chapter 11

Polynomial-Time Reductions

119

PREAMBLE

Chapter structure:

• Section 11.1 (Cook and Karp Reductions)

– Definition 11.1 (k-Coloring problem)

– Definition 11.2 (Clique problem)

– Definition 11.3 (Independent set problem)

– Definition 11.4 (Circuit satisfiability problem)

– Definition 11.5 (Boolean satisfiability problem)

– Definition 11.12 (Karp reduction: Polynomial-time many-one re-
duction)

– Theorem 11.16 (CLIQUE reduces to IS)

– Theorem 11.20 (CIRCUIT-SAT reduces to 3COL)

• Section 11.2 (Hardness and Completeness)

– Definition 11.21 (C-hard, C-complete)

Chapter goals:

In a previous chapter, we have studied reductions and saw how they can be
used to both expand the landscape of decidable languages and expand the
landscape of undecidable languages. As such, the concept of a reduction is
a very powerful tool.

In the context of computational complexity, reductions once again play a
very important role. In particular, by tweaking our definition of a reduction
a bit so that it is required to be efficiently computable, we can use reductions
to expand the landscape of tractable (i.e. efficiently decidable) languages
and to expand the landscape of intractable languages. Another cool feature
of reductions is that it allows us to show that many seemingly unrelated
problems are essentially the same problem in disguise, and this allows us
to have a deeper understanding of the mysterious and fascinating world of
computational complexity.

Our goal in this chapter is to introduce you to the concept of polynomial-
time (efficient) reductions, and give you a few examples to make the con-
cept more concrete and illustrate their power.

In some sense, this chapter marks the introduction to our discussion on
the P vs NP problem, even though the definition of NP will only be intro-
duced in the next chapter, and the connection will be made more precise
then.

120

11.1 Cook and Karp Reductions

Definition 11.1 (k-Coloring problem).
In the k-coloring problem, the input is an undirected graph G = (V,E), and
the output is True if and only if the graph is k-colorable (see Definition 9.14
(k-colorable graphs)). We denote this problem by kCOL. The corresponding
language is

{〈G〉 : G is a k-colorable graph}.

Definition 11.2 (Clique problem).
Let G = (V,E) be an undirected graph. A subset of the vertices is called a
clique if there is an edge between any two vertices in the subset. We say that
G contains a k-clique if there is a subset of the vertices of size k that forms a
clique.

In the clique problem, the input is an undirected graph G = (V,E) and a
number k ∈ N+, and the output is True if and only if the graph contains a
k-clique. We denote this problem by CLIQUE. The corresponding language is

{〈G, k〉 : G is a graph, k ∈ N+, G contains a k-clique}.

Definition 11.3 (Independent set problem).
Let G = (V,E) be an undirected graph. A subset of the vertices is called an in-
dependent set if there is no edge between any two vertices in the subset. We say
that G contains an independent set of size k if there is a subset of the vertices
of size k that forms an independent set.

In the independent set problem, the input is an undirected graph G = (V,E)
and a number k ∈ N+, and the output is True if and only if the graph contains
an independent set of size k. We denote this problem by IS. The corresponding
language is

{〈G, k〉 : G is a graph, k ∈ N+, G contains an independent set of size k}.

Definition 11.4 (Circuit satisfiability problem).
We say that a circuit is satisfiable if there is 0/1 assignment to the input gates
that makes the circuit output 1. In the circuit satisfiability problem, the input is
a Boolean circuit, and the output is True if and only if the circuit is satisfiable.
We denote this problem by CIRCUIT-SAT. The corresponding language is

{〈C〉 : C is a Boolean circuit that is satisfiable}.

Definition 11.5 (Boolean satisfiability problem).
Let x1, . . . , xn be Boolean variables, i.e., variables that can be assigned True
or False. A literal refers to a Boolean variable or its negation. A clause is an
“OR” of literals. For example, x1 ∨ ¬x3 ∨ x4 is a clause. A Boolean formula in
conjunctive normal form (CNF) is an “AND” of clauses. For example,

(x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x1 ∨ ¬x5)

is a CNF formula. We say that a Boolean formula is satisfiable if there is a 0/1
assignment to the Boolean variables that makes the formula evaluate to 1.

121

In the CNF satisfiability problem, the input is a CNF formula, and the output
is True if and only if the formula is satisfiable. We denote this problem by SAT.
The corresponding language is

{〈ϕ〉 : ϕ is a satisfiable CNF formula}.

In a variation of SAT, we restrict the input formula such that every clause has
exactly 3 literals (we call such a formula a 3CNF formula). This variation of
the problem is denoted by 3SAT.

Note 11.6 (Names of decision problems and languages).
The name of a decision problem above refers both to the decision problem and
the corresponding language.

Note 11.7 (Inputs of decision problems).
Recall that in all the decision problems above, the input is an arbitrary word in
Σ∗. If the input does not correspond to a valid encoding of an object expected
as input (e.g. a graph in the case of kCOL), then those inputs are rejected (i.e.,
they are not in the corresponding language).

Note 11.8 (Exponential-time algorithms for the decision problems above).
All the problems defined above are decidable and have exponential-time algo-
rithms solving them.

Note 11.9 (Cook reduction: Polynomial-time (Turing) reduction).
Fix some alphabet Σ. Let A and B be two languages. We say that A polynomial-
time reduces to B, written A ≤P B, if there is a polynomial-time decider for A
that uses a decider for B as a black-box subroutine.1 Polynomial-time reduc-
tions are also known as Cook reductions, named after Stephen Cook.

Note 11.10 (Polynomial-time reductions and P).
Observe that if A ≤P B and B ∈ P, then A ∈ P. Equivalently, taking the
contrapositive, if A ≤P B and A 6∈ P, then B 6∈ P. So when A ≤P B, we think
ofB as being at least as hard asAwith respect to polynomial-time decidability.

Note 11.11 (Transitivity of Cook reductions).
Note that if A ≤P B and B ≤P C, then A ≤P C.

Definition 11.12 (Karp reduction: Polynomial-time many-one reduction).
Let A and B be two languages. Suppose that there is a polynomial-time com-
putable function (also called a polynomial-time transformation) f : Σ∗ → Σ∗

such that x ∈ A if and only if f(x) ∈ B. Then we say that there is a polynomial-
time many-one reduction (or a Karp reduction, named after Richard Karp) from A
to B, and denote it by A ≤P

m B.

1Technically, the black-box decider for B is called an oracle, and every call to the oracle is
assumed to take 1 step. In these notes, we omit the formal definition of these reductions that
require introducing oracle Turing machines. This semi-informal treatment is sufficient for our
purposes.

122

IMPORTANT 11.13 (Many-one reductions vs Turing reductions).
If there is a many-one reduction from language A to language B, then one can
construct a regular (Turing) reduction from A to B. We explain this below.

To establish a Turing reduction from A to B, we need to show how we can
come up with a deciderMA forA given that we have a deciderMB forB. Now
suppose we have a many-one reduction from A to B. This means we have a
computable function f as in the definition of a many-one reduction. This f
then allows us to build MA as follows. Given any input x, first feed x into f ,
and then feed the output y = f(x) into MB . The output of MA is the output of
MB . We illustrate this construction with the following picture.

Take a moment to verify that this reduction fromA toB is indeed correct given
the definition of f .

Even though a many-one reduction can be viewed as a regular (Turing)
reduction, not all reductions are many-one reductions.

Exercise 11.14 (Transitivity of Karp reductions).
Show that if A ≤P

m B and B ≤P
m C, then A ≤P

m C.

IMPORTANT 11.15 (Steps to establish a Karp reduction).
To show that there is a Karp reduction from A to B, you need to do the follow-
ing things.

1. Present a computable function f : Σ∗ → Σ∗.

2. Show that x ∈ A =⇒ f(x) ∈ B.

3. Show that x 6∈ A =⇒ f(x) 6∈ B (it is usually easier to argue the contra-
positive).

4. Show that f can be computed in polynomial time.

Theorem 11.16 (CLIQUE reduces to IS).
CLIQUE ≤P

m IS.

Proof. Following the previous important note, we start by presenting a com-
putable function f : Σ∗ → Σ∗.

G = (V,E): graph. k: positive integer.
f(〈G, k〉):

1 E′ = {{u, v} : {u, v} 6∈ E}.
2 Output 〈G′ = (V,E′), k〉.

123

(In a Karp reduction from A to B, when we define f : Σ∗ → Σ∗, it is stan-
dard to define it so that invalid instances of A are mapped to invalid instances
of B. We omit saying this explicitly when presenting the reduction, but you
should be aware that this is implicitly there in the definition of f . In the above
definition of f , for example, any string x that does not correspond to a valid
instance of CLIQUE (i.e., not a valid encoding of a graph G together with a
positive integer k) is mapped to an invalid instance of IS (e.g. they can be
mapped to ε, which we can assume to not be a valid instance of IS.))

To show that f works as desired, we first make a definition. Given a graph
G = (V,E), the complement of G is the graph G′ = (V,E′) where E′ = {{u, v} :
{u, v} 6∈ E}. In other words, we construct G′ by removing all the edges of G
and adding all the edges that were not present in G.

We now argue that x ∈ CLIQUE if and only if f(x) ∈ IS. First, assume
x ∈ CLIQUE. Then x corresponds to a valid encoding 〈G = (V,E), k〉 of
a graph and an integer. Furthermore, G contains a clique S ⊆ V of size
k. In the complement graph, this S is an independent set ({u, v} ∈ E for
all distinct u, v ∈ S implies {u, v} 6∈ E′ for all distinct u, v ∈ S). Therefore
〈G′ = (V,E′), k〉 ∈ IS. Conversely, if 〈G′ = (V,E′), k〉 ∈ IS, then G′ contains
an independent set S ⊆ V of size k. This set S is a clique in the complement
of G′, which is G. So the pre-image of 〈G′ = (V,E′), k〉 under f , which is
〈G = (V,E), k〉, is in CLIQUE.

Finally, we argue that the function f can be computed in polynomial time.
This is easy to see since the construction of E′ (and therefore G′) can be done
in polynomial time as there are polynomially many possible edges.

Exercise 11.17 (IS reduces to CLIQUE).
How can you modify the above reduction to show that IS ≤P

m CLIQUE?

Exercise 11.18 (Hamiltonian path reductions).
Let G = (V,E) be a graph. A Hamiltonian path in G is a path that visits every
vertex of the graph exactly once. The HAMPATH problem is the following:
given a graph G = (V,E), output True if it contains a Hamiltonian path, and
output False otherwise.

(a) Let L = {〈G, k〉 : G is a graph, k ∈ N, G has a path of length k}. Show
that HAMPATH ≤P

m L.

(b) LetK = {〈G, k〉 : G is a graph, k ∈ N, G has a spanning tree with ≤ k leaves}.
Show that HAMPATH ≤P

m K.

Note 11.19 (Reductions among unrelated problems).
The theorem below illustrates how reductions can establish an intimate rela-
tionship between seemingly unrelated problems.

Theorem 11.20 (CIRCUIT-SAT reduces to 3COL).
CIRCUIT-SAT ≤P

m 3COL.

Proof. To prove the theorem, we will present a Karp reduction from CIRCUIT-SAT
to 3COL. In particular, given a valid CIRCUIT-SAT instance C, we will con-
struct a 3COL instance G such that C is a satisfiable Boolean circuit if and only
if G is 3-colorable. Furthermore, the construction will be done in polynomial
time.

124

First, using Exercise 10.7 (NAND is “universal”), we know that any Boolean
circuit with AND, OR, and NOT gates can be converted into an equivalent cir-
cuit that only has NAND gates (in addition to the input gates and constant
gates). This transformation can easily be done in polynomial time. So without
loss of generality, we assume that our circuit C is a circuit with NAND gates,
input gates and constant gates. We constructG by converting each NAND gate
into the following graph.

The vertices labeled with x and y correspond to the inputs of the NAND gate.
The vertex labeled with ¬(x ∧ y) corresponds to the output of the gate. We
construct such a graph for each NAND gate of the circuit, however, we make
sure that if, say, gate g1 is an input to gate g2, then the vertex corresponding
to the output of g1 coincides with (is the same as) the vertex corresponding
to one of the inputs of g2. Furthermore, the vertices labeled with 0, 1 and n
are the same for each gate. In other words, in the whole graph, there is only
one vertex labeled with 0, one vertex labeled with 1, and one vertex labeled
with n. Lastly, we put an edge between the vertex corresponding to the output
vertex of the output gate and the vertex labeled with 0. This completes the
construction of the graph G. Before we prove that the reduction is correct, we
make some preliminary observations.

Let’s call the 3 colors we use to color the graph 0, 1 and n (we think of n
as “none”). Any valid coloring of G must assign different colors to 3 vertices
that form a triangle (e.g. vertices labeled with 0, 1 and n). If G is 3-colorable,
we can assume without loss generality that the vertex labeled 0 is colored with
the color 0, the vertex labeled 1 is colored with color 1, and the vertex labeled
n is colored with the color n. This is without loss of generality because if there
is a valid coloring of G, any permutation of the colors corresponds to a valid
coloring as well. Therefore we can permute the colors so that the labels of those
vertices coincide with the colors they are colored with.

Notice that since the vertices corresponding to the inputs of a gate (i.e. the
x and y vertices) are connected to vertex n, they will be assigned the colors 0
or 1. Let’s consider two cases:

• If x and y are assigned the same color (i.e. either they are both 0 or they
are both 1), the vertex labeled with x ∧ y will have to be colored with
that same color. That is, the vertex labeled with x ∧ y must get the color

125

corresponding to the evaluation of x ∧ y. To see this, just notice that the
vertices labeled s1 and s2 must be colored with the two colors that x and
y are not colored with. This forces the vertex x ∧ y to be colored with the
same color as x and y.

• If x and y are assigned different colors (i.e. one is colored with 0 and the
other with 1), the vertex labeled with x ∧ y will have to be colored with
0. That is, as in the first case, the vertex labeled with x ∧ y must get the
color corresponding to the evaluation of x∧y. To see this, just notice that
one of the vertices labeled d1 or d2 must be colored with 1. This forces the
vertex x∧ y to be colored with 0 since it is already connected to vertex n.

In either case, the color of the vertex x∧y must correspond to the evaluation of
x∧y. It is then easy to see that the color of the vertex ¬(x∧y) must correspond
to the evaluation of ¬(x ∧ y).

We are now ready to argue that circuit C is satisfiable if and only if G is
3-colorable. Let’s first assume that the circuit we have is satisfiable. We want
to show that the graph G we constructed is 3-colorable. Since the circuit is sat-
isfiable, there is a 0/1 assignment to the input variables that makes the circuit
evaluate to 1. We claim that we can use this 0/1 assignment to validly color
the vertices of G. We start by coloring each vertex that corresponds to an in-
put variable: In the satisfying truth assignment, if an input variable is set to
0, we color the corresponding vertex with the color 0, and if an input variable
is set to 1, we color the corresponding vertex with the color 1. As we have
argued earlier, a vertex that corresponds to the output of a gate (the vertex at
the very bottom of the picture above) is forced to be colored with the color that
corresponds to the value that the gate outputs. It is easy to see that the other
vertices, i.e., the ones labeled s1, s2, d1, d2 and the unlabeled vertices can be
assigned valid colors. Once we color the vertices in this manner, the vertices
corresponding to the inputs and output of a gate will be consistently colored
with the values that it takes as input and the value it outputs. Recall that in the
construction of G, we connected the output vertex of the output gate with the
vertex labeled with 0, which forces it to be assigned the color 1. We know this
will indeed happen since the 0/1 assignment we started with makes the circuit
output 1. This shows that we can obtain a valid 3-coloring of the graph G.

The other direction is very similar. Assume that the constructed graph G
has a valid 3-coloring. As we have argued before, we can assume without loss
of generality that the vertices labeled 0, 1, and n are assigned the colors 0, 1,
and n respectively. We know that the vertices corresponding to the inputs of a
gate must be assigned the colors 0 or 1 (since they are connected to the vertex
labeled n). Again, as argued before, given the colors of the input vertices of a
gate, the output vertex of the gate is forced to be colored with the value that
the gate would output in the circuit. The fact that we can 3-color the graph
means that the output vertex of the output gate is colored with 1 (since it is
connected to vertex 0 and vertex n by construction). This implies that the colors
of the vertices corresponding to the input variables form a 0/1 assignment that
makes the circuit output a 1, i.e. the circuit is satisfiable.

To finish the proof, we must argue that the construction of graph G, given
circuitC, can be done in polynomial time. This is easy to see since for each gate
of the circuit, we create at most a constant number of vertices and a constant
number of edges. So if the circuit has s gates, the construction can be done in
O(s) steps.

126

11.2 Hardness and Completeness

Definition 11.21 (C-hard, C-complete).
Let C be a set of languages containing P.

• We say that L is C-hard (with respect to Cook reductions) if for all lan-
guages K ∈ C, K ≤P L.
(With respect to polynomial time decidability, a C-hard language is at
least as “hard” as any language in C.)

• We say that L is C-complete if L is C-hard and L ∈ C.
(A C-complete language represents the “hardest” language in C with re-
spect to polynomial time decidability.)

Note 11.22 (C-completeness and P).
Suppose L is C-complete. Then observe that L ∈ P⇐⇒ C = P.

Note 11.23 (C-hardness with respect to Cook and Karp reductions).
Above we have defined C-hardness using Cook reductions. In literature, how-
ever, they are often defined using Karp reductions, which actually leads to a
different notion of C-hardness. There are good reasons to use this restricted
form of reductions. More advanced courses may explore some of these rea-
sons.

127

Quiz

1. True or false: Σ∗ ≤P
m ∅.

2. True or false: For languages A and B, A ≤P
m B if and only if B ≤P

m A.

3. True or false: The language

251CLIQUE = {〈G〉 : G is a graph containing a clique of size 251}

is in P.

4. True or false: Let L,K ⊆ Σ∗ be two languages. Suppose there is a
polynomial-time computable function f : Σ∗ → Σ∗ such that x ∈ L
iff f(x) /∈ K. Then L Cook-reduces to K.

5. True or false: There is a Cook reduction from CIRCUIT-SAT to HALTS.

128

Hints to Selected Exercises

Exercise 11.17 (IS reduces to CLIQUE):
Can you use the same reduction as in the proof of Theorem (CLIQUE reduces to IS).

Exercise 11.18 (Hamiltonian path reductions):
Part (a): A graph has a Hamiltonian path if and only if it has a path of length n − 1. Part (b): A
Hamiltonian path forms a spanning tree with 2 leaves.

129

130

Chapter 12

Non-Deterministic Polynomial Time

131

PREAMBLE

Chapter structure:

• Section 12.1 (Non-Deterministic Polynomial Time NP)

– Definition 12.1 (Non-deterministic polynomial time, complexity
class NP)

– Proposition 12.2 (3COL is in NP)

– Proposition 12.4 (CIRCUIT-SAT is in NP)

– Proposition 12.8 (P is contained in NP)

– Definition 12.9 (Complexity class EXP)

• Section 12.2 (NP-complete problems)

– Theorem 12.12 (Cook-Levin Theorem)

– Theorem 12.14 (3COL is NP-complete)

– Theorem 12.15 (3SAT is NP-complete)

– Theorem 12.16 (CLIQUE is NP-complete)

– Theorem 12.17 (IS is NP-complete)

• Section 12.3 (Proof of Cook-Levin Theorem)

Chapter goals:

In this chapter, we introduce the famous complexity class NP, which stands
for “non-deterministic polynomial time”. Recall that P denotes the set of all
languages that can be decided in polynomial time. The class NP contains
many natural and well-studied languages that we would love to decide
in polynomial time. In particular, if we could decide the languages in NP
efficiently, this would lead to amazing applications. For instance, in math-
ematics, proofs to theorems with reasonable length proofs would be found
automatically by computers. In artificial intelligence, many machine learn-
ing tasks we struggle with would be easy to solve (like vision recognition,
speech recognition, language translation and comprehension, etc). Many
optimization tasks would become efficiently solvable, which would affect
the economy in a major way. Another main impact would happen in pri-
vacy and security. We would say “bye” to public-key cryptography which
is being used heavily on the internet today. (We will learn about public-key
cryptography in a later chapter.) These are just a few examples; there are
many more.

Our goal in this chapter is to present the formal definition of NP, and
discuss how it relates to P. We will also discuss the notion of NP-completeness
(which is intimately related to the question of whether NP equals P) and
give several examples of NP-complete languages, along with proofs that
they are indeed NP-complete.

132

12.1 Non-Deterministic Polynomial Time NP

Definition 12.1 (Non-deterministic polynomial time, complexity class NP).
Fix some alphabet Σ. We say that a languageL can be decided in non-deterministic
polynomial time if there exists

(i) a polynomial-time decider TM V that takes two strings as input, and

(ii) a constant k > 0,

such that for all x ∈ Σ∗:

• if x ∈ L, then there exists u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u) accepts,

• if x 6∈ L, then for all u ∈ Σ∗, V (x, u) rejects.

If x ∈ L, a string u that makes V (x, u) accept is called a proof (or certificate) of x
being in L. The TM V is called a verifier.

We denote by NP the set of all languages which can be decided in non-
deterministic polynomial time.

Proposition 12.2 (3COL is in NP).
3COL ∈ NP.

Proof. To show 3COL is in NP, we need to show that there is a polynomial-time
verifier TM A with the properties stated in Definition 12.1 (Non-deterministic
polynomial time, complexity class NP) (we are using A to denote the verifier
and not V because we will use V to denote the vertex set of a graph). Recall that
an instance of the 3COL problem is an undirected graph G. The description of
A is as follows.

G = (V,E): graph.
A(〈G〉, u):

1 If u is not a valid encoding of a 3-coloring of V , reject.
2 If there is {v, w} ∈ E where v and w have the same color,

reject.
3 Else, accept.

We now show that A satisfies the two conditions stated in Definition 12.1
(Non-deterministic polynomial time, complexity class NP). If x is in the lan-
guage, that means x is a valid encoding of a graph G = (V,E) and this graph
is 3-colorable. When u is a valid 3-coloring, |u| = O(|V |). And for this x and u,
the verifier accepts. On the other hand, if x is not in the language, then either
(i) x is not a valid encoding of a graph or (ii) it is a valid encoding of a graph
which is not 3-colorable. In case (i), the verifier rejects (which is done implicitly
since the input is not of the correct type). In case (ii), any u that does not cor-
respond to a 3-coloring of the vertices makes the verifier reject. Furthermore,
any u that does correspond to a 3-coloring of the vertices must be such that
there is an edge whose endpoints are colored with the same color. Therefore,
in this case, the verifier again rejects, as desired.

Now we show that the machine is polynomial-time. To check whether u is
a valid encoding of a 3-coloring of the vertices takes polynomial time since you
just need to check that you are given |V | colors, each being one of 3 colors. To
check that it is indeed a valid 3-coloring is polynomial time as well since you
just need to go through every edge once.

This completes the proof that 3COL is in NP.

133

Note 12.3 (Steps to show a languages is in NP).
Showing that a language L is in NP involves the following steps:

1. Present a TM V (that takes two inputs x and u).

2. Argue that V has polynomial running time.

3. Argue that V works correctly, which involves arguing the following for
some constant k > 0:

(a) for all x ∈ L, there exists u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u)
accepts;

(b) for all x 6∈ L and for all u ∈ Σ∗, V (x, u) rejects.

Proposition 12.4 (CIRCUIT-SAT is in NP).
CIRCUIT-SAT ∈ NP.

Proof. To show CIRCUIT-SAT is in NP, we need to show that there is a polynomial-
time verifier V with the properties stated in Definition 12.1 (Non-deterministic
polynomial time, complexity class NP). We start by presenting V .

C: Boolean circuit.
V (〈C〉, u):

1 If u does not correspond to a valid 0/1 assignment to
input gates, reject.

2 Compute the output of the circuit C(u).
3 If the output is 0, reject.
4 Else, accept.

We first show that the verifier V satisfies the two conditions stated in Def-
inition 12.1 (Non-deterministic polynomial time, complexity class NP). If x is
in the language, that means that x corresponds to a valid encoding of a cir-
cuit and there is some 0/1-assignment to the input gates that makes the circuit
output 1. When u is such a 0/1-assignment, then |u| = O(n) (where n is the
length of x), and the verifier accepts the input (x, u). On the other hand, if x
is not in the language, then either (i) x is not a valid encoding of a circuit or
(ii) it is a valid encoding of a circuit which is not satisfiable. In case (i), the
verifier rejects (which is done implicitly since the input is not of the correct
type). In case (ii), any u that does not correspond to a 0/1-assignment to the
input gates makes the verifier reject. Furthermore, any u that does correspond
to a 0/1-assignment to the input gates must be such that, with this assignment,
the circuit evaluates to 0. Therefore, in this case, the verifier again rejects, as
desired.

Now we show the verifier is polynomial-time. To check whether u is a
valid 0/1-assignment to the input gates takes polynomial time since you just
need to check that you are given t bits, where t is the number of input gates.
The output of the circuit can be computed in polynomial time since it takes
constant number of steps to compute each gate.

This completes the proof of CIRCUIT-SAT is in NP.

Exercise 12.5 (CLIQUE is in NP).
Show that CLIQUE ∈ NP.

134

Exercise 12.6 (IS is in NP).
Show that IS ∈ NP.

Exercise 12.7 (3SAT is in NP).
Show that 3SAT ∈ NP.

Proposition 12.8 (P is contained in NP).
P ⊆ NP.

Proof. Given a language L ∈ P, we want to show that L ∈ NP. Since L is in P,
we know that there is a polynomial-time decider M that decides L. To show
that L ∈ NP, we need to describe a polynomial-time verifier V that has the
properties described in Definition 12.1 (Non-deterministic polynomial time,
complexity class NP). The description of V is as follows.

V (x, u):
1 Run M(x).
2 If it accepts, accept.
3 Else, reject.

First, note that since M is a polynomial time decider, the line “Run M(x)”
takes polynomial time, and so V is polynomial-time. We now check that V
satisfies the two conditions stated in Definition 12.1 (Non-deterministic poly-
nomial time, complexity class NP). If x ∈ L, then M(x) accepts, so for any
u, V (x, u) accepts. For example, V (x, ε) accepts, and clearly |ε| = 0 ≤ |x|. If
x 6∈ L, then M(x) rejects, so no matter what u is, V (x, u) rejects, as desired.
This shows that L ∈ NP.

Definition 12.9 (Complexity class EXP).
We denote by EXP the set of all languages that can be decided in at most
exponential-time, i.e., in time O(2n

C

) for some constant C > 0.

Exercise 12.10 (NP is contained in EXP).
Show that NP ⊆ EXP.

12.2 NP-complete problems

Note 12.11 (NP-hardness and NP-completeness).
Recall Definition 11.21 (C-hard, C-complete). We use this definition in this sec-
tion with C being NP.

Theorem 12.12 (Cook-Levin Theorem).
CIRCUIT-SAT is NP-complete.

135

IMPORTANT 12.13 (Showing a language is NP-hard).
To show that a language L is NP-hard, by the transitivity of polynomial-time
reductions, it suffices to show that K ≤P

m L for some language K which is
known to be NP-hard. In particular, using Theorem 12.12 (Cook-Levin Theorem),
it suffices to show that CIRCUIT-SAT ≤P

m L.

Theorem 12.14 (3COL is NP-complete).
3COL is NP-complete.

Proof. We have already done all the work to prove that 3COL is NP-complete.
First of all, in Proposition 12.2 (3COL is in NP), we have shown that 3COL ∈
NP. To show that 3COL is NP-hard, by the transitivity of reductions, it suffices
to show that CIRCUIT-SAT ≤P

m 3COL, which we have done in Theorem 11.20
(CIRCUIT-SAT reduces to 3COL).

Theorem 12.15 (3SAT is NP-complete).
3SAT is NP-complete.

Proof Sketch. We sketch the main ideas in the proof. To show that 3SAT is NP-
complete, we have to show that it is in NP and it is NP-hard. We leave the
proof of membership in NP as an exercise.

To show that 3SAT is NP-hard, by the transitivity of reductions, it suffices
to show that CIRCUIT-SAT ≤P

m 3SAT. Given an instance of CIRCUIT-SAT, i.e.
a Boolean circuit C, we will construct an instance of 3SAT, i.e. a Boolean CNF
formula ϕ in which every clause has exactly 3 literals. The reduction will be
polynomial-time and will be such that C is a Yes instance of CIRCUIT-SAT (i.e.
C is satisfiable) if and only if ϕ is a Yes instance of 3SAT (i.e. ϕ is satisfiable).

The construction is as follows. A circuit C has three types of gates (exclud-
ing the input-gates): NOT, OR, AND.

We will convert each such gate of the circuit C into a 3SAT formula. It is easy
to verify that

yi = ¬xi ⇐⇒ (xi ∨ yi) ∧ (¬xi ∨ ¬yi),
yk = xi ∨ xj ⇐⇒ (yk ∨ ¬xi) ∧ (yk ∨ ¬xj) ∧ (¬yk ∨ xi ∨ xj),
yk = xi ∧ xj ⇐⇒ (¬yk ∨ xi) ∧ (¬yk ∨ xj) ∧ (yk ∨ ¬xi ∨ ¬xj).

So the behavior of each gate can be represented using a Boolean formula. As
an example, consider the circuit below.

136

In this case, we would let

Clause1 = (x1 ∨ y1) ∧ (¬x1 ∨ ¬y1)

Clause2 = (¬y2 ∨ x2) ∧ (¬y2 ∨ x3) ∧ (y2 ∨ ¬x2 ∨ ¬x3)

Clause3 = (y3 ∨ ¬y1) ∧ (y3 ∨ ¬y2) ∧ (¬y3 ∨ y1 ∨ y2),

and the Boolean formula equivalent to the circuit would be

ϕ = Clause1 ∧ Clause2 ∧ Clause3 ∧ y3.

This is not quite a 3SAT formula since each clause does not necessarily have
exactly 3 literals. However, each clause has at most 3 literals, and every clause
in the formula can be converted into a clause with exactly 3 literals by dupli-
cating a literal in the clause if necessary.

This completes the description of how we construct a 3SAT formula from
a Boolean circuit. We leave it as an exercise to the reader to verify that C is
satisfiable if and only if ϕ is satisfiable, and that the reduction can be carried
out in polynomial time.

Theorem 12.16 (CLIQUE is NP-complete).
CLIQUE is NP-complete.

Proof. To show that CLIQUE is NP-complete, we have to show that it is in
NP and it is NP-hard. Exercise 12.5 (CLIQUE is in NP) asks you to show that
CLIQUE is in NP, so we will show that CLIQUE is NP-hard by presenting a
reduction from 3SAT to CLIQUE.

Our reduction will be a Karp reduction. Given an instance of 3SAT, i.e. a
Boolean formula ϕ, we will construct an instance of CLIQUE, 〈G, k〉 where G
is a graph and k is a number, such that ϕ is a Yes instance of 3SAT (i.e. ϕ is
satisfiable) if and only if 〈G, k〉 is a Yes instance of CLIQUE (i.e. G contains a
k-clique). Furthermore, this construction will be done in polynomial time.

Let

ϕ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (am ∨ bm ∨ cm),

where each ai, bi and ci is a literal, be an arbitrary 3SAT formula. Notice that
ϕ is satisfiable if and only if there is a truth assignment to the variables so that
each clause has at least one literal set to True. From this formula, we build a
graph G as follows. For each clause, we create 3 vertices corresponding to the
literals of that clause. So in total the graph has 3m vertices. We now specify
which vertices are connected to each other with an edge. We do not put an edge
between two vertices if they correspond to the same clause. We do not put an
edge between xi and ¬xi for any i. Every other pair of vertices is connected
with an edge. This completes the construction of the graph. We still need to
specify k. We set k = m.

As an example, if ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x1 ∨ ¬x1),
then the corresponding graph is as follows:

137

We now prove that ϕ is satisfiable if and only if G has a clique of size m. If
ϕ is satisfiable, then there is an assignment to the variables such that in each
clause, there is at least one literal set to True. We claim that the vertices that
correspond to these literals form a clique of size m in G. It is clear that the
number of such vertices is m. To see that they form a clique, notice that the
only way two of these vertices do not share an edge is if they correspond to xi
and ¬xi for some i. But a satisfying assignment cannot assign True to both xi
and ¬xi.

For the other direction, suppose that the constructed graph G has a clique
K of size m. Since there are no edges between two literals if they are in the
same clause, there must be exactly one vertex from each clause in K. We claim
that we can set the literals corresponding to these vertices to True and therefore
show that ϕ is satisfiable. To see this, notice that the only way we could not
simultaneously set these literals to True is if two of them correspond to xi and
¬xi for some i. But there is no edge between such literals, so they cannot both
be in the same clique.

This completes the correctness of the reduction. We still have to argue that
it can be done in polynomial time. This is rather straightforward. Creating
the vertex set of G is clearly polynomial-time since there is just one vertex for
each literal of the Boolean formula. Similarly, the edges can be easily added in
polynomial time as there are at most O(m2) many of them.

Theorem 12.17 (IS is NP-complete).
IS is NP-complete.

Proof. To show that IS is NP-complete, we have to show that it is in NP and
it is NP-hard. Exercise 12.6 (IS is in NP) asks you to show that IS is in NP, so
we show that IS is NP-hard. By Theorem 12.16 (CLIQUE is NP-complete), we
know that CLIQUE is NP-hard, and by Theorem 11.16 (CLIQUE reduces to IS)
we know that CLIQUE ≤P

m IS. By the transitivity of reductions, we conclude
that IS is also NP-hard.

Note 12.18 (Overview of reductions).
The collection of reductions that we have shown can be represented as follows:

138

Exercise 12.19 (MSAT is NP-complete).
The MSAT problem is defined very similarly to SAT (for the definition of SAT,
see Definition 11.5 (Boolean satisfiability problem)). In SAT, we output True if
and only if the input CNF formula has at least one satisfying truth assignment
to the variables. In MSAT, we want to output True if and only if the input CNF
formula has at least two distinct satisfying assignments.

Show that MSAT is NP-complete.

Exercise 12.20 (BIN is NP-complete).
In the PARTITION problem, we are given n non-negative integers a1, a2, . . . , an,
and we want to output True if and only if there is a way to partition the inte-
gers into two parts so that the sum of the two parts are equal. In other words,
we want to output True if and only if there is set S ⊆ {1, 2, . . . , n} such that∑

i∈S ai =
∑

j∈{1,...,n}\S aj .
In the BIN problem we are given a set of n items with non-negative sizes

s1, s2, . . . , sn ∈ N (not necessarily distinct), a capacity C ≥ 0 (not necessarily
an integer), and an integer k ∈ N. We want to output True if and only if the
items can be placed into at most k bins such that the total size of items in each
bin does not exceed the capacity C.

Show that BIN is NP-complete assuming PARTITION is NP-hard.

12.3 Proof of Cook-Levin Theorem

Proof of Cook-Levin Theorem. Using Theorem (Efficient TM implies efficient cir-
cuit), we can prove the famous Cook-Levin Theorem which states that CIRCUIT-
SAT is NP-complete. We present the proof below.

To prove this theorem, we have to show that CIRCUIT-SAT is in NP and
that it is NP-hard. We have already shown that CIRCUIT-SAT is in NP in
Proposition 12.4 (CIRCUIT-SAT is in NP). To show that is is NP-hard, we will
show that for any L ∈ NP, L ≤P

m CIRCUIT-SAT.
Let L be an arbitrary language in NP. We will define a polynomial-time

computable function f : {0, 1}∗ → {0, 1}∗ that maps x ∈ {0, 1}∗ to a circuit
〈Cx〉 such that

x ∈ L ⇐⇒ Cx is satisfiable.

139

Since L is in NP, there is a polynomial-time verifier TM V and constants c, k
such that:

x ∈ L ⇐⇒ ∃u, |u| = c|x|k, V (x, u) = 1.

(Here we insist that the proof is of length exactly c|x|k, which is fine to do and
does not change the definition of NP.)

Note that V is just a regular decider TM. Using Theorem (Efficient TM im-
plies efficient circuit), we know that there exists a polynomial-size circuit fam-
ily that simulates V . LetC = C(x, u) be the circuit in this family with |x|+c|x|k
input gates (this is a circuit with input gates corresponding to the x-variables as
well as the u-variables). For x ∈ {0, 1}∗, let Cx be the circuit C where the input
gates xi are replaced with constant gates corresponding to the actual values of
the xi’s. So Cx is a circuit where the input gates correspond to the u-variables
only. Our function f : {0, 1}∗ → {0, 1}∗ thus maps x to 〈Cx〉. Observe that

x ∈ L ⇐⇒ ∃u, |u| = c|x|k, V (x, u) = 1

⇐⇒ Cx is satisfiable.

This shows x ∈ L if and only if 〈Cx〉 ∈ CIRCUIT-SAT, as desired.
It is not hard to argue that 〈Cx〉 can be constructed in polynomial time

(which we leave as an exercise to the reader).

140

Quiz

1. True or false: Every language in NP is decidable.

2. True or false: Let Σ be an alphabet. Then Σ∗ ∈ NP.

3. True or false: {0k1k : k ∈ N} ∈ NP.

4. True or false: If there is a polynomial-time algorithm for 3COL, then P =
NP.

5. True or false: For languages A and B, if A ≤P
m B and B 6∈ NP, then

A 6∈ NP.

6. True or false: HALTS is NP-complete.

141

142

Chapter 13

Computational Social Choice

143

PREAMBLE

Chapter structure:

• Section 13.1 (Basic Definitions and Results)

– Definition 13.1 (Election, voters, alternatives, preference profile,
voting rule)

– Definition 13.2 (Pairwise election)

– Definition 13.3 (Condorcet winner)

– Definition 13.4 (Various voting rules)

– Theorem 13.5 (Bartholdi-Tovey-Trick 1989)

– Definition 13.6 (Types of voting rules)

– Definition 13.11 (Manipulation, strategy-proof (SP) voting rule)

– Theorem 13.13 (Gibbard-Satterthwaite)

– Definition 13.14 (r-Manipulation problem)

– Theorem 13.16 (Greedy algorithm solves r-Manipulation prob-
lem for various voting rules)

– Theorem 13.17 (Bartholdi-Orlin 1991)

Chapter goals:

For a great introduction to the area of computational social choice theory,
please see http://procaccia.info/papers/4centuries.xrds.pdf. The
article contains the history and motivations surrounding this important
area of study, which has enormous implications on our daily lives. For
example, we use elections to choose our political leaders, and the voting
rules we use in these elections can have dramatic effects on the potential
outcomes.

Our goal in this chapter is two-fold. First, we would like to show you
that the important area of collective decision making, which at first seems
to have nothing to do with computer science, can be studied in the context
of theoretical computer science. This allows us to generate very interest-
ing results and insights, which can then be used to implement provably
better decision making systems (e.g. elections). Second, the study of com-
putational social choice has interesting ties to the theory of NP-hardness.
Even though in many settings, the hardness of a computational problem
is viewed as a negative thing, it turns out that in certain settings, the hard-
ness of certain problems can be very desirable. Computational social choice
happens to be one of those settings where computational hardness can be
desirable, and we will see one such example in this chapter.

144

http://procaccia.info/papers/4centuries.xrds.pdf

13.1 Basic Definitions and Results

Definition 13.1 (Election, voters, alternatives, preference profile, voting rule).
An election is specified by 4 objects:

• Voters: a set of n voters N = {1, 2, . . . , n};

• Alternatives: a set of m alternatives denoted by A;

• Preference profile: for each voter, a ranking over the alternatives from
rank 1 to rank m;

• Voting rule: a function that maps a preference profile to an alternative.

The output of the voting rule is called the winner of the election.

Definition 13.2 (Pairwise election).
In a pairwise election, m = 2 and an alternative x wins if the majority of voters
prefer x over the other alternative.

Definition 13.3 (Condorcet winner).
We say that an alternative is a Condorcet winner if it beats every other alternative
in a pairwise election.

Definition 13.4 (Various voting rules).
The following are definitions of various voting rules. 1

• Plurality: Each voter awards one point to their top-ranked alternative.
The alternative with the most points is declared the winner.

• Borda count: Each voter awards m − k points to their k’th ranked alter-
native. The alternative with the most points is declared the winner.

• Plurality with runoff: There are 2 rounds. In the first round, a plurality
rule is applied to identify the top two alternatives. In the second round,
a pairwise election is done to determine the winner.

• Single transferable vote (STV): There are m − 1 rounds. In each round
a plurality rule is applied to identify and eliminate the alternative with
the lowest points. The alternative that survives every round is selected
as the winner.

• Copeland: An alternative’s score is the number of alternatives it would
beat in a pairwise election. The winner of the election is the alternative
with the highest score.

• Dodgson: Given a preference profile, define the Dodgson score of an alter-
native x as the number of swaps between adjacent alternatives needed in
the preference profile in order to make x a Condorcet winner. In Dodg-
son voting rule, the winner is an alternative with the minimum Dodgson
score.

1We’ll assume that ties are broken deterministically according to some order on the alternatives.

145

Theorem 13.5 (Bartholdi-Tovey-Trick 1989).
Consider the following computational problem. Given as input an election, an alter-
native x in the election, and a number k, the output is True if and only if the Dodgson
score of x is at most k. This problem is NP-complete.

Definition 13.6 (Types of voting rules).
We call a voting rule

• majority consistent if given a preference profile such that a majority of
the voters rank an alternative x first, then x is the winner of the election;

• Condorcet consistent if given a preference profile such that there is an
alternative x that beats every other alternative in a pairwise election (i.e.
x is a Condorcet winner), then x is the winner of the election;

• onto if for any alternative, there is a preference profile such that the al-
ternative wins;

• dictatorial if there is a voter v such that no matter what the preference
profile is, the winner is v’s most preferred alternative;

• constant if no matter what the preference profile is, the same alternative
is the winner.

(The first 3 are considered to be desirable types of voting rules, whereas the
last 2 are considered undesirable.)

Exercise 13.7 (Borda count is not majority consistent).
Show that Borda count voting rule is not majority consistent.

Exercise 13.8 (Is plurality majority consistent?).
Determine whether plurality is majority consistent.

Exercise 13.9 (Condorcet consistency of plurality and Borda count).
Determine whether plurality and Borda count voting rules are Condorcet con-
sistent or not.

Exercise 13.10 (Majority consistency vs Condorcet consistency).
Does majority consistency imply Condorcet consistency? Does Condorcet con-
sistency imply majority consistency?

Definition 13.11 (Manipulation, strategy-proof (SP) voting rule).
Consider an election in which alternative x wins. We say that a voter can ma-
nipulate the voting rule of the election if by changing their preference list, they
can change the winner of the election to an alternative y that the voter ranks
higher than x. A voting rule is called strategy-proof if no voter can manipulate
the voting rule.

Exercise 13.12 (Are constant and dictatorial voting rules strategy-proof?).
Determine whether constant and dictatorial voting rules are strategy-proof.

146

Theorem 13.13 (Gibbard-Satterthwaite).
If m ≥ 3 then any voting rule that is strategy-proof and onto is dictatorial. Equiva-
lently, any voting rule that is onto and nondictatorial is manipulable.

Definition 13.14 (r-Manipulation problem).
Let r be some voting rule. In the r-Manipulation problem, the input is an elec-
tion, a voter (called the manipulator), and an alternative (called the preferred
candidate). The output is True if there exists a ranking over the alternatives
for the manipulator that makes the preferred candidate a unique winner of the
election.

Note 13.15 (A greedy algorithm for the r-Manipulation problem).
Below is a greedy algorithm that can be used to solve the r-Manipulation prob-
lem, however, it is not always guaranteed to give the correct answer. The al-
gorithm works by trying to build a ranking of the alternatives for the manipu-
lator, starting with the highest rank and moving down to the lowest rank one
by one.

The algorithm is as follows. Given as input an election, a manipulator m,
and a preferred candidate p:

• Rank p in the first place for m.

• While there are unranked alternatives:

– If there is an alternative that can be placed in the next spot
without preventing p from winning, place this alternative.

– Otherwise, output False.

• Output True.

Theorem 13.16 (Greedy algorithm solves r-Manipulation problem for various
voting rules).
The greedy algorithm above is a polynomial-time algorithm that correctly solves the
r-Manipulation problem for

r ∈ {plurality, Borda count, plurality with runoff, Copeland}.

Theorem 13.17 (Bartholdi-Orlin 1991).
The r-Manipulation problem is NP-complete for r being the single transferable voting
(STV) rule.

147

Quiz

1. True or false: If a voting rule is constant, then it is dictatorial.

2. True or false: Copeland voting rule is Condorcet consistent.

3. True or false: A Condorcet winner always exists.

4. True or false: Suppose there are two alternatives a and b, and consider
the following voting rule for n voters: if voter 1 ranks a first, choose the
alternative that voter 2 ranks first; and if voter 1 ranks b first, choose the
alternative that voter 2 ranks second. This rule is strategy-proof.

5. True or false: Under the veto voting rule, each voter gives a bad point
to the alternative he ranks last. The rule selects an alternative with the
smallest number of bad points. This rule is Majority consistent.

148

Hints to Selected Exercises

Exercise 13.7 (Borda count is not majority consistent):
Find an example such that an alternative a is ranked first by a majority of the voters, but using the
Borda count voting rule, a would not win.

Exercise 13.8 (Is plurality majority consistent?):
Yes, it is.

Exercise 13.9 (Condorcet consistency of plurality and Borda count):
They are not Condorcet consistent. Find examples.

Exercise 13.10 (Majority consistency vs Condorcet consistency):
No and yes.

149

150

Chapter 14

Approximation Algorithms

151

PREAMBLE

Chapter structure:

• Section 15.1.1 (Basic Definitions)

– Definition 14.1 (Optimization problem)

– Definition 14.2 (Optimization version of the Vertex-cover prob-
lem)

– Definition 14.5 (Approximation algorithm)

• Section 14.2 (Examples of Approximation Algorithms)

– Lemma 14.7 (Vertex cover vs matching)

– Theorem 14.8 (Gavril’s Algorithm)

– Definition 14.10 (Max-cut problem)

– Theorem 14.11 ((1/2)-approximation algorithm for MAX-CUT)

– Definition 14.12 (Traveling salesperson problem (TSP))

– Theorem 14.13 (2-approximation algorithm for Metric-TSP)

– Definition 14.14 (Max-coverage problem)

Chapter goals:

Given that many problems that we would like to solve efficiently are NP-
hard, we do not hope to find a polynomial time algorithm that exactly
solves the problem for all inputs. This doesn’t mean that we should give
up. Rather, it means that we should look for efficient solutions that we
might consider “good enough”, by relaxing some of the requirements. For
instance, we could relax the condition that the algorithm outputs a correct
answer for all inputs. Or perhaps, we would be happy if the algorithm gave
us an approximately good solution.

In this chapter, we study approximation algorithms, which give us ways to
deal with NP-hard problems. Approximation algorithms do not necessar-
ily give us exact solutions, but give us approximately good solutions with
guarantees on how close the output of the algorithm is to a desired solution.
To make all of this precise, we first start with the definition of an optimiza-
tion problem. Afterwards, we give the formal definition of an approximation
algorithm, and present 3 examples. Our goal is for you to develop a basic
level of comfort with thinking about and analyzing approximation algo-
rithms.

152

14.1 Basic Definitions

Definition 14.1 (Optimization problem).
A minimization optimization problem is a function f : Σ∗ × Σ∗ → R≥0 ∪ {no}. If
f(x, y) = α ∈ R≥0, we say that y is a solution to x with value α. If f(x, y) = no,
then y is not a solution to x. We let OPTf (x) denote the minimum f(x, y)
among all solutions y to x.1 We drop the subscript f , and just write OPT(x),
when f is clear from the context.

In a maximization optimization problem, OPTf (x) is defined using a maxi-
mum rather than a minimum.

We say that an optimization problem f is computable if there is an algo-
rithm such that given as input x ∈ Σ∗, it produces as output a solution y to
x such that f(x, y) = OPT(x). We often describe an optimization problem by
describing the input and a corresponding output (i.e. a solution y such that
f(x, y) = OPT(x)).

Definition 14.2 (Optimization version of the Vertex-cover problem).
Given an undirected graph G = (V,E), a vertex cover in G is a set S ⊆ V such
that for all edges in E, at least one of its endpoints is in S.2

The VERTEX-COVER problem is the following. Given as input an undi-
rected graph G together with an integer k, output True if and only if there is a
vertex cover in G of size at most k. The corresponding language is

{〈G, k〉 : G is a graph that has a vertex cover of size at most k}.

In the optimization version of VERTEX-COVER, we are given as input an
undirected graphG and the output is a vertex cover of minimum size. We refer
to this problem as MIN-VC.

Using the notation in Definition 14.1 (Optimization problem), the corre-
sponding function f is defined as follows. Let x = 〈G〉 for some graph G. If y
represents a vertex cover in G, then f(x, y) is defined to be the size of the set
that y represents. Otherwise f(x, y) = no.

Note 14.3 (Examples of optimization problems).
Each decision problem that we have defined in the beginning of Chapter 11
(Polynomial-Time Reductions) has a natural optimization version.

Note 14.4 (NP-hardness for optimization problems).
The complexity class NP is a set of decision problems (or languages). Similarly,
the set of NP-hard problems is a set of decision problems. Given an optimiza-
tion problem f , suppose it is the case that if f can be computed in polynomial
time, then every decision problem in NP can be decided in polynomial time.
In this case, we will abuse the definition of NP-hard and say that f is NP-hard.

Definition 14.5 (Approximation algorithm).

• Let f be a minimization optimization problem and let α > 1 be some
parameter. We say that an algorithm A is an α-approximation algorithm
for f if for all instances x, f(x,A(x)) ≤ α ·OPT(x).

1There are a few technicalities. We will assume that f is such that every x has at least one
solution y, and that the minimum always exists.

2We previously called such a set a popular set.

153

• Let f be a maximization optimization problem and let 0 < β < 1 be some
parameter. We say that an algorithm A is a β-approximation algorithm
for f if for all instances x, f(x,A(x)) ≥ β ·OPT(x).

IMPORTANT 14.6 (Analyzing approximation algorithms).
When showing that a certain minimization problem has an α-approximation
algorithm, you need to first present an algorithm A, and then argue that for
any input x, the value of the output produced by the algorithm is within a
factor α of the optimum:

f(x,A(x)) ≤ α ·OPT(x).

When doing this, it is usually hard to know exactly what the optimum value
would be. So a good strategy is to find a convenient lower bound on the op-
timum, and then argue that the output of the algorithm is within a factor α
of this lower bound. In other words, if LB(x) denotes the lower bound (so
LB(x) ≤ OPT(x)), we want to argue that

f(x,A(x)) ≤ α · LB(x).

For example, for the MIN-VC problem, we will use Lemma 14.7 (Vertex cover
vs matching) below to say that the optimum (the size of the minimum size
vertex cover) is lower bounded by the size of a matching in the graph.

The same principle applies to maximization problems as well. For maxi-
mization problems, we want to find a convenient upper bound on the optimum.

14.2 Examples of Approximation Algorithms

Lemma 14.7 (Vertex cover vs matching).
Given a graph G = (V,E), let M ⊆ E be a matching in G, and let S ⊂ V be a vertex
cover in G. Then, |S| ≥ |M |.

Proof. Observe that in a vertex cover, one vertex cannot be incident to more
than one edge of a matching. Therefore, a vertex cover must have at least |M |
vertices in order to touch every edge of M . (Recall that the size of a matching,
|M |, is the number of edges in the matching.)

Theorem 14.8 (Gavril’s Algorithm).
There is a polynomial-time 2-approximation algorithm for the optimization problem
MIN-VC.

Proof. We start by presenting the algorithm, which greedily chooses a maximal
matching M in the graph, and then outputs all the vertices that are incident to
an edge in M .

G = (V,E): undirected graph.
A(〈G〉):

1 Let M = ∅.
2 For each edge e ∈ E do:
3 If M ∪ {e} is a matching, let M = M ∪ {e}.
4 Let S = set of all the vertices incident to an edge in M .
5 Output S.

154

We need to argue that the algorithm runs in polynomial time and that it is
a 2-approximation algorithm. It is easy to see that the running-time is poly-
nomial. We have a loop that repeats |E| times, and in each iteration, we do at
most O(|E|) steps. So the total cost of the loop is O(|E|2). The construction of
S takes O(|V |) steps, so in total, the algorithm runs in polynomial time.

Now we argue that the algorithm is a 2-approximation algorithm. To do
this, we need to argue that

(i) S is indeed a valid vertex-cover,

(ii) if S∗ is a vertex cover of minimum size, then |S| ≤ 2|S∗|.

For (i), notice that the M constructed by the algorithm is a maximal matching,
i.e., there is no edge e ∈ E such thatM∪{e} is a matching. This implies that the
set S is indeed a valid vertex-cover, i.e., it touches every edge in the graph. For
(ii), a convenient lower bound on |S∗| is given by Lemma 14.7 (Vertex cover vs
matching): for any matching M , |S∗| ≥ |M |. Observe that |S| = 2|M |. Putting
the two together, we get |S| ≤ 2|S∗| as desired.

Exercise 14.9 (Optimality of the analysis of Gavril’s Algorithm).
Describe an infinite family of graphs for which the above algorithm returns a
vertex cover which has twice the size of a minimum vertex cover.

Definition 14.10 (Max-cut problem).
Let G = (V,E) be a graph. Given a coloring of the vertices with 2 colors, we
say that an edge e = {u, v} is cut if u and v are colored differently. In the max-
cut problem, the input is a graph G, and the output is a coloring of the vertices
with 2 colors that maximizes the number of cut edges. We denote this problem
by MAX-CUT.

Theorem 14.11 ((1/2)-approximation algorithm for MAX-CUT).
There is a polynomial-time 1

2 -approximation algorithm for the optimization problem
MAX-CUT.

Proof. Here is the algorithm:

G = (V,E): undirected graph.
A(〈G〉):

1 Color every vertex with the same color. Let c = 0. (c
stores the number of cut edges.)

2 Repeat:
3 If there is a vertex such that changing its color increases

the number of cut edges, change the color of that vertex.
Update c.

4 Else, output the current coloring of the vertices.

We first argue that the algorithm runs in polynomial time. Note that the
maximum number of cut edges possible is |E|. Therefore the loop repeats at
most |E| times. In each iteration, the number of steps we need to take is at
most O(|V |2) since we can just go through every vertex once, and for each one
of them, we can check all the edges incident to it. So in total, the number of
steps is polynomial in the input length.

155

We now show that the algorithm is a 1
2 -approximation algorithm. It is clear

that the algorithm returns a valid coloring of the vertices. Therefore, if c is the
number of cut edges returned by the algorithm, all we need to show is that
c ≥ 1

2 OPT(〈G〉). We will use the trivial upper bound of m (the total number of
edges) on OPT(〈G〉), i.e. OPT(〈G〉) ≤ m. So our goal will be to show c ≥ 1

2m.
Observe that in the coloring that the algorithm returns, for each v ∈ V , at

least deg(v)/2 edges incident to v are cut edges. To see this, notice that if there
was a vertex such that this was not true, then we could change the color of the
vertex to obtain a solution that has strictly more cut edges, so our algorithm
would have changed the color of this vertex. From Theorem 8.9 (Handshake
Theorem), we know that when we count the number of edges of a graph by
adding up the degrees of all the vertices, we count every edge exactly twice,
i.e. 2m =

∑
v deg(v). In a similar way we can count the number of cut edges,

which implies 2c ≥
∑

v deg(v)/2. The RHS of this inequality is equal to m, so
we have c ≥ 1

2m, as desired.

Definition 14.12 (Traveling salesperson problem (TSP)).
In the Traveling salesperson problem, the input is a connected graph G = (V,E)
together with edge costs c : E → N. The output is a Hamiltonian cycle that
minimizes the total cost of the edges in the cycle, if one exists.

A popular variation of this problem is called Metric-TSP. In this version of
the problem, instead of outputting a Hamiltonian cycle of minimum cost, we
output a “tour” that starts and ends at the same vertex and visits every vertex
of the graph at least once (so the tour is allowed to visit a vertex more than
once). In other words, the output is a list of vertices vi1 , vi2 , . . . , vik , vi1 such
that the vertices are not necessarily unique, all the vertices of the graph appear
in the list, any two consecutive vertices in the list form an edge, and the total
cost of the edges is minimized.

Theorem 14.13 (2-approximation algorithm for Metric-TSP).
There is a polynomial-time 2-approximation algorithm for Metric-TSP.

Proof. The algorithm first computes a minimum spanning tree, and then does a
depth-first search on the tree starting from an arbitrary vertex. More precisely:

G = (V,E): connected graph. c : E → N: function.
A(〈G, c〉):

1 Compute a MST T of G.
2 Let v be an arbitrary vertex in V .
3 Let L be an empty list.
4 Run DFS(〈T, v〉).

G = (V,E): graph. v: v ∈ V .
DFS(〈G, v〉):

1 Mark v as “visited”.
2 Add v to L.
3 For each u ∈ N(v):
4 If u is not marked “visited”, then

run DFS(〈G, u〉).
5 Add v to L.

5 Output L.

156

This is clearly a polynomial-time algorithm since computing a minimum
spanning tree (Theorem 8.34 (Jarnı́k-Prim algorithm for MST)) and doing a
depth-first search both take polynomial time.

To see that the algorithm outputs a valid tour, note that it visits every vertex
(since T is a spanning tree), and it starts and ends at the same vertex v.

Let c(L) denote the total cost of the tour that the algorithm outputs. Let
L∗ be a optimal solution (so c(L∗) = OPT(〈G, c〉)). Our goal is to show that
c(L) ≤ 2c(L∗). The graph induced by L∗ is a connected graph on all of the
vertices. Let T ∗ be a spanning tree within this induced graph. It is clear that
c(L∗) ≥ c(T ∗) and this will be the convenient lower bound we use on the
optimum. In other words, we’ll show c(L) ≤ 2c(T ∗). Clearly c(L) = 2c(T)
since the tour uses every edge of T exactly twice. Furthermore, since T is a
minimum spanning tree, c(T) ≤ c(T ∗). Putting these together, we have c(L) ≤
2c(T ∗), as desired.

Definition 14.14 (Max-coverage problem).
In the max-coverage problem, the input is a set X , a collection of (possibly inter-
secting) subsets S1, S2, . . . , Sm ⊆ X (we assume the union of all the sets is X),
and a number k ∈ {0, 1, . . . ,m}. The output is a set T ⊆ {1, 2, . . . ,m} of size
k that maximizes | ∪i∈T Si| (the elements in this intersection are called covered
elements). We denote this problem by MAX-COVERAGE.

Exercise 14.15 (Approximation algorithm for MAX-COVERAGE).
In this exercise, you will prove that there is a polynomial-time

(
1− 1

e

)
-approximation

algorithm for the MAX-COVERAGE problem. The algorithm you should con-
sider is the following greedy algorithm:

S1, S2, . . . , Sm: sets. k: integer in {0, 1, . . . ,m}.
A(〈S1, . . . , Sm, k〉):

1 T = ∅.
2 U = ∅. (keeping track of elements covered)
3 Repeat k times:
4 Pick j such that j 6∈ T and |Sj − U | is maximized.
5 Add j to T .
6 Update U to U ∪ Sj .

157

7 Output T .

(a) Show that the algorithm runs in polynomial time.

(b) Let T ∗ denote the optimum solution, and let U∗ = ∪j∈T∗Sj . Note that
the value of the optimum solution is |U∗|. Define Ui to be the set U in the
above algorithm after i iterations of the loop. Let ri = |U∗| − |Ui|. Prove
that ri ≤

(
1− 1

k

)i |U∗|.
(c) Using the inequality3 1 − 1/k ≤ e−1/k, conclude that the algorithm is a(

1− 1
e

)
-approximation algorithm for the MAX-COVERAGE problem.

Exercise 14.16 (Approximation algorithm for MIN-SET-COVER).
In the set-cover problem, the input is a set X together with a collection of (pos-
sibly intersecting) subsets S1, S2, . . . , Sm ⊆ X (we assume the union of all
the sets is X). The output is a minimum size set T ⊆ {1, 2, . . . ,m} such
that ∪i∈TSi = X . We denote this problem by MIN-SET-COVER. Give a
polynomial-time (ln |X|)-approximation algorithm for this problem.

3This can be derived from the Taylor expansion of ex.

158

Quiz

1. True or false: Suppose A is an α-approximation algorithm for the MAX-
CLIQUE problem for some α < 1. Then it must be the case that for all
input graphs G = (V,E), the size of the clique returned by A is at least
α · |V |.

2. True or false: The approximation algorithm for Metric-TSP that we have
seen is not a (2− ε)-approximation algorithm for any constant ε > 0.

3. True or false: LetA1 be a 2-approximation algorithm for MIN-VC, and let
A2 be a 4-approximation algorithm for MIN-VC. Define a new approxi-
mation algorithmA3 that runsA1 andA2 on the given MIN-VC instance,
and outputs the smaller among the two vertex covers they find. Then A3

is a 2-approximation algorithm.

4. True or we don’t know: Let A be a polynomial-time algorithm for MIN-
VC such that the output of A is within a factor of 1.9 of the optimum
for all but 251 possible inputs. Then we cannot say that A is a 1.9-
approximation algorithm for MIN-VC. But we can conclude that there is
definitely a polynomial-time 1.9-approximation algorithm for MIN-VC.

159

Hints to Selected Exercises

Exercise 14.16 (Approximation algorithm for MIN-SET-COVER):
The algorithm is the same as the one given in the previous exercise. Instead of repeating for a fixed
number of times, repeat until you cover every element.

160

Chapter 15

Probability Theory

161

PREAMBLE

Chapter structure:

• Section 15.1 (Probability I: The Basics)

– Definition 15.1 (Finite probability space, sample space, probabil-
ity distribution)

– Definition 15.6 (Uniform distribution)

– Definition 15.7 (Event)

– Definition 15.10 (Disjoint events)

– Definition 15.12 (Conditional probability)

– Proposition 15.15 (Chain rule)

– Proposition 15.17 (Law of total probability)

– Proposition 15.20 (Bayes’ rule)

– Definition 15.22 (Independent events)

• Section 15.2 (Probability II: Random Variables)

– Definition 15.25 (Random variable)

– Definition 15.27 (Common events through a random variable)

– Definition 15.30 (Probability mass function (PMF))

– Definition 15.33 (Expected value of a random variable)

– Proposition 15.36 (Linearity of expectation)

– Corollary 15.37 (Linearity of expectation 2)

– Definition 15.40 (Indicator random variable)

– Proposition 15.41 (Expectation of an indicator random variable)

– Definition 15.44 (Conditional expectation)

– Proposition 15.45 (Law of total expectation)

– Definition 15.48 (Independent random variables)

– Theorem 15.50 (Markov’s inequality)

– Definition 15.52 (Bernoulli random variable)

– Definition 15.54 (Binomial random variable)

– Definition 15.58 (Geometric random variable)

Chapter goals:

Randomness is an essential concept and tool in modeling and analyzing
nature. Therefore, it should not be surprising that it also plays a founda-
tional role in computer science. For many problems, solutions that make
use of randomness are the simplest, most efficient and most elegant solu-
tions. And in many settings, one can prove that randomness is absolutely
required to achieve a solution. (See the introduction to Lecture 23 for some
concrete examples.)

The right language and mathematical model to analyze/study random-
ization is probability theory. The goal of this chapter is to introduce the
basic definitions and theorems in this field.

162

15.1 Probability I: The Basics

15.1.1 Basic Definitions

Definition 15.1 (Finite probability space, sample space, probability distribu-
tion).
A finite probability space is a tuple (Ω,Pr), where

• Ω is a non-empty finite set called the sample space;

• Pr : Ω → [0, 1] is a function, called the probability distribution, with the
property that

∑
`∈Ω Pr[`] = 1.

The elements of Ω are called outcomes or samples. If Pr[`] = p, then we say that
the probability of outcome ` is p.

Note 15.2 (Modeling randomness).
The abstract definition above of a finite probability space helps us to mathe-
matically model and reason about situations involving randomness and un-
certainties (these situations are often called “random experiments” or just “ex-
periments”). For example, consider the experiment of flipping a single coin.
We model this as follows. We let Ω = {Heads,Tails} and we define function
Pr such that Pr[Heads] = 1/2 and Pr[Tails] = 1/2. This corresponds to our in-
tuitive understanding that the probability of seeing the outcome Heads is 1/2
and the probability of seeing the outcome Tails is also 1/2.

Note 15.3 (Restriction to finite sample spaces).
In this course, we’ll usually restrict ourselves to finite sample spaces. In cases
where we need an infinite Ω, the above definition will generalize naturally.

Exercise 15.4 (Probability space modeling).
How would you model a roll of a single 6-sided die using Definition 15.1 (Fi-
nite probability space, sample space, probability distribution)? How about a
roll of two dice? How about a roll of a die and a coin toss together?

Note 15.5 (Modeling through randomized code).
Sometimes, the modeling of a real-world random experiment as a probability
space can be non-trivial or tricky. It helps a lot to have a step in between where
you first go from the real-world experiment to computer code/algorithm (that
makes calls to random number generators), and then you define your prob-
ability space based on the computer code. In this course, we allow our pro-
grams to have access to the functions Bernoulli(p) and RandInt(n). The func-
tion Bernoulli(p) takes a number 0 ≤ p ≤ 1 as input and returns 1 with proba-
bility p and 0 with probability 1 − p. The function RandInt(n) takes a positive
integer n as input and returns a random integer from 1 to n (i.e., every number
from 1 to n has probability 1/n). Here is a very simple example of going from
a real-world experiment to computer code. The experiment is as follows. You
flip a fair coin. If it’s heads, you roll a 3-sided die. If it is tails, you roll a 4-sided
die. This experiment can be represented as:

163

flip = Bernoulli(1/2)

if flip = 0:

die = RandInt(3)

else:

die = RandInt(4)

If we were to ask “What is the probability that you roll a 3 or higher?”, this
would correspond to asking what is the probability that after the above code
is executed, the variable named die stores a value that is 3 or higher. This
simple example does not illustrate the usefulness of having a computer code
representation of the random experiment, but one can appreciate its value with
more sophisticated examples and we do encourage you to think of random
experiments as computer code:

real-world experiment −→ computer code −→ probability space (Ω,Pr).

Definition 15.6 (Uniform distribution).
If a probability distribution Pr : Ω → [0, 1] is such that Pr[`] = 1/|Ω| for all
` ∈ Ω, then we call it a uniform distribution.

Definition 15.7 (Event).
Let (Ω,Pr) be a probability space. Any subset of outcomes E ⊆ Ω is called
an event. We abuse notation and write Pr[E] to denote

∑
`∈E Pr[`]. Using this

notation, Pr[∅] = 0 and Pr[Ω] = 1. We use the notation E to denote the event
Ω\E.

Exercise 15.8 (Practice with events).

(a) Suppose we roll two 6-sided dice. How many different events are there?
Write down the event corresponding to “we roll a double” and determine
its probability.

(b) Suppose we roll a 3-sided die and see the number d. We then roll a d-
sided die. How many different events are there? Write down the event
corresponding to “the second roll is a 2” and determine its probability.

Exercise 15.9 (Basic facts about probability).
Let A and B be two events. Prove the following.

• If A ⊆ B, then Pr[A] ≤ Pr[B].

• Pr[A] = 1−Pr[A].

• Pr[A ∪B] = Pr[A] + Pr[B]−Pr[A ∩B].

Definition 15.10 (Disjoint events).
We say that two events A and B are disjoint if A ∩B = ∅.

Exercise 15.11 (Union bound).
Let A1, A2, . . . , An be events. Then

Pr[A1 ∪A2 ∪ · · · ∪An] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[An].

We get equality if and only if the Ai’s are pairwise disjoint.

164

Definition 15.12 (Conditional probability).
Let B be an event with Pr[B] 6= 0. The conditional probability of outcome ` ∈ Ω
given B, denoted Pr[` | B], is defined as

Pr[` | B] =

{
0 if ` 6∈ B
Pr[`]
Pr[B] if ` ∈ B

For an event A, the conditional probability of A given B, denoted Pr[A | B], is
defined as

Pr[A | B] =
Pr[A ∩B]

Pr[B]
. (15.1)

Note 15.13 (Intuitive understanding of conditional probability).
Although it may not be immediately obvious, the above definition of con-
ditional probability does correspond to our intuitive understanding of what
conditional probability should represent. If we are told that event B has al-
ready happened, then we know that the probability of any outcome outside
of B should be 0. Therefore, we can view the conditioning on event B as a
transformation of our probability space where we revise the probabilities (i.e.,
we revise the probability function Pr[·]). In particular, the original probability
space (Ω,Pr) gets transformed to (Ω,PrB), where PrB is such that for any
` 6∈ B, we have PrB [`] = 0, and for any ` ∈ B, we have PrB [`] = Pr[`]/Pr[B].
The 1/Pr[B] factor here is a necessary normalization factor that ensures the
probabilities of all the outcomes sum to 1 (which is required by Definition 15.1
(Finite probability space, sample space, probability distribution)). Indeed∑

`∈Ω PrB [`] =
∑

` 6∈B PrB [`] +
∑

`∈B PrB [`]

= 0 +
∑

`∈B Pr[`]/Pr[B]

= 1
Pr[B]

∑
`∈B Pr[`]

= 1.

If we are interested in the event “A given B” (denoted by A | B) in the prob-
ability space (Ω,Pr), then we are interested in the event A in the probability
space (Ω,PrB). That is, Pr[A | B] = PrB [A]. Therefore,

Pr[A | B] = PrB [A] = PrB [A ∩B] =
Pr[A ∩B]

Pr[B]
,

where the last equality holds by the definition of PrB [·]. We have thus recov-
ered the equality in Definition 15.12 (Conditional probability).

Conditioning on eventB can also be viewed as redefining the sample space
Ω to be B, and then renormalizing the probabilities so that Pr[Ω] = Pr[B] = 1.

Exercise 15.14 (Conditional probability practice).
Suppose we roll a 3-sided die and see the number d. We then roll a d-sided
die. We are interested in the probability that the first roll was a 1 given that
the second roll was a 1. First express this probability using the notation of
conditional probability and then determine what the probability is.

165

15.1.2 Three Useful Rules

Proposition 15.15 (Chain rule).
Let n ≥ 2 and let A1, A2, . . . , An be events. Then

Pr[A1 ∩ · · · ∩An] =

Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1 ∩A2] · · ·Pr[An | A1 ∩A2 ∩ · · · ∩An−1].

Proof. We prove the proposition by induction on n. The base case with two
events follows directly from the definition of conditional probability. Let A =
An and B = A1 ∩ . . . ∩An−1. Then

Pr[A1 ∩ · · · ∩An] = Pr[A ∩B]

= Pr[B] ·Pr[A | B]

= Pr[A1 ∩ · · · ∩An−1] ·Pr[An | A1 ∩ · · · ∩An−1],

where we used the definition of conditional probability for the second equality.
Applying the induction hypothesis to Pr[A1 ∩ · · · ∩ An−1] gives the desired
result.

Exercise 15.16 (Practice with chain rule).
Suppose there are 100 students in 15-251 and 5 of the students are Trump sup-
porters. We pick 3 students from class uniformly at random. Calculate the
probability that none of them are Trump supporters using Proposition 15.15
(Chain rule).

Proposition 15.17 (Law of total probability).
LetA1, A2, . . . , An, B be events such that theAi’s form a partition of the sample space
Ω. Then

Pr[B] = Pr[B ∩A1] + Pr[B ∩A2] + · · ·+ Pr[B ∩An].

Equivalently,

Pr[B] = Pr[A1] ·Pr[B | A1] + Pr[A2] ·Pr[B | A2] + · · ·+ Pr[An] ·Pr[B | An].

Exercise 15.18 (Proof of the law of total probability).
Prove the above proposition.

Exercise 15.19 (Practice with the law of total probability).
There are 2 bins. Bin 1 contains 6 red balls and 4 blue balls. Bin 2 contains 3 red
balls and 7 blue balls. We choose a bin uniformly at random, and then choose
one of the balls in that bin uniformly at random. Calculate the probability that
the chosen ball is red using Proposition 15.17 (Law of total probability).

Proposition 15.20 (Bayes’ rule).
Let A and B be events. Then,

Pr[A | B] =
Pr[A] ·Pr[B | A]

Pr[B]
.

166

Proof. Since by definition Pr[B | A] = Pr[A∩B]/Pr[A], the RHS of the equal-
ity above simplifies to Pr[A ∩B]/Pr[B]. This, by definition, is Pr[A | B].

Exercise 15.21 (Practice with Bayes’ rule).
CAPTCHAs are tests designed to be hard for computers to solve but easy for
people to solve. Suppose it is estimated that 3/4 of all attempts to solve a
CAPTCHA are from humans and the remainder are from computers. If a
human has a 9/10 chance of successfully solving a CAPTCHA and a com-
puter has a 1/5 chance, what is the probability that the entity attempting a
CAPTCHA was a human, given that the CAPTCHA was successfully solved?

15.1.3 Independence

Definition 15.22 (Independent events).

• LetA andB be two events. We say thatA andB are independent if Pr[A∩
B] = Pr[A] · Pr[B]. Note that if Pr[B] 6= 0, then this is equivalent to
Pr[A | B] = Pr[A]. If Pr[A] 6= 0, it is also equivalent to Pr[B | A] =
Pr[B].

• Let A1, A2, . . . , An be events with non-zero probabilities. We say that
A1, . . . , An are independent if for any subset S ⊆ {1, 2, . . . , n},

Pr

[⋂
i∈S

Ai

]
=
∏
i∈S

Pr[Ai].

Note 15.23 (Defining independence through computer code).
Above we have given the definition of independent events as presented in 100%
of the textbooks on probability theory. Yet, there is something deeply unsat-
isfying about this definition. In many situations people want to compute a
probability of the form Pr[A ∩ B], and if possible (if they are independent),
would like to use the equality Pr[A ∩ B] = Pr[A]Pr[B] to simplify the calcu-
lation. In order to do this, they will informally argue that events A and B are
independent in the intuitive sense of the word. For example, they argue that if
B happens, then this doesn’t affect the probability of A happening (this argu-
ment is not done by calculation, but by informal argument). Then using this,
they justify using the equality Pr[A ∩ B] = Pr[A]Pr[B] in their calculations.
So really, secretly, people are not using Definition 15.22 (Independent events)
but some other non-formal intuitive definition of independence, and then con-
cluding what the formal definition says, which is Pr[A ∩B] = Pr[A]Pr[B].

To be a bit more explicit, recall that the approach to answering probability
related questions is to go from a real-world experiment we want to analyze to
a formal probability space model:

real-world experiment −→ probability space (Ω,Pr).

People often argue the independence of events A and B on the left-hand-side
in order to use Pr[A∩B] = Pr[A]Pr[B] on the right-hand-side. The left-hand-
side, however, is not really a formal setting and may have ambiguities. And
why does our intuitive notion of independence allow us to conclude Pr[A ∩

167

B] = Pr[A]Pr[B]? In these situations, it helps to add the “computer code”
step in between:

real-world experiment −→ computer code −→ probability space (Ω,Pr).

Computer code has no ambiguities and we can give a formal definition of in-
dependence using it. Suppose you have a randomized code modeling the real-
world experiment, and suppose that you can divide the code into two separate
parts. Suppose A is an event that depends only on the first part of the code,
and B is an event that depends only on the second part of the code. If you can
prove that the two parts of the code cannot affect each other, then we say that
A and B are independent. When A and B are independent in this sense, then
one can verify that indeed the equality Pr[A ∩B] = Pr[A]Pr[B] holds.

Exercise 15.24 (Pair-wise independent but not three-wise).
Give an example of a probability space with 3 events A1, A2 and A3 such that
each pair of events Ai and Aj are independent, however A1, A2, A3 together
are dependent.

15.2 Probability II: Random Variables

15.2.1 Basics of random variables

Definition 15.25 (Random variable).
A random variable is a function X : Ω→ R.

Note 15.26 (Random variable intuition).
Note that a random variable is just a labeling of the elements in Ω with some
real numbers. One can think of this as a transformation of the original sam-
ple space into one that contains only numbers. And this is often a desirable
transformation. For example, this transformation allows us to take a weighted
average of the elements in Ω, where the weights correspond to the probabili-
ties of the elements (if the distribution is uniform, the weighted average is just
the regular average). This is called the expectation of the random variable and
is formally defined in Definition 15.33 (Expected value of a random variable).
Without this transformation into real numbers, the concept of an “expected
value” would not be possible to define.

Definition 15.27 (Common events through a random variable).
Let X be a random variable and x ∈ R be some real value. We use

X = x to denote the event {` ∈ Ω : X(`) = x},
X ≤ x to denote the event {` ∈ Ω : X(`) ≤ x},
X ≥ x to denote the event {` ∈ Ω : X(`) ≥ x},
X < x to denote the event {` ∈ Ω : X(`) < x},
X > x to denote the event {` ∈ Ω : X(`) > x}.

For example, Pr[X = x] denotes Pr[{` ∈ Ω : X(`) = x}]. More generally, for
S ⊆ R, we use

X ∈ S to denote the event {` ∈ Ω : X(`) ∈ S}.

168

Exercise 15.28 (Practice with random variables).
Suppose we roll two 6-sided dice. Let X be the random variable that denotes
the sum of the numbers we see. Explicitly write down the input-output pairs
for the function X . Calculate Pr[X ≥ 7].

Note 15.29 (Forgetting the original sample space).
Given some probability space (Ω,Pr) and a random variable X : Ω → R, we
often forget about the original sample space and consider the sample space to
be the range of X , range(X) = {X(`) : ` ∈ Ω}.

Definition 15.30 (Probability mass function (PMF)).
Let X : Ω→ R be a random variable. The probability mass function (PMF) of X
is a function pX : R→ [0, 1] such that for any x ∈ R, pX(x) = Pr[X = x].

Exercise 15.31 (Facts about probability mass function).
Verify the following:

•
∑

x∈range(X) pX(x) = 1,

• for S ⊆ R, Pr[X ∈ S] =
∑

x∈S pX(x).

Note 15.32 (Defining a random variable through PMF).
Related to the previous remark, we sometimes “define” a random variable by
just specifying its probability mass function. In particular we make no mention
of the underlying sample space.

Definition 15.33 (Expected value of a random variable).
Let X be a random variable. The expected value of X , denoted E[X], is defined
as follows:

E[X] =
∑
`∈Ω

Pr[`] ·X(`).

Equivalently,
E[X] =

∑
x∈range(X)

Pr[X = x] · x,

where range(X) = {X(`) : ` ∈ Ω}.

Exercise 15.34 (Equivalence of expected value definitions).
Prove that the above two expressions for E[X] are equivalent.

Exercise 15.35 (Practice with expected value).
Suppose we roll two 6-sided dice. Let X be the random variable that denotes
the sum of the numbers we see. Calculate E[X].

Proposition 15.36 (Linearity of expectation).
Let X and Y be two random variables, and let c1, c2 ∈ R be some constants. Then
E[c1X + c2Y] = c1 E[X] + c2 E[Y].

169

Proof. Define the random variable Z as Z = c1X + c2Y . Then using the defi-
nition of expected value, we have

E[c1X + c2Y] = E[Z]

=
∑
`∈Ω

Pr[`] ·Z(`)

=
∑
`∈Ω

Pr[`] · (c1X(`) + c2Y (`))

=
∑
`∈Ω

Pr[`] · c1X(`) + Pr[`] · c2Y (`)

=

(∑
`∈Ω

Pr[`] · c1X(`)

)
+

(∑
`∈Ω

Pr[`] · c2Y (`)

)

= c1

(∑
`∈Ω

Pr[`] ·X(`)

)
+ c2

(∑
`∈Ω

Pr[`] · Y (`)

)
= c1 E[X] + c2 E[Y],

as desired.

Corollary 15.37 (Linearity of expectation 2).
Let X1,X2, . . . ,Xn be random variables, and c1, c2, . . . , cn ∈ R be some constants.
Then

E[c1X1 + c2X2 + · · ·+ cnXn] = c1 E[X1] + c2 E[X2] + · · ·+ cn E[Xn].

In particular, when all the ci’s are 1, we get

E[X1 + X2 + · · ·+ Xn] = E[X1] + E[X2] + · · ·+ E[Xn].

Exercise 15.38 (Practice with linearity of expectation).
Suppose we roll three 10-sided dice. Let X be the sum of the three values we
see. Calculate E[X].

Exercise 15.39 (Expectation of product of random variables).
Let X and Y be random variables. Is it always true that E[XY] = E[X]E[Y]?

Definition 15.40 (Indicator random variable).
Let E ⊆ Ω be some event. The indicator random variable with respect to E is
denoted by IE and is defined as

IE(`) =

{
1 if ` ∈ E,
0 otherwise.

Proposition 15.41 (Expectation of an indicator random variable).
Let E be an event. Then E[IE] = Pr[E].

170

Proof. By the definition of expected value,

E[IE] = Pr[IE = 1] · 1 + Pr[IE = 0] · 0
= Pr[IE = 1]

= Pr[{` ∈ Ω : IE(`) = 1}]
= Pr[{` ∈ Ω : ` ∈ E}]
= Pr[E].

IMPORTANT 15.42 (Combining linearity of expectation and indicators).
Suppose that you are interested in computing E[X] for some random vari-
able X . If you can write X as a sum of indicator random variables, i.e., if
X =

∑
j IEj where IEj are indicator random variables, then by linearity of

expectation,

E[X] = E

∑
j

IEj

 =
∑
j

E[IEj].

Furthermore, by Proposition 15.41 (Expectation of an indicator random variable),
we know E[IEj] = Pr[Ej]. Therefore E[X] =

∑
j Pr[Ej]. This often provides

an extremely convenient way of computing E[X]. This combination of indi-
cator random variables together with linearity expectation is one of the most
useful tricks in probability theory.

Exercise 15.43 (Practice with linearity of expectation and indicators).

(a) There are n balls and n bins. For each ball, you pick one of the bins
uniformly at random and drop the ball in that bin. What is the expected
number of balls in bin 1? What is the expected number of empty bins?

(b) Suppose you randomly color the vertices of the complete graph on n
vertices one of k colors. What is the expected number of paths of length
c (where we assume c ≥ 3) such that no two adjacent vertices on the path
have the same color?

Definition 15.44 (Conditional expectation).
Let X be a random variable and E be an event. The conditional expectation of
X given the event E, denoted by E[X | E], is defined as

E[X | E] =
∑

x∈range(X)

x ·Pr[X = x | E].

Proposition 15.45 (Law of total expectation).
Let X be a random variable and A1, A2, . . . , An be events that partition the sample
space Ω. Then

E[X] = E[X | A1] ·Pr[A1] + E[X | A2] ·Pr[A2] + · · ·+ E[X | An] ·Pr[An].

Exercise 15.46 (Proof of law of total expectation).
Prove the above proposition.

171

Exercise 15.47 (Practice with law of total expectation).
We first roll a 4-sided die. If we see the value d, we then roll a d-sided die. Let
X be the sum of the two values we see. Calculate E[X].

Definition 15.48 (Independent random variables).
Two random variables X and Y are independent if for all x, y ∈ R, the events
X = x and Y = y are independent. The definition generalizes to more than
two random variables analogous to Definition 15.22 (Independent events).

Exercise 15.49 (Expectation of product of independent random variables).
Show that if X1,X2, . . . ,Xn are independent random variables, then

E[X1X2 · · ·Xn] = E[X1] ·E[X2] · · ·E[Xn].

15.2.2 The most fundamental inequality in probability theory

Theorem 15.50 (Markov’s inequality).
Let X be a non-negative random variable with non-zero expectation. Then for any
c > 0,

Pr[X ≥ cE[X]] ≤ 1

c
.

Proof. Let I be the indicator random variable for the event [X ≥ cE[X]]. Then
E[I] = Pr[X ≥ cE[X]], which corresponds to the LHS of the inequality above.
We claim that

I ≤ X

cE[X]
.

First, observe that the result follows from this claim: if we take the expectations
of both sides of the inequality, we get E[I] ≤ E[X

cE[X]] = E[X]
cE[X] = 1

c , as desired.
We now prove the above claim. The indicator random variable I can be

equal to either 0 or 1. If it is 0, then the inequality holds trivially because by
assumption X is non-negative (so E[X] is also non-negative) and c > 0. If
on the other hand I = 1, then the above inequality becomes equivalent to
1 ≤ X

cE[X] ⇔X ≥ cE[X], which must hold by the definition of I .1

Exercise 15.51 (Practice with Markov’s inequality).
During the Fall 2017 semester, the 15-251 TAs decide to strike because they
are not happy with the lack of free food in grading sessions. Without the TA
support, the performance of the students in the class drop dramatically. The
class average on the first midterm exam is 15%. Using Markov’s Inequality,
give an upper bound on the fraction of the class that got an A (i.e., at least a
90%) in the exam.

1The notation I = 1 may seem strange at first. After all, I is a function, and 1 is an integer.
The meaning of this equality, however, should be clear from the context. When we are considering
the case I = 1, we are considering all ` ∈ Ω such that I(`) = 1. We have a similar situation for
I = 0. When we want to prove an inequality involving random variables, we must show that the
inequality holds for all inputs ` ∈ Ω.

172

15.2.3 Three popular random variables

Definition 15.52 (Bernoulli random variable).
Let 0 < p < 1 be some parameter. If X is a random variable with probability
mass function pX(1) = p and pX(0) = 1−p, then we say that X has a Bernoulli
distribution with parameter p (we also say that X is a Bernoulli random variable).
We write X ∼ Bernoulli(p) to denote this. The parameter p is often called the
success probability.

Note 15.53 (Expectation of Bernoulli random variable).
Note that E[X] = p.

Definition 15.54 (Binomial random variable).
Let X = X1+X2+· · ·+Xn, where the Xi’s are independent and for all i, Xi ∼
Bernoulli(p). Then we say that X has a binomial distribution with parameters n
and p (we also say that X is a binomial random variable). We write X ∼
Bin(n, p) to denote this.

Note 15.55 (Bernoulli is a special case of Binomial).
Note that a Bernoulli random variable is a special kind of a binomial random
variable where n = 1.

Exercise 15.56 (Expectation of a Binomial random variable).
Let X be a random variable with X ∼ Bin(n, p). Determine E[X] (use linearity
of expectation). Also determine X’s probability mass function.

Exercise 15.57 (Practice with Binomial random variable).
We toss a coin 5 times. What is the probability that we see at least 4 heads?

Definition 15.58 (Geometric random variable).
Let X be a random variable with probability mass function pX such that for
n ∈ {1, 2, . . .}, pX(n) = (1 − p)n−1p. Then we say that X has a geometric dis-
tribution with parameter p (we also say that X is a geometric random variable).
We write X ∼ Geometric(p) to denote this.

Exercise 15.59 (PMF of a geometric random variable).
Let X be a geometric random variable. Verify that

∑∞
n=1 pX(n) = 1.

Exercise 15.60 (Practice with geometric random variable).
Suppose we repeatedly flip a coin until we see a heads for the first time. De-
termine the probability that we flip the coin n times. Determine the expected
number of coin flips.

Exercise 15.61 (Expectation of a geometric random variable).
Let X be a random variable with X ∼ Geometric(p). Determine E[X].

173

IMPORTANT 15.62 (Some general tips).
Here are some general tips on probability calculations (this is not meant to be
an exhaustive list).

• If you are trying to upper bound Pr[A], you can try to findB withA ⊆ B,
and then bound Pr[B]. Note that if an event A implies an event B, then
this means A ⊆ B. Similarly, if you are trying to lower bound Pr[A], you
can try to find B with B ⊆ A, and then bound Pr[B].

• If you are trying to upper bound Pr[A], you can try to lower bound Pr[A]
since Pr[A] = 1 − Pr[A]. Similarly, if you are trying to lower bound
Pr[A], you can try to upper bound Pr[A].

• In some situations, law of total probability can be very useful in calculat-
ing (or bounding) Pr[A].

• If you need to calculate Pr[A1 ∩ · · · ∩ An], try the chain rule. If the
events are independent, then this probability is equal to the product
Pr[A1] · · ·Pr[An]. Note that the event “for all i ∈ {1, . . . , n}, Ai” is the
same as A1 ∩ · · · ∩An.

• If you need to upper bound Pr[A1∪· · ·∪An], you can try to use the union
bound. Note that the event “there exists an i ∈ {1, . . . , n} such that Ai”
is the same as A1 ∪ · · · ∪An.

• When trying to calculate E[X], try:

(i) directly using the definition of expectation;

(ii) writing X as a sum of indicator random variables, and then using
linearity of expectation;

(iii) using law of total expectation.

174

Quiz

1. True or false: If two events A and B are independent, then their comple-
ments A and B are also independent. (The complement of an event A is
A = Ω\A.)

2. True or false: If events A and B are disjoint, then they are independent.

3. True or false: Assume that every time a baby is born, there is 1/2 chance
that the baby is a boy. A couple has two children. At least one of the
children is a boy. The probability that both children are boys is 1/2.

4. True or false: For any non-negative random variable X , E[X2] ≤ E[X]2.

5. True or false: Let X be a random variable. If E[X] = µ, then Pr[X =
µ] > 0.

6. True or false: For any event A and random variables X and Y , E[X +
Y | A] = E[X | A] + E[Y | A].

7. True or false: For any random variable X , E[1/X] = 1/E[X].

8. True or false: For any random variable X , Pr[X ≥ E[X]] > 0.

9. True or false: For any random variable X , E[−X3] = −E[X3].

175

176

Chapter 16

Randomized Algorithms

177

PREAMBLE

Chapter structure:

• Section 16.1 (Monte Carlo and Las Vegas Algorithms)

– Definition 16.2 (Monte Carlo algorithm)

– Definition 16.3 (Las Vegas algorithm)

• Section 16.2 (Monte Carlo Algorithm for the Minimum Cut Problem)

– Definition 16.7 (Minimum cut problem)

– Definition 16.8 (Multi-graph)

– Definition 16.9 (Contraction of two vertices in a graph)

– Theorem 16.10 (Contraction algorithm for min cut)

Chapter goals:

One of the primary applications of randomness to computer science is ran-
domized algorithms. A randomized algorithm is an algorithm that has access
to a randomness source like a random number generator, and a randomized
algorithm is allowed to err with a very small probability of error. There
are problems that we know how to solve efficiently using a randomized
algorithms, however, we do not know how to solve those problems effi-
ciently with a deterministic algorithm (i.e. an algorithm that does not make
use of randomness). In fact, one of the most important open problems in
computer science asks whether every efficient randomized algorithm has a
deterministic counterpart solving the same problem.

In this chapter we introduce the definitions of two types of randomized
algorithms: Monte Carlo algorithms and Las Vegas algorithms. The rest of
the chapter is devoted to a case study: Monte Carlo algorithm for the min-
imum cut problem. The algorithm illustrates how a simple randomized
algorithm can be powerful enough to solve a non-trivial problem. Further-
more, the analysis is quite elegant and uses some of the concepts we have
learned in the last chapter. Finally, the algorithm allows us to present a
very important and powerful technique: boosting the success probability
of randomized algorithms by repeated trials.

178

16.1 Monte Carlo and Las Vegas Algorithms

Note 16.1 (Randomized algorithm).
Informally, we’ll say that an algorithm is randomized if it has access to a ran-
domness source. In this course, we’ll assume that a randomized algorithm
is allowed to call RandInt(m), which returns a uniformly random element of
{1, 2, . . . ,m}, and Bernoulli(p), which returns 1 with probability p and returns
0 with probability 1− p. We assume that both RandInt and Bernoulli take O(1)
time to execute. The notion of a randomized algorithm can be formally defined
using probabilistic Turing machines, but we will not do so here.

Definition 16.2 (Monte Carlo algorithm).
Let f : Σ∗ → Σ∗ be a computational problem. Let 0 ≤ ε < 1 be some parameter
and T : N→ N be some function. Suppose A is a randomized algorithm such
that

• for all x ∈ Σ∗, Pr[A(x) 6= f(x)] ≤ ε;

• for all x ∈ Σ∗, Pr[number of steps A(x) takes is at most T (|x|)] = 1.

(Note that the probabilities are over the random choices made by A.) Then
we say that A is a T (n)-time Monte Carlo algorithm that computes f with ε
probability of error.

Definition 16.3 (Las Vegas algorithm).
Let f : Σ∗ → Σ∗ be a computational problem. Let T : N→ N be some function.
Suppose A is a randomized algorithm such that

• for all x ∈ Σ∗, Pr[A(x) = f(x)] = 1, where the probability is over the
random choices made by A;

• for all x ∈ Σ∗, E[number of steps A(x) takes] ≤ T (|x|).

Then we say that A is a T (n)-time Las Vegas algorithm that computes f .

Note 16.4 (Randomized algorithms for optimization problems).
One can also define the notions of Monte Carlo algorithms and Las Vegas al-
gorithms that compute optimization problems (Definition 14.1 (Optimization
problem)).

Exercise 16.5 (Las Vegas to Monte Carlo).
Suppose you are given a Las Vegas algorithm A that solves f : Σ∗ → Σ∗ in
expected time T (n). Show that for any constant ε > 0, there is a Monte Carlo
algorithm that solves f in time O(T (n)) and error probability ε.

Exercise 16.6 (Monte Carlo to Las Vegas).
Suppose you are given a Monte Carlo algorithm A that runs in worst-case
T1(n) time and solves f : Σ∗ → Σ∗ with success probability at least p (i.e., for
every input, the algorithm gives the correct answer with probability at least p
and takes at most T1(n) steps). Suppose it is possible to check in T2(n) time
whether the output produced by A is correct or not. Show how to convert A
into a Las Vegas algorithm that runs in expected time O((T1(n) + T2(n))/p).

179

16.2 Monte Carlo Algorithm for the Minimum Cut

Problem

Definition 16.7 (Minimum cut problem).
In the minimum cut problem, the input is a connected undirected graph G,
and the output is a 2-coloring of the vertices such that the number of cut edges
is minimized. (See Definition 14.10 (Max-cut problem) for the definition of a
cut edge.) Equivalently, we want to output a non-empty subset S (V such that
the number of edges between S and V \S is minimized. Such a set S is called
a cut and the size of the cut is the number of edges between S and V \S (note
that the size of the cut is not the number of vertices). We denote this problem
by MIN-CUT.

Definition 16.8 (Multi-graph).
A multi-graph G = (V,E) is an undirected graph in which E is allowed to be a
multi-set. In other words, a multi-graph can have multiple edges between two
vertices.1

Definition 16.9 (Contraction of two vertices in a graph).
Let G = (V,E) be a multi-graph and let u, v ∈ V be two vertices in the graph.
Contraction of u and v produces a new multi-graphG′ = (V ′, E′). Informally, in
G′, we collapse/contract the vertices u and v into one vertex and preserve the
edges between these two vertices and the other vertices in the graph. Formally,
we remove the vertices u and v, and create a new vertex called uv, i.e. V ′ =
V \{u, v} ∪ {uv}. The multi-set of edges E′ is defined as follows:

• for each {u,w} ∈ E with w 6= v, we add {uv,w} to E′;

• for each {v, w} ∈ E with w 6= u, we add {uv,w} to E′;

• for each {w,w′} ∈ E with w,w′ 6∈ {u, v}, we add {w,w′} to E′.

Below is an example:

Theorem 16.10 (Contraction algorithm for min cut).
There is a polynomial-time Monte-Carlo algorithm that solves the MIN-CUT problem
with error probability at most 1/en, where n is the number of vertices in the input
graph.

Proof. The algorithm has two phases. The description of the first phase is as
follows.

1Note that this definition does not allow for self-loops.

180

G: connected undirected graph.
A(〈G〉):

1 Repeat until two vertices remain:
2 Select an edge {u, v} uniformly at random.
3 Contract u and v to obtain a new graph.
4 Two vertices remain, which corresponds to a partition of
V into V1 and V2. Output V1.

Let Gi denote the graph we have after i iterations of the algorithm. So
G0 = G, G1 is the graph after we contract one of the edges, and so on. Note
that the algorithm has n− 2 iterations because in each iteration the number of
vertices goes down by exactly one and we stop when 2 vertices remain.

This makes it clear that the algorithm runs in polynomial time: we have n−
2 iterations, and in each iteration we can contract an edge, which can be done
in polynomial time. Our goal now is to show that the success probability of the
first phase, i.e., the probability that the above algorithm outputs a minimum
cut, is at least

2

n(n− 1)
≥ 1

n2
.

In the second phase, we’ll boost the success probability to the desired 1−1/en.
We make two observations.

Observation 1: For any i, a cut in Gi of size k corresponds to a cut in G = G0 of
size k. (We leave the proof of this as an exercise.)

Observation 2: For any i and any vertex v in Gi, the size of the minimum cut
(in G) is at most degGi(v). This is because a single vertex v forms a cut by itself
(i.e. S = {v} is a cut), and the size of this cut is deg(v). By Observation 1, the
original graph G has a corresponding cut with the same size. Since the mini-
mum cut has the minimum possible size among all cuts in G, its size cannot be
larger than deg(v).

We are now ready to analyze the success probability of the first phase. Let
F ⊆ E correspond to an optimum solution, i.e., a minimum size set of cut
edges. We will show

Pr[algorithm finds F] ≥ 2

n(n− 1)
.

Observe that if the algorithm picks an edge in F to contract, its output cannot
correspond to F . If the algorithm never contracts an edge in F , then its output
corresponds to F .2 In other words, the algorithm’s output corresponds to F if
and only if it never contracts an edge of F . Let Ei be the event that at iteration
i of the algorithm, an edge in F is contracted. As noted above, there are n − 2
iterations in total. Therefore

Pr[algorithm finds F] = Pr[E1 ∩ E2 ∩ . . . ∩ En−2].

2We are not giving a detailed argument for this, but please do verify this for yourself.

181

Using Proposition 15.15 (Chain rule), we have

Pr[E1 ∩ E2 ∩ . . . ∩ En−2] =

Pr[E1] ·Pr[E2 | E1] ·Pr[E3 | E1 ∩E2] · · ·Pr[En−2 | E1 ∩E2 ∩ . . . ∩En−3].
(16.1)

To lower bound the success probability of the algorithm, we’ll find a lower
bound for each term of the RHS of the above equation. We start with Pr[E1].
It is easy to see that Pr[E1] = |F |/m. However, it will be more convenient to
have a bound on Pr[E1] in terms of |F | and n rather than m. By Observation 2
above, we know

∀v ∈ V, |F | ≤ deg(v).

Using this, we have

2m =
∑
v∈V

deg(v) ≥ |F | · n, (16.2)

or equivalently, |F | ≤ 2m/n. Therefore,

Pr[E1] =
|F |
m
≤ 2

n
,

or equivalently, Pr[E1] ≥ 1−2/n. At this point, going back to Equality ((16.1))
above, we can write

Pr[algorithm finds F] ≥(
1− 2

n

)
·Pr[E2 | E1] ·Pr[E3 | E1∩E2] · · ·Pr[En−2 | E1∩E2∩ . . .∩En−3].

We move onto the second term Pr[E2 | E1]. Let `1 be the number of edges
remaining after the first iteration of the algorithm. Then

Pr[E2 | E1] = 1−Pr[E2 | E1] = 1− |F |
`1
.

As before, using Observation 2, for any v in G1, |F | ≤ degG1
(v). Therefore, the

analog of Inequality ((16.2)) above for the graph G1 yields 2`1 ≥ |F |(n − 1).
Using this inequality,

Pr[E2 | E1] = 1− |F |
`1
≥ 1− 2|F |

|F |(n− 1)
= 1− 2

n− 1
.

Thus

Pr[algorithm finds F] ≥(
1− 2

n

)
·
(

1− 2

n− 1

)
·Pr[E3 | E1∩E2] · · ·Pr[En−2 | E1∩E2∩ . . .∩En−3].

Applying the same reasoning for the rest of the terms in the product above, we
get

Pr[algorithm finds F] ≥(
1− 2

n

)
·
(

1− 2

n− 1

)
·
(

1− 2

n− 2

)
· · ·
(

1− 2

n− (n− 3)

)
=(

n− 2

n

)
·
(
n− 3

n− 1

)
·
(
n− 4

n− 2

)
· · ·
(

2

4

)
·
(

1

3

)
.

182

After cancellations between the numerators and denominators of the fractions,
the first two denominators and the last two numerators survive, and the above
simplifies to 2/n(n − 1). So we have reached our goal for the first phase and
have shown that

Pr[algorithm finds F] ≥ 2

n(n− 1)
=

1(
n
2

) ≥ 1

n2
.

This implies

Pr[algorithm finds a min-cut] ≥ 1

n2
.

In the second phase of the algorithm, we boost the success probability by
repeating the first phase t times using completely new and independent ran-
dom choices. Among the t cuts we find, we return the minimum-sized one. As
t grows, the success probability increases. Our analysis will show that t = n3

is sufficient for the bound we want. Let Ai be the event that our algorithm
does not find a min-cut at repetition i. Note that the Ai’s are independent since
our algorithm uses fresh random bits for each repetition. Also, each Ai has the
same probability, i.e. Pr[Ai] = Pr[Aj] for all i and j. Therefore

Pr[our algorithm fails to find a min-cut] = Pr[A1 ∩ · · · ∩At]

= Pr[A1] · · ·Pr[At]

= Pr[A1]t.

From the analysis of the first phase, we know that

Pr[A1] ≤ 1− 1

n2
.

So

Pr[our algorithm fails to find a min-cut] ≤
(

1− 1

n2

)t

.

To upper bound this, we’ll use an extremely useful inequality:

∀x ∈ R, 1 + x ≤ ex.

We will not prove this inequality, but we provide a plot of the two functions
below.

Notice that the inequality is close to being tight for values of x close to 0. Let-
ting x = −1/n2, we see that

Pr[our algorithm fails to find a min-cut] ≤ (1 + x)t ≤ ext = e−t/n
2

.

For t = n3, this probability is upper bounded by 1/en, as desired.

183

Exercise 16.11 (Boosting for one-sided error).
This question asks you to boost the success probability of a Monte Carlo algo-
rithm computing a decision problem with one-sided error.

Let f : Σ∗ → {0, 1} be a decision problem, and let A be a Monte Carlo
algorithm for f such that if x is a YES instance, then A always gives the cor-
rect answer, and if x is a NO instance, then A gives the correct answer with
probability at least 1/2. Suppose A runs in worst-case O(T (n)) time. Design a
new Monte Carlo algorithm A′ for f that runs in O(nT (n)) time and has error
probability at most 1/2n.

Exercise 16.12 (Boosting for two-sided error).
This question asks you to boost the success probability of a Monte Carlo algo-
rithm computing a decision problem with two-sided error.

Let f : Σ∗ → {0, 1} be a decision problem, and let A be a Monte Carlo al-
gorithm for f with error probability 1/4, i.e., for all x ∈ Σ∗, Pr[A(x) 6= f(x)] ≤
1/4. We want to boost the success probability to 1−1/2n, and our strategy will
be as follows. Given x, runA(x) 6n times (where n = |x|), and output the more
common output bit among the 6n output bits (breaking ties arbitrarily). Show
that the probability of outputting the wrong answer is at most 1/2n.

Exercise 16.13 (Maximum number of minimum cuts).
Using the analysis of the randomized minimum cut algorithm, show that a
graph can have at most n(n− 1)/2 distinct minimum cuts.

Exercise 16.14 (Contracting two random vertices).
Suppose we modify the min-cut algorithm seen in class so that rather than
picking an edge uniformly at random, we pick 2 vertices uniformly at random
and contract them into a single vertex. True or False: The success probability
of the algorithm (excluding the part that boosts the success probability) is 1/nk

for some constant k, where n is the number of vertices. Justify your answer.

184

Hints to Selected Exercises

Exercise 16.5 (Las Vegas to Monte Carlo):
RunA(x) for a certain number of steps (which you should choose carefully), and return its answer
if it terminates within that number of steps. In your analysis, use Markov’s inequality.

Exercise 16.6 (Monte Carlo to Las Vegas):
Repeatedly run A(x) until it gives you a correct answer. You will need to know the expectation of
a Geometric random variable.

Exercise 16.11 (Boosting for one-sided error):
Run A(x) |x|many times.

Exercise 16.12 (Boosting for two-sided error):
Write down the expression for the error probability (which will be a big sum involving binomial
coefficients). Then feel free to be crude with how you upper bound this expression, i.e., don’t try
to be tight with your inequalities.

Exercise 16.14 (Contracting two random vertices):
False. Consider two disjoint cliques joined by a single edge.

185

	Strings and Encodings
	Alphabets and Strings
	Languages
	Encodings
	Computational Problems and Decision Problems

	Deterministic Finite Automata
	Basic Definitions
	Irregular Languages
	Closure Properties of Regular Languages

	Turing Machines
	Basic Definitions
	Decidable Languages

	Countable and Uncountable Sets
	Basic Definitions
	Countable Sets
	Uncountable Sets

	Undecidable Languages
	Existence of Undecidable Languages
	Examples of Undecidable Languages
	Undecidability Proofs by Reductions

	Time Complexity
	Big-O, Big-Omega and Theta
	Worst-Case Running Time of Algorithms
	Complexity of Algorithms with Integer Inputs

	The Science of Cutting Cake
	The Problem and the Model
	Cake Cutting Algorithms in the Robertson-Webb Model

	Introduction to Graph Theory
	Basic Definitions
	Graph Algorithms
	Graph searching algorithms
	Minimum spanning tree
	Topological sorting

	Matchings in Graphs
	Maximum Matchings
	Stable Matchings

	Boolean Circuits
	Basic Definitions
	3 Theorems on Circuits

	Polynomial-Time Reductions
	Cook and Karp Reductions
	Hardness and Completeness

	Non-Deterministic Polynomial Time
	Non-Deterministic Polynomial Time NP
	NP-complete problems
	Proof of Cook-Levin Theorem

	Computational Social Choice
	Basic Definitions and Results

	Approximation Algorithms
	Basic Definitions
	Examples of Approximation Algorithms

	Probability Theory
	Probability I: The Basics
	Basic Definitions
	Three Useful Rules
	Independence

	Probability II: Random Variables
	Basics of random variables
	The most fundamental inequality in probability theory
	Three popular random variables

	Randomized Algorithms
	Monte Carlo and Las Vegas Algorithms
	Monte Carlo Algorithm for the Minimum Cut Problem

