
CMU 15-251, Fall 2017
Great Ideas in Theoretical Computer Science

Course Notes: Solutions to Exercises

November 17, 2017

Please send comments and corrections to Anil Ada (aada@cs.cmu.edu).

Foreword

These notes are based on the lectures given by Anil Ada and Ariel Procaccia
for the Fall 2017 edition of the course 15-251 “Great Ideas in Theoretical
Computer Science” at Carnegie Mellon University. They are also closely
related to the previous editions of the course, and in particular, lectures
prepared by Ryan O’Donnell.

WARNING: The purpose of these notes is to complement the lectures.
These notes do not contain full explanations of all the material covered dur-
ing lectures. In particular, the intuition and motivation behind many con-
cepts and proofs are explained during the lectures and not in these notes.

There are various versions of the notes that omit certain parts of the
notes. Go to the course webpage to access all the available versions.

In the main version of the notes (i.e. the main document), each chapter
has a preamble containing the chapter structure and the learning goals. The
preamble may also contain some links to concrete applications of the topics
being covered. At the end of each chapter, you will find a short quiz for you
to complete before coming to recitation, as well as hints to selected exercise
problems.

Note that some of the exercise solutions are given in full detail, whereas
for others, we give all the main ideas, but not all the details. We hope the
distinction will be clear.

i

Acknowledgements

The course 15-251 was created by Steven Rudich many years ago, and we
thank him for creating this awesome course. Here is the webpage of an
early version of the course:
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251-s04/Site/.
Since then, the course has evolved. The webpage of the current version is
here:
http://www.cs.cmu.edu/~15251/.

Thanks to the previous instructors of 15-251, who have contributed a lot
to the development of the course: Victor Adamchik, Luis von Ahn, Anu-
pam Gupta, Venkatesan Guruswami, Bernhard Haeupler, John Lafferty,
Ryan O’Donnell, Ariel Procaccia, Daniel Sleator and Klaus Sutner.

Thanks to Eric Bae, Seth Cobb, Teddy Ding, Ellen Kim, Aditya Krish-
nan, Xinran Liu, Matthew Salim, Ticha Sethapakdi, Vanessa Siriwalothakul,
Natasha Vasthare, Jenny Wang, Ling Xu, Ming Yang, Stephanie You, Xingjian
Yu and Nancy Zhang for sending valuable comments and corrections on
an earlier draft of the notes. And thanks to Darshan Chakrabarti, Emilie
Guermeur, Udit Ranasaria, Rosie Sun and Wynne Yao for sending valuable
comments and corrections on the current draft.

ii

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251-s04/Site/
http://www.cs.cmu.edu/~15251/

Contents

1 Strings and Encodings 1

2 Deterministic Finite Automata 5

3 Turing Machines 11

4 Countable and Uncountable Sets 17

5 Undecidable Languages 21

6 Time Complexity 25

7 The Science of Cutting Cake 31

8 Introduction to Graph Theory 33

9 Matchings in Graphs 39

10 Boolean Circuits 43

11 Polynomial-Time Reductions 49

12 Non-Deterministic Polynomial Time 53

13 Computational Social Choice 59

14 Approximation Algorithms 63

15 Probability Theory 67

16 Randomized Algorithms 81

iii

iv

Chapter 1

Strings and Encodings

1

Exercise 1.1 (Structural induction on words).
Let language L ⊆ {0, 1}∗ be recursively defined as follows:

• ε ∈ L;

• if x, y ∈ L, then 0x1y0 ∈ L.

Show, using (structural) induction, that for any word w ∈ L, the number of 0’s
in w is exactly twice the number of 1’s in w.

Solution. Let 0(w) denote the number of 0’s in w and let 1(w) denote the num-
ber of 1’s in w. Given L as defined above, the question asks us to show that for
any w ∈ L, 0(w) = 2 · 1(w). We will do so by structural induction.1

The base case corresponds to w = ε, and in this case, 0(w) = 1(w) = 0, and
therefore 0(w) = 2 · 1(w) holds.

To carry out the induction step, consider an arbitrary word w 6= ε in L.
Then by the definition of L, we know that there exists x and y in L such that
w = 0x1y0. Furthermore, by induction hypothesis,

0(x) = 2 · 1(x) (1.1)

and
0(y) = 2 · 1(y). (1.2)

We are done once we show 0(w) = 2 ·1(w). We establish this via the following
chain of equalities:

0(w) = 2 + 0(x) + 0(y) since w = 0x1y0

= 2 + 2 · 1(x) + 2 · 1(y) by (1.1) and (1.2)
= 2 · (1 + 1(x) + 1(y))

= 2 · 1(w).

�

Exercise 1.2 (Can you distribute star over intersection?).
Prove or disprove: If L1, L2 ⊆ {a, b}∗ are languages, then (L1∩L2)∗ = L∗1∩L∗2.

Solution. We disprove the statement by providing a counterexample. Let L1 =
{a} and L2 = {aa}. Then L1 ∩ L2 = ∅, and so (L1 ∩ L2)∗ = {ε}. On the other
hand, L∗1 ∩ L∗2 = L∗2 = {aa}∗. �

Exercise 1.3 (Can you interchange star and reversal?).
Is it true that for any language L, (L∗)R = (LR)∗? Prove your answer.

Solution. We will prove that for any language L, (L∗)R = (LR)∗. To do this, we
will first argue (L∗)R ⊆ (LR)∗ and then argue (LR)∗ ⊆ (L∗)R.

To show the first inclusion, it suffices to show that any w ∈ (L∗)R is also
contained in (LR)∗. We do so now. Take an arbitrary w ∈ (L∗)R. Then for
some n ∈ N, w = (u1u2 . . . un)R, where ui ∈ L for each i. Note that w =
(u1u2 . . . un)R = uRnu

R
n−1 . . . u

R
1 , and uRi ∈ LR for each i. Therefore w ∈ (LR)∗.

To show the second inclusion, it suffices to show that any w ∈ (LR)∗ is also
contained in (L∗)R. We do so now. Take an arbitrary w ∈ (LR)∗. This means
that for some n ∈ N, w = v1v2 . . . vn, where vi ∈ LR for each i. For each i,
define ui = vRi (and so uRi = vi). Note that each ui ∈ L because vi ∈ LR.
We can now rewrite w as w = uR1 u

R
2 . . . u

R
n , which is equal to (unun−1 . . . u1)R.

Since each ui ∈ L, this shows that w ∈ (L∗)R.
Since we have shown both (L∗)R ⊆ (LR)∗ and (LR)∗ ⊆ (L∗)R, we conclude

that (L∗)R = (LR)∗. �

1This means that implicitly, the parameter being inducted on is the number of applications of
the recursive rule to create a word w in L.

2

Exercise 1.4 (Unary encoding of integers).
Describe an encoding of Z using the alphabet Σ = {1}.

Solution. Let Enc : Z→ {1}∗ be defined as follows:

Enc(x) =

{
12x−1 if x > 0,

1−2x if x ≤ 0.

This solution is inspired by thinking of a bijection between integers and natu-
rals. Indeed, the function f : Z→ N defined by

f(x) =

{
2x− 1 if x > 0,

−2x if x ≤ 0,

is such a bijection. �

3

4

Chapter 2

Deterministic Finite Automata

5

Exercise 2.1 (Draw DFAs).
For each language below (over the alphabet Σ = {0, 1}), draw a DFA recogniz-
ing it.

(a) {110, 101}

(b) {0, 1}∗\{110, 101}

(c) {x ∈ {0, 1}∗ : x starts and ends with the same bit}

(d) {ε, 110, 110110, 110110110, . . .}

(e) {x ∈ {0, 1}∗ : x contains 110 as a substring}

Solution. (a) Below, all missing transitions go to a rejecting sink state.

(b) Take the DFA above and flip the accepting and rejecting states.

(c)

(d) Below, all missing transitions go to a rejecting sink state.

(e)

�

Exercise 2.2 (Finite languages are regular).
Let L be a finite language, i.e., it contains a finite number of words . Show that
there is a DFA recognizing L.

6

Solution. Sorry, we currently do not have a solution for this exercise. �

Exercise 2.3 (Equal number of 01’s and 10’s).
Is the language

{w ∈ {0, 1}∗ : w contains an equal number of occurrences of 01 and 10 as substrings.}

regular?

Solution. The answer is yes because the language is exactly same as the lan-
guage in Exercise (Draw DFAs), part (c). �

Exercise 2.4 (anbncn is not regular).
Let Σ = {a, b, c}. Prove that L = {anbncn : n ∈ N} is not regular.

Solution. Our goal is to show that L = {anbncn : n ∈ N} is not regular. The
proof is by contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automa-
tonM that recognizes L. Let k denote the number of states ofM . For n ∈ N, let
rn denote the state that M reaches after reading an (i.e., rn = δ(q0, a

n)). By the
pigeonhole principle, we know that there must be a repeat among r0, r1, . . . , rk.
In other words, there are indices i, j ∈ {0, 1, . . . , k}with i 6= j such that ri = rj .
This means that the string ai and the string aj end up in the same state in M .
Therefore aiw and ajw, for any string w ∈ {0, 1}∗, end up in the same state in
M . We’ll now reach a contradiction, and conclude the proof, by considering a
particular w such that aiw and ajw end up in different states.

Consider the string w = bici. Then since M recognizes L, we know aiw =
aibici must end up in an accepting state. On the other hand, since i 6= j, ajw =
ajbici is not in the language, and therefore cannot end up in an accepting state.
This is the desired contradiction. �

Exercise 2.5 (c251anb2n is not regular).
Let Σ = {a, b, c}. Prove that L = {c251anb2n : n ∈ N} is not regular.

Solution. Our goal is to show that L = {c251anb2n : n ∈ N} is not regular. The
proof is by contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automa-
ton M that recognizes L. Let k denote the number of states of M . For n ∈ N,
let rn denote the state that M reaches after reading c251an. By the pigeonhole
principle, we know that there must be a repeat among r0, r1, . . . , rk. In other
words, there are indices i, j ∈ {0, 1, . . . , k} with i 6= j such that ri = rj . This
means that the string c251ai and the string c251aj end up in the same state in
M . Therefore c251aiw and c251ajw, for any string w ∈ {a, b, c}∗, end up in the
same state in M . We’ll now reach a contradiction, and conclude the proof, by
considering a particular w such that c251aiw and c251ajw end up in different
states.

Consider the stringw = b2i. Then sinceM recognizesL, we know c251aiw =
c251aib2i must end up in an accepting state. On the other hand, since i 6= j,
c251ajw = c251ajb2i is not in the language, and therefore cannot end up in an
accepting state. This is the desired contradiction. �

Exercise 2.6 (Are regular languages closed under complementation?).
Is it true that if L is regular, than its complement Σ∗\L is also regular? In other
words, are regular languages closed under the complementation operation?

7

Solution. Yes. If L is regular, then there is a DFA M = (Q,Σ, δ, q0, F) recogniz-
ing L. The complement of L is recognized by the DFA M = (Q,Σ, δ, q0, Q\F).
Take a moment to observe that this exercise allows us to say that a language is
regular if and only if its complement is regular. Equivalently, a language is not
regular if and only if its complement is not regular. �

Exercise 2.7 (Are regular languages closed under subsets?).
Is it true that if L ⊆ Σ∗ is a regular language, then any L′ ⊆ L is also a regular
language?

Solution. No. For example, L = Σ∗ is a regular language (construct a single
state DFA in which the state is accepting). On the other hand, by Theorem
(0n1n is not regular), {0n1n : n ∈ N} ⊆ Σ∗ is not regular. �

Exercise 2.8 (Direct proof that regular languages are closed under difference).
Give a direct proof (without using the fact that regular languages are closed
under complementation, union and intersection) that if L1 and L2 are regular
languages, then L1\L2 is also regular.

Solution. The proof is very similar to the proof of Theorem (Regular languages
are closed under union). The only difference is the definition of F ′′, which now
needs to be defined as

F ′′ = {(q, q′) : q ∈ F and q′ ∈ Q′\F ′}.

The argument that L(M ′′) = L(M)\L(M ′) needs to be slightly adjusted in
order to agree with F ′′. �

Exercise 2.9 (Finite vs infinite union).

(a) Suppose L1, . . . , Lk are all regular languages. Is it true that their union⋃k
i=0 Li must be a regular language?

(b) Suppose L0, L1, L2, . . . is an infinite sequence of regular languages. Is it
true that their union

⋃
i≥0 Li must be a regular language?

Solution. In part (a), we are asking whether a finite union of regular languages
is regular. The answer is yes, and this can be proved using induction, with
the base case corresponding to Theorem (Regular languages are closed under
union). In part (b), we are asking whether a countably infinite union of regular
languages is regular. The answer is no. First note that any language of cardi-
nality 1 is regular, i.e., {w} for any w ∈ Σ∗ is a regular language. In particular,
for any n ∈ N, the language Ln = {0n1n} of cardinality 1 is regular. But⋃

n≥0

Ln = {0n1n : n ∈ N}

is not regular. �

Exercise 2.10 (Union of irregular languages).
Suppose L1 and L2 are not regular languages. Is it always true that L1 ∪ L2 is
not a regular language?

Solution. The answer is no. Consider L = {0n1n : n ∈ N}, which is a non-
regular language. Furthermore, the complement of L, which is L = Σ∗\L, is
non-regular. This is because regular languages are closed under complemen-
tation (Exercise (Are regular languages closed under complementation?)), so if
L was regular, then L = L would also have to be regular. The union of L and
L is Σ∗, which is a regular language. �

8

Exercise 2.11 (Regularity of suffixes and prefixes).
Suppose L ⊆ Σ∗ is a regular language. Show that the following languages are
also regular:

SUFFIXES(L) = {x ∈ Σ∗ : yx ∈ L for some y ∈ Σ∗},
PREFIXES(L) = {y ∈ Σ∗ : yx ∈ L for some x ∈ Σ∗}.

Solution. Let M = (Q,Σ, δ, q0, F) be a DFA recognizing L. Define the set

S = {s ∈ Q : ∃y ∈ Σ∗ such that δ(q0, y) = s}.

Now we define a DFA for each s ∈ S as follows: Ms = (Q,Σ, δ, s, F). Observe
that

SUFFIXES(L) =
⋃
s∈S

L(Ms).

Since L(Ms) is regular for all s ∈ S and S is a finite set, using Exercise (Finite
vs infinite union) part (a), we can conclude that SUFFIXES(L) is regular.

For the second part, define the set

R = {r ∈ Q : ∃x ∈ Σ∗ such that δ(r, x) ∈ F}.

Now we can define the DFA MR = (Q,Σ, δ, q0, R). Observe that this DFA
recognizes PREFIXES(L), which shows that PREFIXES(L) is regular. �

9

10

Chapter 3

Turing Machines

11

Exercise 3.1 (Practice with configurations).

(a) Suppose M = (Q,Σ,Γ, δ, q0, qaccept, qreject) is a Turing machine. We want
you to formally define α `M β. More precisely, suppose α = uqv, where
q ∈ Q \ {qaccept, qreject}. Precisely describe β.

(b) Let M denote the Turing machine shown below, which has input alpha-
bet Σ = {0} and tape alphabet Γ = {0, x,t}. (Note on notation: A tran-
sition label usually has two symbols, one corresponding to the symbol
being read, and the other corresponding to the symbol being written. If
a transition label has one symbol, the interpretation is that the symbol
being read and written is exactly the same.)

q0 q1 q2

q3
qaccqrej

q4

t → R

x→ R t → R

t → R

0→ t, R 0→ x,R

x→ R

t → R

0→ L, x→ L

0→ R 0→ x,R

x→ R

t → L

x→ R

We want you to prove that M accepts the input 0000 using the defini-
tion on the previous page. More precisely, we want you to write out the
computation trace

α0 `M α1 `M · · · `M αT

for M(0000). You do not have to justify it; just make sure to get T and
α0, . . . , αT correct!

Solution. Part (a): Let α = uqv, where u = u1 · · ·um and v = v1 · · · vn (u and v
possibly empty). Let v′1 be v1 if it exists or t otherwise. Let δ(q, v′1) = (q′, x,D)
(where D is either L or R). We write α `M β, where β is defined as follows:

• if D = L,m > 0, then β = u1 . . . um−1q
′umxv2 . . . vn;

• if D = L,m = 0, then β = q′ t xv2 . . . vn;

• if D = R, then β = u1 . . . umxq
′v2 . . . vn.

Part (b): Below is the trace for the execution of the Turing Machine. Read down

12

first and then to the right.

q00000 q4x0x xq4xx

q1000 q4 t x0x q4xxx

xq200 q1x0x q4 t xxx
x0q30 xq10x q1xxx

x0xq2 xxq2x xq1xx

x0q4x xxxq2 xxq1x

xq40x xxq4x xxxq1

xxx t qacc
�

Exercise 3.2 (A simple decidable language).
Give a description of the language decided by the TM shown in the example
corresponding to Definition (Turing machine).

Solution. The language decided by the TM is

L = {w ∈ {a, b}∗ : |w| ≥ 2 and w1 = w2}.

�

Exercise 3.3 (Drawing TM state diagrams).
For each language below, draw the state diagram of a TM that decides the
language. You can use any finite tape alphabet Γ containing the elements of Σ
and the symbol t.

(a) L = {0n1n : n ∈ N}, where Σ = {0, 1}.

(b) L = {0n : n is a nonnegative integer power of 2}, where Σ = {0}.

Solution. Part (a):

Part (b): See the figure in Exercise (Practice with configurations), part (b). �

Exercise 3.4 (Decidability is closed under intersection and union).
Let L and K be decidable languages. Show that L ∩ K and L ∪ K are also
decidable by presenting high-level descriptions of TMs deciding them.

Solution. Since L1 and L2 are decidable, there are decider TMsM1 andM2 such
that L(M1) = L1 and L(M2) = L2. To show L1 ∪ L2 is decidable, we present a
high-level description of a TM M deciding it:

13

x: string
M(x):

1 Run M1(x), if it accepts, accept.
2 Run M2(x), if it accepts, accept.
3 Reject.

It is pretty clear that this decider works correctly. However, in case you are
wondering how in general (with more complicated examples) we would prove
that a decider works as desired, here is an example argument.

We want to show that x ∈ L1 ∪ L2 if and only if it is accepted by the above
TM M . If x ∈ L1 ∪ L2, then it is either in L1 or in L2. If it is in L1, then M1(x)
accepts (since M1 correctly decides L1) and therefore M accepts on line 1. If,
on the other hand, x ∈ L2, then M2(x) accepts. This means that if M does not
accept on line 1, then it has to accept on line 2. Either way x is accepted by
M . For the converse, assume x is accepted by M . Then it must be accepted on
line 1 or line 2. If it is accepted on line 1, then this implies that M1(x) accepted,
i.e., x ∈ L1. If it is accepted on line 2, then M2(x) accepted, i.e., x ∈ L2. So
x ∈ L1 ∪ L2, as desired.

To show L1 ∩ L2 is decidable, we present a high-level description of a TM
M deciding it:

x: string
M(x):

1 Run M1(x) and run M2(x).
2 If they both accept, accept.
3 Else, reject.

Once again, it is clear that this decider works correctly. �

Exercise 3.5 (Decidable language based on pi).
Let L ⊆ {3}∗ be defined as follows: x ∈ L if and only if x appears somewhere
in the decimal expansion of π. For example, the strings ε, 3, and 33 are all
definitely in L, because

π = 3.1415926535897932384626433 . . .

Prove that L is decidable. No knowledge in number theory is required to solve
this question.

Solution. The important observation is the following. If, for some m ∈ N, 3m

is not in L, then neither is 3k for any k > m. Additionally, if 3m ∈ L, then so is
3` for every ` < m. For each n ∈ N, define

Ln = {3m : m ≤ n}.

Then either L = Ln for some n, or L = {3}∗.
If L = Ln for some n, then the following TM decides it.

x: string
M(x):

1 If |x| ≤ n, accept.
2 Else, reject.

If L = {3}∗, then it is decided by:

14

x: string
M(x):

1 Accept.

So in all cases, L is decidable. �

Exercise 3.6 (Practice with decidability through reductions).

(a) Let L = {〈D1, D2〉 : D1 and D2 are DFAs with L(D1) (L(D2)}.1 Show
that L is decidable.

(b) LetK = {〈D〉 : D is a DFA that accepts wR whenever it accepts w}, where
wR denotes the reversal of w. Show that K is decidable. For this question,
you can use the fact given a DFA D, there is an algorithm to construct a
DFA D′ such that L(D′) = L(D)R = {wR : w ∈ L(D)}.

Solution. Part (a): To show L is decidable, we are going to use the fact that
EMPTYDFA is decidable (Theorem (EMPTYDFA is decidable)) and EQDFA is
decidable (Theorem (EQDFA is decidable)). Let MEMPTY denote a decider TM
for EMPTYDFA and let MEQ denote a decider TM for EQDFA.

A decider for L takes as input 〈D1, D2〉, where D1 and D2 are DFAs. It
needs to determine if L(D1) (L(D2) (i.e. accept if L(D1) (L(D2) and reject
otherwise). To determine this we do two checks:

(i) Check whether L(D1) = L(D2).

(ii) Check whether L(D1) ⊆ L(D2). Observe that this can be done by check-
ing whether L(D1) ∩ L(D2) = ∅.

Note that L(D1) ⊆ L(D2) if and only if L(D1) 6= L(D2) and L(D1)∩L(D2) = ∅.
Using the closure properties of regular languages, we can construct a DFA D

such that L(D) = L(D1) ∩ L(D2). Now the decider for L can be described as
follows:

D1: DFA. D2: DFA.
M(〈D1, D2〉):

1 Construct DFA D as described above.
2 Run MEQ(〈D1, D2〉).
3 If it accepts, reject.
4 Else:
5 Run MEMPTY(〈D〉)
6 If it accepts, accept.
7 Else, reject.

Observe that this machine accepts 〈D1, D2〉 if and only if MEQ(〈D1, D2〉) re-
jects and MEMPTY(〈D〉) accepts. In other words, it accepts 〈D1, D2〉 if and only
if L(D1) 6= L(D2) and L(D1) ∩ L(D2) = ∅, which is the desired behavior for
the machine.

Part (b): We sketch the proof. To show L is decidable, we are going to use the
fact that EQDFA is decidable (Theorem (EQDFA is decidable)). LetMEQ denote a
decider TM for EQDFA. Observe that 〈D〉 is in K if and only if L(D) = L(D)R

(prove this part). Using the fact given to us in the problem description, we
know that there is a way to construct 〈D′〉 such that L(D′) = L(D)R. Then all
we need to do is run MEQ(〈D,D′〉) to determine whether 〈D〉 ∈ K or not. �

1Note on notation: for sets A and B, we write A (B if A ⊆ B and A 6= B.

15

16

Chapter 4

Countable and Uncountable Sets

17

Exercise 4.1 (Exercise with injections and surjections).
Prove parts (a) and (b) of the above theorem.

Solution. Unfortunately we currently do not have the solution to this exercise.
�

Exercise 4.2 (Proof of the characterization of countably infinite sets).
Prove the above theorem.

Solution. We need to show that A is countably infinite if and only if |A| = |N|,
so we will argue the two direction separately.

If |A| = |N|, then |A| ≤ |N|, and A is infinite because a finite set cannot
be in one-to-one correspondence with an infinite set. Therefore A is countably
infinite.

For the other direction, assume A is such that |A| ≤ |N| and A is infinite.
Since |A| ≤ |N|, there is an injection f : A → N. This f allows us to define an
ordering on A. For a, b ∈ A, write a < b if f(a) < f(b). Using this ordering, we
can define a bijection g : N → A, where g(n) is defined to be the n’th smallest
element in A (and we start counting from 0). Since A is infinite, g(n) is well-
defined for all n. Clearly g is injective since we cannot have g(n) = g(n′) for
n 6= n′. Furthermore g is surjective because for every a ∈ A, the pre-image is
g−1(a) = |{x ∈ A : f(x) < f(a)}|. �

Exercise 4.3 (Practice with countability proofs).
Show that the following sets are countable.

(a) Z× Z× Z.

(b) The set of all functions f : A→ N, where A is a finite set.

Solution. Part (a): We want to show that Z × Z × Z is countable. We use the
CS method with Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, #}. Note that any element of
Z×Z×Z can be written uniquely as a finite word over Σ (we use the hashtag
as a separator between the integers). As an illustration, (9234851, -1234, 0) ∈
Z × Z × Z can be encoded as the string 9234851#-1234#0. Every integer has
finite length, so the string encoding is always of finite length.

Part (b): Let S be the set of all functions f : A → N, where A is a finite set.
We want to show that S is countable.

We first make an observation about the elements of S. Take a function
f : A → N, where A is a finite set. Let k be the size of A and let a1, a2, . . . , ak
be its elements. Then f can be uniquely represented by the tuple

(f(a1), f(a2), . . . , f(ak)),

where each element of the tuple is an element fromN.
We now show that S is countable using the CS method with the alphabet

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, #}. The observation above shows that any element
of S can be uniquely represented with a finite length string where commas are
replaced with #. (Note that there is no need to put the opening and closing
parentheses.) This suffices to conclude that S is countable. �

Exercise 4.4 (Uncountable sets are closed under supersets).
Prove that if A is uncountable and A ⊆ B, then B is also uncountable.

18

Solution. We want to show that if B is a superset of an uncountable set A, then
B must be uncountable.

If A is uncountable, by definition, |A| > |N|. If A ⊆ B, then there is a clear
injection from A to B (map a ∈ A to a ∈ B), so |A| ≤ |B|. Combining this with
|A| > |N|, we have |B| ≥ |A| > |N|, and therefore B is uncountable. �

Exercise 4.5 (Practice with uncountability proofs).
Show that the following sets are uncountable.

(a) The set of all bijective functions fromN toN.

(b) {x1x2x3 . . . ∈ {1, 2}∞ : for all n ≥ 1,
∑n
i=1 xi 6≡ 0 mod 4}

Solution. Part (a): Let A be the set of all bijective functions from N to N.
We want to show that A is uncountable, and we will do so by showing that
{0, 1}∞ ↪→ A, establishing |{0, 1}∞| ≤ |A|.

We now describe this injective mapping. Given x ∈ {0, 1}∞, we map it to
a bijection fx : N → N as follows. Let xn be the n’th bit of x, and assume the
indexing starts from 0. Then for all n ∈ N,

if xn = 0, fx maps 2n to 2n and 2n+ 1 to 2n+ 1;
if xn = 1, fx maps 2n to 2n+ 1 and 2n+ 1 to 2n.

The below picture illustrates the construction of fx. If xn = 0, we pick the
black arrows to map 2n and 2n + 1, and if xn = 1 we pick the red/dashed
arrows to map 2n and 2n+ 1.

Observe that for any x ∈ {0, 1}∞, the corresponding function fx is indeed
a bijection. It is also clear that if x 6= x′, then fx 6= fx′ . So this mapping from
{0, 1}∞ to A is indeed an injection. This completes the proof.

Part (b): Let A = {x1x2x3 . . . ∈ {1, 2}∞ : for all n ≥ 1,
∑n
i=1 xi 6≡ 0 mod 4}.

We want to show that A is uncountable, and we will do so by identifying a
subset of A that is in one-to-one correspondence with {0, 1}∞.

Let a = 22 and b = 112. Define the set A′ = {1w : w ∈ {a, b}∞}. Observe
that A′ ⊆ A (this needs a short argument that we skip). Furthermore, it is
clear that there is a bijection between A′ and {0, 1}∞. So we have identified a
subset ofA that is in one-to-one correspondence with {0, 1}∞, which allows us
to conclude that A is uncountable. �

19

20

Chapter 5

Undecidable Languages

21

Exercise 5.1 (Practice with undecidability proofs).
Show that the following languages are undecidable.

(a) EMPTY-HALTS = {〈M〉 : M is a TM and M(ε) halts}.

(b) FINITE = {〈M〉 : M is a TM that accepts finitely many strings.}

Solution. Part (a): We want to show EMPTY-HALTS is undecidable. To proof is
by contradiction, so assume that EMPTY-HALTS is decidable, and letMEMPTY-HALTS
be a decider for it. We will use MEMPTY-HALTS to show that HALTS is decidable
and reach a contradiction. The description of MHALTS, the decider for HALTS,
is as follows.

M : TM. x: string.
MHALTS(〈M,x〉):

1 Construct the following string, which we call 〈M ′〉.
2 ”M ′(y) :

3 Run M(x).
4 Accept.”
5 Run MEMPTY-HALTS(〈M ′〉).
6 If it accepts, accept.
7 If it rejects, reject.

To see that this is a correct decider for HALTS, first consider any input
〈M,x〉 such that 〈M,x〉 ∈ HALTS, i.e., M(x) halts. By the construction of M ′,
this implies thatM ′(y) halts (and accepts) for any string y. SoMEMPTY-HALTS(〈M ′〉)
accepts, and our decider above accepts as well. So in this case, the decider
gives the correct answer.

Now consider any input 〈M,x〉 such that 〈M,x〉 6∈ HALTS, i.e.,M(x) loops.
Then for any input y, M ′(y) would get stuck on line 3, and would never halt.
This means MEMPTY-HALTS(〈M ′〉) rejects, and our decider rejects as well, as de-
sired.

For any input, our decider gives the correct answer, and the proof is com-
plete.

Part(b): Our goal is to show that FINITE is undecidable. To proof is by contra-
diction, so assume that FINITE is decidable, and let MFINITE be a decider for it.
We will use MFINITE to show that HALTS is decidable and reach a contradic-
tion. The description of MHALTS, the decider for HALTS, is as follows.

M : TM. x: string.
MHALTS(〈M,x〉):

1 Construct the following string, which we call 〈M ′〉.
2 ”M ′(y) :

3 Run M(x).
4 Accept.”
5 Run MFINITE(〈M ′〉).
6 If it accepts, reject.
7 If it rejects, accept.

To see that this is a correct decider for HALTS, first consider any input
〈M,x〉 such that 〈M,x〉 ∈ HALTS, i.e., M(x) halts. By the construction of M ′,
this implies that M ′(y) accepts for any string y. So L(M ′) = Σ∗ (an infinite
set), and therefore MFINITE(〈M ′〉) rejects. In this case, our decider for HALTS
accepts and gives the correct answer.

Now consider any input 〈M,x〉 such that 〈M,x〉 6∈ HALTS, i.e.,M(x) loops.
Then for any input y, M ′(y) would get stuck on line 3, and would never halt.

22

So L(M ′) = ∅ (a finite set), and therefore MFINITE(〈M ′〉) accepts. In this case,
our decider for HALTS rejects and gives the correct answer.

For any input, our decider gives the correct answer, and the proof is com-
plete. �

Exercise 5.2 (Practice with reduction definition).
Let A,B ⊆ {0, 1}∗ be languages. Prove or disprove the following claims.

(a) If A ≤ B then B ≤ A.

(b) If A ≤ B and B is regular, then A is regular.

Solution. Part (a): The claim is false. Let A be any decidable language. For
example, we can take A = ∅. The decider for A is a machine that rejects no
matter what the input is. Let B = HALTS. Then to establish A ≤ B, we need
to argue that given a decider for HALTS, we can decide ∅. Since ∅ is decidable,
this is true (and we don’t even need to make use of a decider for HALTS). On
the other hand, it is not true that HALTS ≤ ∅. For the sake of contradiction,
if it was true, then this would mean that using a decider for ∅, we can decide
HALTS. And this would imply that HALTS is decidable, a contradiction.

Part (b): The claim is false. Consider A = {0n1n : n ∈ N} and B = ∅. We
have A ≤ B because A is a decidable language (we don’t even need to make
use of the decider for B). Furthermore, B is regular, but A is not. �

Exercise 5.3 (Practice with reduction proofs).
Show the following.

(a) ACCEPTS ≤ HALTS.

(b) HALTS ≤ EQ.

Solution. Part (a): We want to show that ACCEPTS reduces to HALTS. To do
this, we assume that HALTS is decidable. Let MHALTS be a decider for HALTS.
We now need to construct a TM that decides ACCEPTS (which will make use
of MHALTS). Here is the description of the decider:

M : TM. x: string.
MACCEPTS(〈M,x〉):

1 Run MHALTS(〈M,x〉).
2 If it rejects, reject.
3 Else:
4 Run M(x)

5 If it accepts, accept.
6 If it rejects, reject.

We now argue that this machine indeed decides ACCEPTS. Note that given
〈M,x〉, there are three possibilities: M(x) accepts; M(x) rejects, M(x) loops.
And 〈M,x〉 ∈ ACCEPTS if and only if M(x) accepts.

Let’s first consider an input 〈M,x〉 such that 〈M,x〉 ∈ ACCEPTS. Then
MHALTS(〈M,x〉) must accept, i.e. M(x) halts. So the decider above safely sim-
ulates M(x) on line 4 and accepts (on line 5).

If the the input is such that 〈M,x〉 6∈ ACCEPTS, then there are two cases. Ei-
therM(x) halts but rejects, orM(x) loops. If it is the latter, thenMHALTS(〈M,x〉)
rejects, and therefore our decider rejects as well. If on the other hand M(x)
halts but rejects, then our decider safely simulates M(x) on line 4 and rejects
(on line 6).

23

Whatever the input is, our decider gives the correct answer. The proof is
complete.

Part(b): (This can be considered as an alternative proof of Theorem (EQ is
undecidable).) We want to show that HALTS reduces to EQ. To do this, we
assume that EQ is decidable. Let MEQ be a decider for EQ. We now need to
construct a TM that decides HALTS (which will make use of MEQ). Here is the
description of the decider:

M : TM. x: string.
MHALTS(〈M,x〉):

1 Construct the string 〈M ′〉 where M ′ is a TM that rejects
every input.

2 Construct the following string, which we call 〈M ′′〉.
3 ”M ′′(y) :

4 Run M(x).
5 Ignore the output and accept.”
6 Run MEQ(〈M ′,M ′′〉).
7 If it accepts, reject.
8 If it rejects, accept.

We now argue that this machine indeed decides HALTS. Notice that no
matter what the input is, L(M ′) = ∅. Let’s first consider an input 〈M,x〉 such
that 〈M,x〉 ∈ HALTS. Then M ′′ accepts every input, so L(M ′) = Σ∗. In this
case, MEQ(〈M ′,M ′′〉) rejects, and so our machine accepts as desired. Next,
consider an input 〈M,x〉 such that 〈M,x〉 6∈ HALTS. Then whatever input is
given toM ′′, it gets stuck in an infinite loop when it runsM(x). So L(M ′′) = ∅.
In this case MEQ(〈M ′,M ′′〉) accepts, and so our machine rejects, as it should.
Thus we have a correct decider for HALTS. �

24

Chapter 6

Time Complexity

25

Exercise 6.1 (Practice with big-O).
Show that 3n2 + 10n+ 30 is O(n2).

Solution. Proof 1: To show that 3n2 + 10n + 30 is O(n2), we need to show that
there exists C > 0 and n0 > 0 such that

3n2 + 10n+ 30 ≤ Cn2

for all n ≥ n0. Pick C = 4 and n0 = 13. Note that for n ≥ 13, we have

10n+ 30 ≤ 10n+ 3n = 13n ≤ n2.

This implies that for n ≥ 13 and C = 4,

3n2 + 10n+ 30 ≤ 3n2 + n2 = Cn2.

Proof 2: Pick C = 43 and n0 = 1. Then for n ≥ 1 = n0, we have

3n2 + 10n+ 30 ≤ 3n2 + 10n2 + 30n2 = 43n2 = Cn2.

�

Exercise 6.2 (Practice with big-Omega).
Show that n!2 is Ω(nn).

Solution. To show (n!)2 = Ω(nn), we’ll show that choosing c = 1 and n0 = 0
satisfies the definition of Big-Omega. To see this, note that for n ≥ 1, we have:

(n!)2 = ((n)(n− 1) · · · (1)) ((n)(n− 1) · · · (1)) (by definition)
= (n)(1)(n− 1)(2) · · · (1)(n) (re-ordering terms)
= ((n)(1))((n− 1)(2)) · · · ((1)(n)) (pairing up consecutive terms)
≥ (n)(n) · · · (n) (by the Claim below)
= nn.

Claim: For n ≥ 1 and for i ∈ {0, 1, . . . , n− 1},

(n− i)(i+ 1) ≥ n.

Proof: The proof follows from the following chain of implications.

n− (n− 1)− 1 = 0 =⇒ n− i− 1 ≥ 0 (since i ≤ n− 1)
=⇒ i(n− i− 1) ≥ 0 (since i ≥ 0)

=⇒ ni− i2 − i ≥ 0

=⇒ ni− i2 − i+ n ≥ n
=⇒ (n− i)(i+ 1) ≥ n.

This completes the proof. �

Exercise 6.3 (Practice with Theta).
Show that log2(n!) = Θ(n log n).

Solution. We first show log2 n! = O(n log n). Observe that

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1 ≤ n · n · n · · · · · n︸ ︷︷ ︸
n times

= nn,

as each term on the RHS (i.e. n) is greater than or equal to each term on the
LHS. Taking the log of both sides gives us log2 n! ≤ log2 n

n = n log2 n (here, we

26

are using the fact that log ab = b log a). Therefore taking n0 = C = 1 satisfies
the definition of big-O, and log2 n! = O(n log n).

Now we show log2 n! = Ω(n log n). Assume without loss of generality that
n is even. In the definition of n!, we’ll use the first n/2 terms in the product to
lower bound it:

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1 ≥ n

2
· n

2
· · · · · n

2︸ ︷︷ ︸
n/2 times

=
(n

2

)n
2

.

Taking the log of both sides gives us log2 n! ≥ n
2 log2

n
2 .

Claim: For n ≥ 4, n2 log2
n
2 ≥

n
4 log2 n.

The proof of the claim is not difficult (some algebraic manipulation) and is
left for the reader. Using the claim, we know that for n ≥ 4, log2 n! ≥ n

4 log2 n.
Therefore, taking n0 = 4 and c = 1/4 satisfies the definition of big-Omega, and
log2 n! = Ω(n log n). �

Exercise 6.4 (Composing polynomial time algorithms).
Suppose that we have an algorithm A that runs another algorithm A′ once as
a subroutine. We know that the running time of A′ is O(nk), k ≥ 1, and the
work done by A is O(nt), t ≥ 1, if we ignore the subroutine A′ (i.e., we don’t
count the steps taken by A′). What kind of upper bound can we give for the
total running-time of A (which includes the work done by A′)?

Solution. Let n be the length of the input to algorithm A. The total work done
by A is f(n) + g(n), where g(n) is the work done by the subroutine A′ and
f(n) = O(nt) is the work done ignoring the subroutine A′.

We analyze g(n) as follows. Note that in timeO(nt), A can produce a string
of length cnt (for some constant c), and feed this string toA′. The running time
of A′ is O(mk), where m is the length of the input for A′. When A is run and
calls A′, the length of the input to A′ can be m = cnt. Therefore, the work done
by A′ inside A is O(mk) = O((cnt)k) = O(ckntk) = O(ntk).

Since f(n) = O(nt) and g(n) = O(ntk), we have f(n) + g(n) = O(ntk). �

Exercise 6.5 (TM complexity of {0k1k : k ∈ N}).
In the TM model, a step corresponds to one application of the transition func-
tion. Show that L = {0k1k : k ∈ N} can be decided by a TM in time O(n log n).
Is this statement directly implied by Proposition (Intrinsic complexity of {0k1k :
k ∈ N})?

Solution. First of all, the statement is not directly implied by Proposition (In-
trinsic complexity of {0k1k : k ∈ N}) because that proposition is about the
RAM model whereas this question is about the TM model.

We now sketch the solution. Below is a medium-level description of a TM
deciding the language {0k1k : k ∈ N}.

Repeat while both 0s and 1s remain on the tape:

Scan the tape.

If (# of 1s + # of 0s) is odd, reject.

Scan the tape.

Cross off every other 0 starting with first 0.

Cross off every other 1 starting with first 1.

If no 0s and no 1s remain accept.

Else, reject.

27

Let n be the input length. Observe that in each iteration of the loop, we
do O(n) work, and the number of iterations is O(log n) because in each itera-
tion, half of the non-crossed portion of the input gets crossed off (i.e. in each
iteration, the number of 0’s and 1’s is halved). So the total running time is
O(n log n). �

Exercise 6.6 (Is polynomial time decidability closed under concatenation?).
Assume the languages L1 and L2 are decidable in polynomial time. Prove or
give a counter-example: L1L2 is decidable in polynomial time.

Solution. Let M1 be a decider for L1 with running-time O(nk) and let M2 be
a decider for L2 with running-time O(nt). We construct a polynomial-time
decider for L1L2 as follows:

On input x:

For each of the |x| + 1 ways to divide x as yz:

Run M1(y)

If M1 accepts:

Run M2(z)

If M2 accepts, accept

Reject

The input length is n = |x|. The for-loop repeats n + 1 times. In each
iteration of the loop, we do at most cnk + c′nt + c′′ work, where c, c′, c′′ are
constants independent of n. So the total running-time is O(nmax{k,t}+1). �

Exercise 6.7 (Running time of the factoring problem).
Consider the following problem: Given as input a positive integer N , output a
non-trivial factor1 of N if one exists, and output False otherwise. Give a lower
bound using the Ω(·) notation for the running-time of the following algorithm
solving the problem:

N : natural number.
Non-Trivial-Factor(〈N〉):

1 For i = 2 to N − 1:
2 If N%i == 0: Return i.
3 Return False.

Solution. The input is a number N , so the length of the input is n, which is
about log2N . In other words, N is about 2n. In the worst-case, N is a prime
number, which would force the algorithm to repeat N − 2 times. Therefore
the running-time of the algorithm is Ω(N). Writing N in terms of n, the input
length, we get that the running-time is Ω(2n). �

Exercise 6.8 (251st root).
Consider the following computational problem. Given as input a number
A ∈ N, output bA1/251c. Determine whether this problem can be computed
in worst-case polynomial-time, i.e. O(nk) time for some constant k, where
n denotes the number of bits in the binary representation of the input A. If
you think the problem can be solved in polynomial time, give an algorithm in
pseudocode, explain briefly why it gives the correct answer, and argue care-
fully why the running time is polynomial. If you think the problem cannot be
solved in polynomial time, then provide a proof.

Solution. First note that the following algorithm, although correct, is exponen-
tial time.

1A non-trivial factor is a factor that is not equal to 1 or the number itself.

28

A: natural number.
Linear-Search(〈A〉):

1 For B = 0 to A:
2 If B251 > A: Return B − 1.

The length of the input is n, which is about log2A. In other words, A is
about 2n. The for loop above will repeat bA1/251cmany times, so the running-
time is Ω(A1/251), and in terms of n, this is Ω(2n/251).

To turn the above idea into a polynomial-time algorithm, we need to use
binary search instead of linear search.

A: natural number.
Binary-Search(〈A〉):

1 lo = 0.
2 hi = A.
3 While (lo < hi):
4 B = d lo+hi2 e.
5 If B251 > A: hi = B − 1.
6 Else lo = B.
7 Return lo.

Since we are using binary search, we know that the loop repeats O(logA)
times, or using n as our parameter, O(n) times. All the variables hold values
that are at most A, so they are at most n-bits long. This means all the arith-
metic operations (plus, minus, and division by 2) in the loop can be done in
linear time. Computing B251 is polynomial-time because we can compute it
by doing integer multiplication a constant number of times, and the numbers
involved in these multiplications areO(n)-bits long. Thus, the total work done
is polynomial in n. �

29

30

Chapter 7

The Science of Cutting Cake

31

Exercise 7.1 (Practice with cutting cake).
Design a cake cutting algorithm for a set of players N = {1, . . . , n} that finds
an allocationAwith the property that there exists a permutation/bijection πA :
N → N such that for all i ∈ N, Vi(Ai) ≥ 1

2π(i) . In words, there is an order on the
players such that the first player has value at least 1/2 for her piece, the second
player has value at least 1/4, and so on. The complexity of your algorithm in
the Robertson-Webb model should be O(n2).

Solution. We can modify the Dubins-Spanier algorithm to solve this exercise
question. The referee first makes n queries: Cuti(0, 1/2) for all i. She computes
the minimum among these values, which we’ll denote by y. Let’s assume j
is the player that corresponds to the minimum value. Then the referee assigns
Aj = [0, y]. So player j gets a piece that she values at 1/2. After this, we remove
player j, and repeat the process on the remaining cake. So in the next stage,
the referee makes n − 1 queries, Cuti(y, 1/4) for i 6= j, figures out the player
corresponding to the minimum value, and assigns her the corresponding piece
of the cake, which she values at 1/4. This repeats until there is one player left.
The last player gets the piece that is left.

The analysis of the running time of this algorithm is exactly the same as in
the original Dubins-Spanier algorithm.

We need to show that the allocation produced by the algorithm is such that
the first player (in the order the algorithms picks players) has value at least
1/2 for her piece, the second player has value at least 1/4 for her piece, and so
on. This pretty much follows from the way the algorithm is set up and how
allocations are made. The only things we need to check are:

(i) the queries never return “None”,

(ii) the last player, call it `, gets A` such that V`(A`) ≥ 1/2n.

To show (i), assume we have just completed iteration k, where k ∈ {1, 2, . . . , n−
1}. Let j be an arbitrary player who has not been removed yet. The important
observation is that the piece of cake remaining at this point has value at least
1/2k to player j (take a moment to verify this). Since this is true for any k ∈
{1, 2, . . . , n − 1} and any player j that remains after iteration k, the queries
never return “None”. Part (ii) actually follows from the same argument. The
cake remaining after iteration n− 1 has value at least 1/2n−1 for the last player
(which is indeed better than 1/2n. This completes the proof. �

Exercise 7.2 (Finding an envy-free allocation).
We say that a valuation function V is piecewise constant if there are points
x1, x2, . . . , xk ∈ [0, 1] such that 0 = x1 < x2 < · · · < xk = 1 and for each
i ∈ {1, 2, . . . , k− 1}, V ([xi, xi+1]) is uniformly distributed over [xi, xi+1].1 Sup-
pose we have n players such that each player has a piecewise constant valua-
tion function. Show that in this case, an envy-free allocation always exists.

Solution. We sketch the idea, but do not prove the correctness. Each player’s
valuation function is associated with a set of points. Make a mark for each such
point on the cake [0, 1]. The subinterval between any two adjacent marks x and
y is such that for all players i, Vi([x, y]) is uniformly distributed. Divide each
such subinterval into n pieces of equal length, and give one to each player. �

1Uniformly distributed means that if we were to take any subinterval I of [xi, xi+1] whose
density/size is α fraction of the density/size of [xi, xi+1], then V (I) = α · V ([xi, xi+1]).

32

Chapter 8

Introduction to Graph Theory

33

Exercise 8.1 (Max number of edges in a graph).
In an n-vertex graph, what is the maximum possible value for the number of
edges in terms of n?

Solution. An edge is a subset of V of size 2, and there are at most
(
n
2

)
possible

subsets of size 2. �

Exercise 8.2 (Application of Handshake Theorem).
Is it possible to have a party with 251 people in which everyone knows exactly
5 other people in the party?

Solution. Create a vertex for each person in the party, and put an edge between
two people if they know each other. Note that the question is asking whether
there can be a 5-regular graph with 251 nodes. We use Theorem (Handshake
Theorem) to answer this question. If such a graph exists, then the sum of the
degrees would be 5 × 251, which is an odd number. However, this number
must equal 2m (where m is the number of edges), and 2m is an even number.
So we conclude that there cannot be a party with 251 people in which everyone
knows exactly 5 other people. �

Exercise 8.3 (Equivalent definitions of a tree).
Show that if a graph has two of the properties listed in Definition (Tree, leaf,
internal node), then it automatically has the third as well.

Solution. If a graph is connected and satisfiesm = n−1, then it must be acyclic
by Theorem (Min number of edges to connect a graph). If a graph is connected
and acyclic, then it must satisfy m = n − 1, also by Theorem (Min number of
edges to connect a graph). So all we really need to prove is if a graph is acyclic
and satisfies m = n− 1, then it is connected. For this we look into the proof of
Theorem (Min number of edges to connect a graph). If the graph is acyclic, this
means that every time we put back an edge, we put one that satisfies (i) (here
“(i)” is referring to the item in the proof of Theorem (Min number of edges to
connect a graph)). This is because any edge that satisfies (ii) creates a cycle.
Every time we put an edge satisfying (i), we reduce the number of connected
components by 1. Since m = n − 1, we put back n − 1 edges. This means
we start with n connected components (n isolated vertices), and end up with
1 connected component once all the edges are added back. So the graph is
connected. �

Exercise 8.4 (A tree has at least 2 leaves).
Let T be a tree with at least 2 vertices. Show that T must have at least 2 leaves.

Solution. We use Theorem (Handshake Theorem) to prove this (i.e.
∑
v deg(v) =

2m). If a tree has less than 2 leaves, then the sum of the degrees of the vertices
would be at least

1 + 2(n− 1) = 2n− 1

(in the worst-case, we have 1 leaf and n− 1 vertices with degree 2). This value
must equal 2m, which is always equal to 2(n − 1) = 2n − 2 in a tree. This is a
contradiction since 2n− 1 > 2n− 2. �

Exercise 8.5 (Max degree is at most number of leaves).
Let T be a tree with L leaves. Let ∆ be the largest degree of any vertex in T .
Prove that ∆ ≤ L.

34

Solution. It is instructive to read all 3 proofs.
Proof 1: We use Theorem (Handshake Theorem). The degree sum in a tree is
always 2n − 2 since m = n − 1. Let v be the vertex with maximum degree ∆.
The vertices that are not v or leaves must have degree at least 2 each, so the
degree sum is at least deg(v) + L + 2(n − L − 1). So we must have 2n − 2 ≥
deg(v) + L+ 2(n− L− 1), which simplifies to L ≥ deg(v) = ∆, as desired.
Proof 2: We induct on the number of vertices. For n ≤ 3, this follows by in-
specting the unique tree on n vertices. For n > 3, pick an arbitrary leaf u and
delete it (and all the edges incident to u). Let T − u denote this graph, which
is a tree (it is connected and acyclic). Also, we let L(T) denote the number of
leaves in T and L(T − u) to denote the number of leaves in T − u. We make
similar definitions for ∆(T) and ∆(T − u) regarding the maximum degrees.
Note that L(T) ≥ L(T − u). There are two cases to consider:

1. ∆(T − u) = ∆(T)

2. ∆(T − u) = ∆(T)− 1

If case 1 happens, then by the induction hypothesis L(T − u) ≥ ∆(T − u) =
∆(T). But this implies L(T) ≥ ∆(T) (since L(T) ≥ L(T − u)), as desired.

Let v be the neighbor of u. If case 2 happens, then v is the only vertex of
maximum degree in T . In particular, v cannot be a leaf in T − u. So L(T) =
L(T −u)+1. The induction hypothesis yields L(T −u) ≥ ∆(T −u) = ∆(T)−1.
Combining this with L(T) = L(T − u) + 1 we get L(T) ≥ ∆(T), as desired.
Proof 3: Let v be a vertex in the tree such that deg(v) = ∆. Consider the graph
T − v obtained by deleting v and all the edges incident to it. Since T is a tree,
we know that T − v contains ∆ connected components; let us denote them
T1, . . . , T∆. Since T is acyclic, each of the Ti’s are also acyclic. Since each Ti is
connected and acyclic, each one is a tree. There are two possibilities for each
Ti:

(i) Ti consists of a single vertex. Then that vertex is a leaf in T .

(ii) Ti is not a single vertex, and so has at least 2 leaves (by Exercise (A tree
has at least 2 leaves)). At least one of these leaves is not connected to v
and therefore must be a leaf in T .

In either case, one vertex in Ti is a leaf in T . This is true for all T1, . . . , T∆.
Hence we have at least ∆ leaves in T . �

Exercise 8.6 (MST with negative costs).
Suppose an instance of the Minimum Spanning Tree problem is allowed to
have negative costs for the edges. Explain whether we can use the Jarnı́k-Prim
algorithm to compute the minimum spanning tree in this case.

Solution. Yes, we can. Assign a rank to each edge of the graph based on its
cost: the highest cost edge gets the highest rank and the lowest cost edge gets
the lowest rank. When making its decisions, the Jarnı́k-Prim algorithm only
cares about the ranks of the edges, and not the specific costs of the edges. The
algorithm would output the same tree even if we add a constant C to the costs
of all the edges since this would not change the rank of the edges. And indeed,
adding a constant to the cost of each edge does not change what the minimum
spanning tree is. Hence, we can turn any instance with negative costs into and
equivalent one with non-negative costs by adding a large enough constant to
all the edges without changing the tree that is output.
(Note: In fact the original algorithm would output the minimum cost spanning
tree even if the edge costs are allowed to be negative. There is not even a need
to add a constant to the edge costs.) �

35

Exercise 8.7 (Maximum spanning tree).
Consider the problem of computing the maximum spanning tree, i.e., a span-
ning tree that maximizes the sum of the edge costs. Explain whether the Jarnı́k-
Prim algorithm solves this problem if we modify it so that at each iteration, the
algorithm chooses the edge between V ′ and V \V ′ with the maximum cost.

Solution. Let (G, c) be the input, where G = (V,E) is a graph and c : E → R+

is the cost function. Let c′ : E → R− be defined as follows: for all e ∈ E,
c′(e) = −c(e). Let Amin be the original Jarnı́k-Prim algorithm and let Amax

be the Jarnı́k-Prim algorithm where we pick the maximum cost edge in each
iteration. There are a couple of important observations:

1. The minimum spanning tree for (G, c′) is the maximum spanning tree for
(G, c).

2. RunningAmax(G, c) is equivalent to runningAmin(G, c′), and they output
the same spanning tree.

From Exercise (MST with negative costs), we know Amin(G, c′) gives us a min-
imum cost spanning tree. So Amax(G, c) gives the correct maximum cost span-
ning tree. �

Exercise 8.8 (Kruskal’s algorithm).
Consider the following algorithm for the MST problem (which is known as
Kruskal’s algorithm). Start with MST being the empty set. Go through all the
edges of the graph one by one from the cheapest to the most expensive. Add
the edge to the MST if it does not create a cycle. Show that this algorithm
correctly outputs the MST.

Solution. We do not have the solution to this problem at this time. �

Exercise 8.9 (Cycle implies no topological order).
Show that if a directed graph has a cycle, then it does not have a topological
order.

Solution. Let G = (V,A) be a directed graph and suppose u1, u2, . . . , uk, u1 is
a cycle in G. This means that for all i ∈ {1, 2, . . . , k − 1}, (ui, ui+1) ∈ A, and
(uk, u1) ∈ A. If there is a topological order f of G, then by definition, it must
be the case that

f(u1) < f(u2) < f(u3) < · · · < f(uk) < f(u1).

This implies f(u1) < f(uk) < f(u1), which is impossible. �

Exercise 8.10 (Topological sort, correctness of naı̈ve algorithm).
Show the algorithm above correctly solves the topological sorting problem,
i.e., show that for (u, v) ∈ A, f(u) < f(v). What is the running time of this
algorithm?

Solution. We will use the following observation: if an algorithm removes an
edge (u, v) ∈ A, then it must be because v is chosen as a sink vertex and re-
moved from the graph.

We now prove that the algorithm is correct by a proof by contradiction.
Suppose (u, v) ∈ A such that f(u) > f(v). This means that u was removed
from the graph before v was removed. At the moment that u is removed, u
must be a sink (i.e. it must not have any outgoing edges). This implies the
edge (u, v) must have been removed at a previous iteration. But the only way

36

(u, v) would be removed is if v was chosen to be a sink vertex and removed.
This implies that v must have been removed before u, which is the desired
contradiction.

A straightforward implementation of the algorithm would result in a run-
ning time of at least Ω(n2) since the algorithm has n iterations, and in each iter-
ation, a sink vertex must be found and removed (which takes Ω(n) steps). �

37

38

Chapter 9

Matchings in Graphs

39

Exercise 9.1 (Number of perfect matchings in a complete graph).
Let n be even, and let G be the complete graph1 on n vertices. How many
different perfect matchings does G contain?

Solution. The answer is (n − 1)(n − 3) · · · 1. We leave it to the reader to verify
this. �

Exercise 9.2 (Graphs with max degree at most 2).
Let G = (V,E) be a graph such that all vertices have degree at most 2. Then
prove that G consists of disjoint paths and cycles (where we count an isolated
vertex as a path of length 0).

Solution. Consider a graph G such that all vertices have degree at most 2. We
want to show that it consists of disjoint paths and cycles. We prove this by
induction on the number of vertices.

Pick an arbitrary vertex v in the graph. Removing v results in a graphG−v
such that every vertex has degree at most 2. Since G − v has one less vertex,
by induction hypothesis, G− v consists of disjoint paths and cycles. There are
3 cases to consider: deg(v) = 0, 1, or 2. It is not hard to see that in each case,
adding v back to the graph preserves the property that the graph is a collection
of disjoint paths and cycles. (Verify this part for yourself.) �

Exercise 9.3 (A tree can have at most one perfect matching).
Show that a tree can have at most one perfect matching.

Solution. The proof is by contradiction, so suppose a tree has two different
perfect matchings M and M ′. Let S be the symmetric difference between M
and M ′, i.e., S = (M ∪M ′)\(M ∩M ′). Since M 6= M ′, |S| > 1. The set S
corresponds to a graph in which each vertex has degree at most 2. So the graph
consists of disjoint paths and cycles. But it cannot contain any cycles since
trees are acyclic. It also cannot contain a path. This is because the existence
of a degree 1 vertex in S implies that this vertex is not covered/matched by
either M or M ′ (verify this yourself), and this would contradict the fact that M
and M ′ are perfect matchings covering all vertices. So S must be the empty set,
which contradicts our assumption that |S| > 1. �

Exercise 9.4 (Practice with perfect matchings).

(a) Let G be a bipartite graph on 2n vertices such that every vertex has de-
gree at least n. Prove that G must contain a perfect matching.

(b) Let G = (X,Y,E) be a bipartite graph with |X| = |Y |. Show that if G is
connected and every vertex has degree at most 2, then G must contain a
perfect matching.

Solution. Part a: If every vertex has degree n, it must be the case that the graph
is G = (X,Y,E) where |X| = |Y | = n. It must also be the case that the graph
is a complete bipartite graph (i.e., every possible edge is present). So clearly
Hall’s theorem applies and the graph has a perfect matching.

Part b: A graph with max degree at most 2 consists of disjoint paths and cycles
(Exercise (Graphs with max degree at most 2)). Since the graph is connected,
it must consist of a single path or a single cycle containing all the vertices. In
either case, it is not hard to see that the graph must contain a perfect match-
ing: If the graph is a path, then we can take every other edge (starting with the
first edge) along the path to form a perfect matching. If the graph consists of a
cycle, it has two different perfect matchings. �

1A complete graph is a graph in which every possible edge is present.

40

Exercise 9.5 (Gale-Shapley is female pessimal).
Show that the Gale-Shapley algorithm always matches a female w ∈ Y with its
worst valid partner, i.e., it returns {(worst(w), w) : w ∈ Y }.

Solution. The proof is by contradiction, so suppose that the Gale-Shapley al-
gorithm returns a matching in which some w is matched to m, but m is not
the worst valid partner of w. Let m′ be the worst valid partner of w. So there
is some other stable matching in which m′ and w are matched. Let w′ be the
match of m in this stable matching.

We claim that in this stable matching (m,w) forms an unstable pair. First, w
prefersm overm′ becausem′ is the worst valid partner ofw. Second,m prefers
w over w′ because the Gale-Shapley algorithm matches m and w, and so w
must be the best valid partner ofm by Theorem (Gale-Shapley is male optimal).

�

Exercise 9.6 (Is there a unique stable matching?).
Give a polynomial time algorithm that determines if a given instance of the
stable matching problem has a unique solution or not.

Solution. Run the Gale-Shapley algorithm A with men proposing to women.
Run the algorithmA′ by reversing the roles of men and women so that women
propose to men. We claim there is a unique stable matching if and only if both
A and A′ output the same stable matching.

One direction is clear: if there is a unique stable matching, than A and A′

must return the same matching. For the other direction, suppose A and A′

return the same stable matching. We know that (i) A returns a male-optimal
matching (Theorem (Gale-Shapley is male optimal)); (ii) A′ returns a male-
pessimal matching (Exercise (Gale-Shapley is female pessimal)). Since A and
A′ return the same matching, we must have that for all males m, best(m) =
worst(m). And this implies that in every stable matching, every m is matched
to best(m) = worst(m). So there must be only one stable matching. �

Exercise 9.7 (Identical preferences).
Suppose we are given an instance of the stable matching problem in which all
the men’s preferences are identical to each other, and all the women’s prefer-
ences are identical to each other. Prove or disprove: there is only one stable
matching for such an instance.

Solution. There is a unique stable matching for such an instance. To see this,
let mi be the man ranked i’th by the women, and let wi be the woman ranked
i’th by the men. Then notice that in any stable matching, m1 and w1 must be
matched to each other because otherwise they would form an unstable pair.
Given that m1 and w1 must be matched, m2 must be matched to w2 since oth-
erwise, they would form an unstable pair. Proceeding this way, we see that for
all i, mi must be matched to wi. �

41

Exercise 9.8 (Stable roommates problem).
Consider the following variant of the stable matching problem. The input is a
complete graph on n vertices (not necessarily bipartite), where n is even. Each
vertex has a preference list over every other vertex in the graph. The goal is to
find a stable matching. Give an example to show that a stable matching does
not always exist.

Solution. Consider the example with 4 nodes a, b, c and d, and the following
preference lists:
a: (c, b, d)
b: (a, c, d)
c: (b, a, d)
d: (a, c, b)
Notice that d is the last choice of a, b and c. On the other hand, in any stable
matching, d has to be matched with someone. If d is matched with a, then (a, b)
is an unstable pair. If d is matched with b, then (b, c) is an unstable pair. And
if d is matched with c, then (a, c) is an unstable pair. In all cases, there is an
unstable pair, so a stable matching does not exist. �

42

Chapter 10

Boolean Circuits

43

Exercise 10.1 (Drawing circuits).
Draw a circuit that computes the following functions.

(a) The parity function PAR : {0, 1}2 → {0, 1} on 2 variables, which is de-
fined as PAR(x1, x2) = 1 iff x1 + x2 is odd.

(b) The majority function MAJ : {0, 1}3 → {0, 1} on 3 variables, which is
defined as MAJ(x1, x2, x3) = 1 iff x1 + x2 + x3 ≥ 2.

Solution. Part (a):

Part (b):

�

Exercise 10.2 (NAND is “universal”).
Define a NAND gate as NAND(x, y) = ¬(x ∧ y). Show that any circuit with
AND, OR and NOT gates can be converted into an equivalent circuit (i.e. a
circuit computing the same function) that uses only NAND gates (in addition
to the input gates and constant gates). The size of this circuit should be at most
a constant times the size of the original circuit.

Solution. For this question, all we need to do is show how to compute OR,
AND, and NOT just with NAND gates. Below are the constructions.

We can compute NOT of a variable x as follows:

44

We can compute AND of x1 and x2 by applying a NAND gate to x1 and x2,
and then negate the output:

To compute OR of x1 and x2, we use the fact that x1 ∨ x2 = ¬(¬x1 ∧ ¬x2):

Any circuit with AND, OR, and NOT gates can be converted to a one using
only NAND gates by replacing each AND, OR, and NOT gate with the corre-
sponding circuit as shown above. For each gate we replace, we need to use
at most 3 NAND gates. So the size of our circuit with NAND gates will be at
most 3 times as the size of the original circuit. �

Exercise 10.3 (Circuit complexity of parity).
Let L ⊆ {0, 1}∗ be the set of words which contain an odd number of 1’s. Show
that the circuit complexity of L is Θ(n).

Solution. Note that the decision problem f : {0, 1}∗ → {0, 1} corresponding to
L is simply the parity function: f(x) = x1 +x2 + · · ·+xn mod 2, where n = |x|.
Write f = (f0, f1, f2, . . .) as in Note (Dividing the set of words by length).

The lower bound of Ω(n) on the circuit complexity is relatively straight-
forward. To compute fn, the circuit needs to access all the input bits. This is
because if it does not access xi for some i, the circuit would output the same
bit whether xi = 0 or xi = 1. However, a correct circuit computing the parity
function cannot have this behavior. The parity of the sum of the bits depends
on all of the input bits. Since the circuit must make use of all of the input gates
x1 to xn, and we count the input gates when computing the size of the circuit,
we can conclude that the circuit complexity of f is Ω(n). (In fact, even if we
did not count the input gates when computing the size of a circuit, we could
still conclude that the circuit must have size Ω(n). Can you see why?)

For the upper bound, we present an explicit circuit construction that com-
putes the parity of the input bits. The parity of a single input bit is easily
computed as follows:

45

Exercise (Drawing circuits), part (a), shows us how to do parity of two bits. For
simplicity, assume n is a power of 2. Then note that the parity of x1, x2, . . . , xn,
denoted by PARn(x1, . . . , xn), can be written as

PARn(x1, . . . , xn) = PAR2(PARn
2

(x1, . . . , xn2),PARn
2

(xn
2 +1, . . . , xn)).

This gives us a recursive way to construct the circuit computing parity. The
recursive construction is illustrated below:

Note that the gadget above the two triangles is just a circuit computing the
parity of two bits. For n = 4, the construction would materialize as follows:

If S(n) is the size of the above circuit for computing parity over n input
variables, then S(n) = 2S(n/2) + 5, and S(1) = 1. Solving this recursion, we
get S(n) = O(n), as desired.

(We leave it to the reader to handle the case when n is not a power of 2.) �

46

Exercise 10.4 (O(n2n) upper bound on circuit complexity).
Show that any language L can be computed by a circuit family of size O(n2n).

Solution. We will not give a complete solution to this problem, but give enough
of a hint that hopefully you will be able to figure out the complete argument
yourself. Let’s take an example function with n = 3 variables.

x1 x2 x3 f(x1, x2, x3)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Then we claim that the following Boolean formula correctly represents f :

(¬x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3).

First, try to see how we came up with this Boolean formula, and why it cor-
rectly represents the function. Once you understand the construction, this will
give you a way of constructing a formula for any Boolean function. Note that a
Boolean formula can be represented as a Boolean circuit. What is the maximum
number of gates the circuit would have for any function? �

47

48

Chapter 11

Polynomial-Time Reductions

49

Exercise 11.1 (Transitivity of Karp reductions).
Show that if A ≤Pm B and B ≤Pm C, then A ≤Pm C.

Solution. Suppose A ≤Pm B and B ≤Pm C. Let f : Σ∗ → Σ∗ be the map that
establishes A ≤Pm B and let g : Σ∗ → Σ∗ be the map that establishes B ≤Pm C.
So x ∈ A if and only if f(x) ∈ B. And x ∈ B if and only if g(x) ∈ C. Both f
and g are computable in polynomial time.

To show A ≤Pm C, we define h : Σ∗ → Σ∗ such that h = g ◦ f . That is, for all
x ∈ Σ∗, h(x) = g(f(x)). We need to show that

• x ∈ A if and only if h(x) ∈ C;

• h is computable in polynomial time.

For the first part, note that by the properties of f and g, x ∈ A if and only if
f(x) ∈ B if and only if g(f(x)) ∈ C (i.e., h(x) ∈ C).
(If you are having trouble following this, you can break this part up into two
parts:
(i) x ∈ A =⇒ h(x) ∈ C, (ii) x 6∈ A =⇒ h(x) 6∈ C.)
For the second part, if f is computable in time O(nk), k ≥ 1, and g is com-
putable in time O(nt), t ≥ 1, then h can be computed in time O(nkt). (Why?)

�

Exercise 11.2 (IS reduces to CLIQUE).
How can you modify the above reduction to show that IS ≤Pm CLIQUE?

Solution. We can use exactly the same reduction as the one in the reduction
from CLIQUE to IS:

G = (V,E): graph. k: positive integer.
f(〈G, k〉):

1 E′ = {{u, v} : {u, v} 6∈ E}.
2 Output 〈G′ = (V,E′), k〉.

This reduction establishes IS ≤Pm CLIQUE. The proof of correctness is the
same as in the proof of Theorem (CLIQUE reduces to IS); just interchange the
words “clique” and “independent set” in the proof. �

Exercise 11.3 (Hamiltonian path reductions).
Let G = (V,E) be a graph. A Hamiltonian path in G is a path that visits every
vertex of the graph exactly once. The HAMPATH problem is the following:
given a graph G = (V,E), output True if it contains a Hamiltonian path, and
output False otherwise.

(a) Let L = {〈G, k〉 : G is a graph, k ∈ N, G has a path of length k}. Show
that HAMPATH ≤Pm L.

(b) LetK = {〈G, k〉 : G is a graph, k ∈ N, G has a spanning tree with ≤ k leaves}.
Show that HAMPATH ≤Pm K.

Solution. Part (a): We need to show that there is a poly-time computable func-
tion f : Σ∗ → Σ∗ such that x ∈ HAMPATH if and only if f(x) ∈ L. Below we
present f .

G = (V,E): graph.
f(〈G〉):

1 Output 〈G, |V | − 1〉.

50

We first prove the correctness of the reduction. If x ∈ HAMPATH, then
x corresponds to an encoding of a graph G that contains a Hamiltonian path.
Let n be the number of vertices in the graph. A Hamiltonian path visits every
vertex of the graph exactly once, so has length n− 1 (the length of a path is the
number of edges along the path). Therefore, by the definition of L, we must
have f(x) = 〈G,n− 1〉 ∈ L. For the converse, suppose f(x) ∈ L. Then it must
be the case that f(x) = 〈G,n−1〉, where x = 〈G〉, G is some graph, and n is the
number of vertices in that graph. Furthermore, by the definition of L, it must
be the case that G contains a path of length n − 1. A path cannot repeat any
vertices, so this path must be a path visiting every vertex in the graph, that is,
it must be a Hamiltonian path. So x ∈ HAMPATH.

To see that the reduction is polynomial time, note that the number of ver-
tices in the given graph can computed in polynomial time. So the function f
can be computed in polynomial time.

Part (b): We need to show that there is a poly-time computable function f :
Σ∗ → Σ∗ such that x ∈ HAMPATH if and only if f(x) ∈ K. Below we present
f .

G = (V,E): graph.
f(〈G〉):

1 Output 〈G, 2〉.

A note: For the correctness proof below, we are going to ignore the edge
case where the graph has 1 vertex. By convention, we don’t allow graphs with
0 vertices.

We now prove the correctness of the reduction. If x ∈ HAMPATH, then
x corresponds to an encoding of a graph G that contains a Hamiltonian path.
A Hamiltonian path visits every vertex of the graph, so it forms a spanning
tree with 2 leaves. Therefore, by the definition of L, we must have f(x) =
〈G, 2〉 ∈ L. For the converse, suppose f(x) ∈ L. Then it must be the case
that f(x) = 〈G, 2〉, where x = 〈G〉 and G is some graph. Furthermore, by the
definition of L, G must contain a spanning tree with 2 leaves (recall that every
tree with at least 2 vertices must contain at least 2 leaves). A tree with exactly 2
leaves must be a path (prove this as an exercise). Since this path is a spanning
tree, it must contain all the vertices. Therefore this path is a Hamiltonian path
in G. So x ∈ HAMPATH.

It is clear that the function f can be computed in polynomial time. This
completes the proof. �

51

52

Chapter 12

Non-Deterministic Polynomial Time

53

Exercise 12.1 (CLIQUE is in NP).
Show that CLIQUE ∈ NP.

Solution. To show CLIQUE is in NP, we need to show that there is a polynomial-
time verifierAwith the properties stated in Definition (Non-deterministic poly-
nomial time, complexity class NP). We start by presenting A. (We are using A
to denote the verifier and not V because we will use V to denote the vertex set
of a graph.)

G = (V,E): graph. k: positive integer.
A(〈G, k〉, u):

1 If u does not correspond to an encoding of a set S ⊆ V
with |S| = k, reject.

2 For each pair of vertices {u, v} in S:
3 If {u, v} 6∈ E, reject.
4 Accept.

We first show that the verifier A satisfies the two conditions stated in Def-
inition (Non-deterministic polynomial time, complexity class NP). If x is in
the language, that means that x corresponds to a valid encoding of a graph
G = (V,E) together with a number k ∈ N+. Furthermore, it must be the case
that there is some S ⊆ V with |S| = k such that S forms a k-clique. When u is
the encoding of such an S, then |u| = O(n) where n is the length of x, and the
verifier A accepts (x, u). On the other hand, if x is not in the language, then ei-
ther (i) x is not a valid encoding of a graph G = (V,E) together with a number
k ∈ N+ or (ii) it is a valid encoding 〈G, k〉, but there is no S ⊆ V , |S| = k, that
forms a k-clique. In case (i), the verifier rejects (which is done implicitly since
the input is not of the correct type). In case (ii), any u that does not correspond
to a set S ⊆ V with |S| = k makes the verifier reject. Furthermore, any u that
does correspond to such an S cannot form a k-clique. In this case, the for loop
will detect this and the verifier again rejects, as desired.

Now we show the verifier is polynomial-time. Checking whether u is a
valid encoding of a set S ⊆ V with |S| = k is polynomial time. If this check
passes, then the for-loop repeats at most O(|V |2) many times, and the body
of the loop can be carried out in polynomial time. So in total, the work being
done is polynomial time. �

Exercise 12.2 (IS is in NP).
Show that IS ∈ NP.

Solution. The argument is very similar to the one above. Here is the verifier:

G = (V,E): graph. k: positive integer.
A(〈G, k〉, u):

1 If u does not correspond to an encoding of a set S ⊆ V
with |S| = k, reject.

2 For each pair of vertices {u, v} in S:
3 If {u, v} ∈ E, reject.
4 Accept.

We skip the arguments for correctness and running time. �

Exercise 12.3 (3SAT is in NP).
Show that 3SAT ∈ NP.

54

Solution. To show 3SAT is in NP, we need to show that there is a polynomial-
time verifier V with the properties stated in Definition (Non-deterministic poly-
nomial time, complexity class NP). We start by presenting V .

F : 3CNF formula.
V (〈F 〉, u):

1 If u does not correspond to a valid 0/1 assignment to the
variables in F , reject.

2 Compute the output of the formula F (u).
3 If the output is 0, reject.
4 Else, accept.

We first show that the verifier V satisfies the two conditions stated in Defi-
nition (Non-deterministic polynomial time, complexity class NP). If x is in the
language, that means that x corresponds to a valid encoding of a 3CNF for-
mula. Furthermore, there is some 0/1-assignment to the variables that makes
the formula output 1. When u is this 0/1-assignment, then |u| = O(n) (where n
is the length of x), and the verifier accepts the input (x, u). On the other hand,
if x is not in the language, then either (i) x is not a valid encoding of a CNF
formula in which every clause has exactly 3 literals or (ii) it is a valid encoding
but the formula is not satisfiable. In case (i), the verifier rejects (which is done
implicitly since the input is not of the correct type). In case (ii), any u that does
not correspond to a 0/1-assignment to the variables makes the verifier reject.
Furthermore, any u that does correspond to a 0/1-assignment to the variables
must be such that, with this assignment, the formula evaluates to 0. Therefore,
in this case, the verifier again rejects, as desired.

Now we show the verifier is polynomial-time. To check whether u is a valid
0/1-assignment to the variables takes polynomial time since you just need to
check that you are given t bits, where t is the number of variables. The output
of the formula can be computed in polynomial time since it takes constant
number of steps to compute each clause (and the number of clauses is bounded
by the length of the input). �

Exercise 12.4 (NP is contained in EXP).
Show that NP ⊆ EXP.

Solution. To show NP ⊆ EXP, it suffices to argue that any L ∈ NP is also in
EXP. So take an arbitrary L ∈ NP. By the definition of NP we know that there
is some polynomial-time verifier TM V and constant k > 0 such that for all
x ∈ Σ∗:

• if x ∈ L, then there is some u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u)
accepts;

• if x 6∈ L, then for all u ∈ Σ∗, V (x, u) rejects.

We construct a decider A for L as follows.

A(x):
1 For all u ∈ Σ∗ with |u| ≤ |x|k do:
2 Run V (x, u) and if it accepts, accept.
3 Reject.

Correctness: If x ∈ L, then we know that for some u ∈ Σ∗ with |u| ≤ |x|k,
V (x, u) accepts. Therefore A accepts as well. If on the other hand x 6∈ L, then
for all u ∈ Σ∗, V (x, u) rejects. Therefore A rejects as well.

Running time: The running time ofA isO(2n
C

) for an appropriately chosen
constant C. We omit the details of this part. �

55

Exercise 12.5 (MSAT is NP-complete).
The MSAT problem is defined very similarly to SAT (for the definition of SAT,
see Definition (Boolean satisfiability problem)). In SAT, we output True if and
only if the input CNF formula has at least one satisfying truth assignment to
the variables. In MSAT, we want to output True if and only if the input CNF
formula has at least two distinct satisfying assignments.

Show that MSAT is NP-complete.

Solution. Showing MSAT is in NP: To show that MSAT is in NP, we need to
show that there is a polynomial time verifier TM V and t ∈ N such that:

(i) if x ∈MSAT, then there is some u, |u| ≤ |x|t, such that V (x, u) accepts;

(ii) if x 6∈MSAT, then for all u, V (x, u) rejects.

We present the verifier.

F : CNF formula.
V (〈F 〉, u):

1 If u is not a valid encoding of two distinct 0/1 assign-
ments to the input variables, reject.

2 If both assignments in u satisfy F , accept.
3 Else, reject.

The verifier is polynomial time: Checking whether u a valid encoding of
two distinct 0/1 assignments to the input variables can be done in polynomial
time. Given a 0/1 assignment to the input variables, we can plug those values
into the input CNF formula, and evaluate the output of the formula. This can
be done in polynomial time. Since every step can be done in polynomial time,
the verifier has polynomial time complexity.

Correctness: If x ∈ MSAT, then x must a valid encoding of a CNF formula
F . Furthermore, F must be such that there are at least two distinct 0/1 assign-
ments to the input variables that make F evaluate to 1. When u is the encoding
of such two distinct 0/1 assignments, the verifier will accept as desired. Note
that clearly for such a u, |u| ≤ O(|F |), i.e., the proof is polynomial in the length
of F . If x 6∈ MSAT, then either x is not a valid encoding of a CNF formula (in
which case the verifier rejects, which is done implicitly since the input is not
of the correct type), or x is a valid encoding of a CNF formula, but there is at
most one 0/1 assignment to the input variables that makes the formula output
1. In the latter case, if u is not the encoding of two distinct 0/1 assignments,
we reject. And if it is, then the last step detects that at least one of these 0/1
assignments makes the formula output 0, and so the verifier rejects again, as
desired.

Showing MSAT is NP-hard: To show that MSAT is NP-hard, we show a
Karp reduction from SAT (which we know is NP-hard because we have shown
3SAT is NP-hard) to MSAT. To show the Karp reduction, we need to show that
there is a polynomial-time computable function f : Σ∗ → Σ∗ such that x ∈ SAT
if and only if f(x) ∈MSAT. Here is the function.

F : CNF formula.
f(〈F 〉):

1 Let z be a variable name not included in F .
2 Let F ′ = F ∧ (z ∨ ¬z).
3 Output 〈F ′〉.

Polynomial time: It is pretty clear that each step above can be carried out
in polynomial time (with respect to the length of F).

56

Correctness: Suppose x ∈ SAT. Then x = 〈F 〉 for some satisfiable CNF
formula F . Let y1, . . . , yn be the variables in F . And suppose y1 = b1, . . . , yn =
bn is a satisfying assignment for F , where bi ∈ {0, 1} for all i. Then observe
that both y1 = b1, . . . , yn = bn, z = 0 and y1 = b1, . . . , yn = bn, z = 1 are
satisfying assignments for F ′, and so 〈F ′〉 ∈ MSAT. For the converse, assume
〈F ′〉 ∈MSAT. This means F ′ = (F ∧ (z∨¬z)) = (F ∧True) is satisfiable, which
implies F must satisfiable. So x = 〈F 〉 ∈ SAT. �

Exercise 12.6 (BIN is NP-complete).
In the PARTITION problem, we are given n non-negative integers a1, a2, . . . , an,
and we want to output True if and only if there is a way to partition the inte-
gers into two parts so that the sum of the two parts are equal. In other words,
we want to output True if and only if there is set S ⊆ {1, 2, . . . , n} such that∑
i∈S ai =

∑
j∈{1,...,n}\S aj .

In the BIN problem we are given a set of n items with non-negative sizes
s1, s2, . . . , sn ∈ N (not necessarily distinct), a capacity C ≥ 0 (not necessarily
an integer), and an integer k ∈ N. We want to output True if and only if the
items can be placed into at most k bins such that the total size of items in each
bin does not exceed the capacity C.

Show that BIN is NP-complete assuming PARTITION is NP-hard.

Solution. Showing BIN is in NP: To show that BIN is in NP, we need to show
that there is a polynomial time verifier TM V and t ∈ N such that:

(i) if x ∈ BIN, then there is some u, |u| ≤ |x|t, such that V (x, u) accepts;

(ii) if x 6∈ BIN, then for all u, V (x, u) rejects.

s1, . . . , sn, k: non-negative integers. C: non-negative real.
V (〈s1, s2, . . . , sn, C, k〉, u):

1 If k > n, set k = n.
2 If u is not a valid encoding of a partition (B1, . . . , Bk) of
{1, . . . , n}, reject.

3 If for some j = 1, ..., k,
∑
i∈Bj si > C, reject.

4 Else reject.

The verifier is polynomial time: (First note that the n in the question does
not denote the input length. When we say “polynomial time”, it is with respect
to the input length, which is |〈s1, s2, . . . , sn, C, k〉| + |u|.) Checking that u is a
partition of {1, . . . , n} into k parts, we need to check that there are k sets, their
union is {1, . . . , n}, and that they are pair-wise disjoint. All of these can be
easily checked in polynomial time. In the 3rd step, we implicitly have a loop
that repeats k ≤ n times. In each iteration, we do at most n additions, which
is polynomial time in the input length (even if the si’s are super big, note that
they are part of the input and contribute to the length; addition is polynomial
time).

Correctness: If x ∈ BIN, then first, it must be a valid encoding. Further-
more, there must be a partition (B1, . . . , Bk) of {1, . . . , n} such that for each
j = 1, ..., k,

∑
i∈Bj si ≤ C (this is true by the definition of the problem). When

u represents such a partition, the verifier correctly accepts. Such a u has length
polynomial in n, and therefore polynomial in the input length, as desired.

If x 6∈ BIN, then either x is an invalid encoding (in which case the verifier
rejects, which is done implicitly since the input is not of the correct type), or
x is a valid encoding, but there is no way to partition the elements into k bins
(B1, . . . , Bk) such that

∑
i∈Bj si ≤ C for all bins. If u does not correspond to a

57

partition (B1, . . . , Bk), then we reject. And if it does, we successfully reject on
the 3rd step. This completes the correctness argument.

Showing BIN is NP-hard: To show that BIN is NP-hard, we show a Karp
reduction from PARTITION to BIN. To show the Karp reduction, we need to
show that there is a polynomial time computable function f : Σ∗ → Σ∗ such
that x ∈ PARTITION if and only if f(x) ∈ BIN. Here is the function.

a1, . . . , an: non-negative integers.
f(〈a1, a2, . . . , an〉):

1 Let si = ai for all i.
2 Let T =

∑
i∈{1,...,n} si.

3 Let C = T/2.
4 Let k = 2.
5 Output 〈s1, . . . , sn, C, k〉.

Polynomial time: Addition and division are polynomial time operations
and we only do these operations polynomially many times. So the whole func-
tion is polynomial time computable.

Correctness: If x is in PARTITION, then x = 〈a1, a2, . . . , an〉 for non-negative
integers ai, and there is S ⊂ {1, . . . , n} such that

∑
i∈S ai =

∑
j∈{1,...,n}\S aj .

Let T =
∑
i∈{1,...,n} ai be the total sum. Then we must have∑

i∈S
ai =

∑
j∈{1,...,n}\S

aj = T/2.

If we let B1 = S and B2 = {1, . . . , n}\S, we see that the elements can be
partitioned into two bins of capacity T/2. Therefore the output f(x) is indeed
an element of BIN.

For the other direction, if the output of the reduction f(x) is an element
of BIN, then there is a way to partition the elements s1 = a1, . . . , sn = an into
k = 2 binsB1 andB2 (B1∪B2 = {1, . . . , n},B1∩B2 = ∅) of capacityC = T/2 =
1
2

∑
i∈{1,...,n} si. Since the total sum of the elements is T and each element must

be in one of the two bins, the two bins must be completely full, i.e.,
∑
i∈B1

ai =
T/2 and

∑
j∈B2

aj = T/2. If we let S = B1, then {1, . . . , n}\S = B2 and so∑
i∈S ai =

∑
j∈{1,...,n}\S aj . So x = 〈a1, a2, . . . , an〉 is indeed in PARTITION.

�

58

Chapter 13

Computational Social Choice

59

Exercise 13.1 (Borda count is not majority consistent).
Show that Borda count voting rule is not majority consistent.

Solution. Consider the following preference profile, where there are 5 voters
{1, 2, 3, 4, 5}, 3 alternatives {a, b, c}, and column i corresponds to the ranking
of voter i.

1 2 3 4 5
a a a b b
b b b c c
c c c a a

In this example, alternative a is ranked first by a majority of the voters, so
if the election is majority consistent, alternative a should win. However, in
the Borda count voting rule, alternative b would receive 7 points (and win)
whereas alternative a would receive 6 points. �

Exercise 13.2 (Is plurality majority consistent?).
Determine whether plurality is majority consistent.

Solution. Yes, plurality is majority consistent. Recall that in plurality voting
rule, each voter assigns one point to the alternative that they rank first. If
there is an alternative that is ranked first by a majority of the voters, then that
alternative would receive more than n/2 votes, and no other alternative can
receive more points than n/2 (since the total number of points awarded to all
alternatives is n). �

Exercise 13.3 (Condorcet consistency of plurality and Borda count).
Determine whether plurality and Borda count voting rules are Condorcet con-
sistent or not.

Solution. Plurality voting rule is not Condorcet consistent. To see this, con-
sider the following preference profile, where there are 5 voters {1, 2, 3, 4, 5}, 4
alternatives {a, b, c, d}, and column i corresponds to the ranking of voter i.

1 2 3 4 5
a a b c d
c d a b b
b b c a a
d c d d c

Note that using the plurality voting rule, the winner is a. On the other hand, b
is a Condorcet winner.

The above example also shows that Borda count voting rule is not Con-
dorcet consistent as the winner would still be a. �

Exercise 13.4 (Majority consistency vs Condorcet consistency).
Does majority consistency imply Condorcet consistency? Does Condorcet con-
sistency imply majority consistency?

Solution. Majority consistency does not imply Condorcet consistency because
Plurality voting rule is majority consistent but not Condorcet consistent.

Condorcet consistency implies majority consistency. To show the claim, we
need to argue that if a voting rule is Condorcet consistent, and a majority of
the voters rank an alternative x first, then x must be the winner of the election.
If a majority of the voters rank x first, then x is a Condorcet winner. And since
the voting rule is Condorcet consistent, indeed x would be the winner of the
election. �

60

Exercise 13.5 (Are constant and dictatorial voting rules strategy-proof?).
Determine whether constant and dictatorial voting rules are strategy-proof.

Solution. Both of them are strategy-proof. If a voting rule is constant, then the
winner is always fixed, so there is no way to manipulate the voting rule. If a
voting rule is dictatorial, then the winner is always the dictator’s first ranked
alternative. So a non-dictator voter’s actions do not matter, and they cannot
manipulate the voting rule. Furthermore, trivially a dictator cannot manipu-
late the voting rule either because their first ranked alternative is always the
winner. �

61

62

Chapter 14

Approximation Algorithms

63

Exercise 14.1 (Optimality of the analysis of Gavril’s Algorithm).
Describe an infinite family of graphs for which the above algorithm returns a
vertex cover which has twice the size of a minimum vertex cover.

Solution. For any n ≥ 1, consider a perfect matching with 2n vertices (i.e. a
set of n disjoint edges). Then the algorithm would output all the 2n vertices
as the vertex cover. However there is clearly a vertex cover of size n (for each
edge, pick one of its endpoints). This argument shows that our analysis in
the proof of Theorem (Gavril’s Algorithm) is tight. The algorithm is not bet-
ter than a 2-approximation algorithm. In fact, note that just taking G to be a
single edge allows us to conclude that the algorithm cannot be better than a 2-
approximation algorithm (why?). We did not need to specify an infinite family
of graphs.

Answer to ‘why?’: if the algorithm was a (2 − ε)-approximation algorithm
for some ε > 0, then for all inputs, the output of the algorithm would have
to be within (2 − ε) of the optimum. Therefore a single example where the
gap is exactly factor 2 is enough to establish that the algorithm is not a (2− ε)-
approximation algorithm. �

Exercise 14.2 (Approximation algorithm for MAX-COVERAGE).
In this exercise, you will prove that there is a polynomial-time

(
1− 1

e

)
-approximation

algorithm for the MAX-COVERAGE problem. The algorithm you should con-
sider is the following greedy algorithm:

S1, S2, . . . , Sm: sets. k: integer in {0, 1, . . . ,m}.
A(〈S1, . . . , Sm, k〉):

1 T = ∅.
2 U = ∅. (keeping track of elements covered)
3 Repeat k times:
4 Pick j such that j 6∈ T and |Sj − U | is maximized.
5 Add j to T .
6 Update U to U ∪ Sj .
7 Output T .

(a) Show that the algorithm runs in polynomial time.

(b) Let T ∗ denote the optimum solution, and let U∗ = ∪j∈T∗Sj . Note that
the value of the optimum solution is |U∗|. Define Ui to be the set U in the
above algorithm after i iterations of the loop. Let ri = |U∗| − |Ui|. Prove
that ri ≤

(
1− 1

k

)i |U∗|.
(c) Using the inequality1 1 − 1/k ≤ e−1/k, conclude that the algorithm is a(

1− 1
e

)
-approximation algorithm for the MAX-COVERAGE problem.

Solution. Part (a): It is clear that the algorithm runs in polynomial time because
each step can be carried out in polynomial time and the number of iterations
of the loop is at most a polynomial.

Part (b): We prove the claim by induction on the number of iterations. In the
base case, i = 0, and clearly

r0 = |U∗| − |U0| = |U∗| − |∅| = |U∗| =
(

1− 1

k

)0

|U∗|.

1This can be derived from the Taylor expansion of ex.

64

For the inductive step, suppose the algorithm is entering its i’th iteration. Let
ti−1 be the number of uncovered elements in U∗ at this point. Note that ti−1 ≥
ri−1 (equality is achieved when all the covered elements are from U∗). We
know that there are k sets that do cover all of U∗. This implies that among
those k sets, at least one of them should cover at least 1/k fraction of the ti−1

uncovered elements of U∗ (in other words, one of the k sets should cover at
least ti−1/k elements of U∗). At any given iteration, the algorithm that we
provide picks the set that covers the most uncovered elements at that point. So
it will pick a set that covers at least ti−1/k ≥ ri−1/k elements. Therefore

ri ≤ ri−1 −
ri−1

k
=

(
1− 1

k

)
ri−1.

Combining the induction hypothesis ri−1 ≤ (1 − 1/k)i−1|U∗| with the above
inequality, we can bound ri as follows:

ri ≤
(

1− 1

k

)(
1− 1

k

)i−1

|U∗| = (1− k)i|U∗|.

Part (c): When the algorithm terminates, we have (using the given inequal-
ity)

rk ≤
(

1− 1

k

)k
|U∗| ≤ e−1|U∗|.

Recall rk = |U∗|−|Uk|, where |Uk| is the value of the solution that the algorithm
outputs (i.e. the number of elements covered by the algorithm). The optimum
value is |U∗|. Combining everything, we get a lower bound on the number of
elements covered by the algorithm in terms of the optimum value |U∗|:

|Uk| ≥ (1− e−1)|U∗|.

This establishes that the algorithm is a (1− e−1)-approximation algorithm. �

Exercise 14.3 (Approximation algorithm for MIN-SET-COVER).
In the set-cover problem, the input is a set X together with a collection of (pos-
sibly intersecting) subsets S1, S2, . . . , Sm ⊆ X (we assume the union of all
the sets is X). The output is a minimum size set T ⊆ {1, 2, . . . ,m} such
that ∪i∈TSi = X . We denote this problem by MIN-SET-COVER. Give a
polynomial-time (ln |X|)-approximation algorithm for this problem.

Solution. We sketch the argument.
The algorithm is essentially the same as the one given in the previous ex-

ercise. The only difference is that we don’t repeat for a fixed number of times
but we repeat until we cover every element.

Let k∗ be the number of sets in an optimum solution. Using a similar argu-
ment to the one given in the previous exercise, we can show by induction that
after i iterations of the algorithm, the number of uncovered elements is at most
|X|(1− 1/k∗)i. So after k∗ ln |X| iterations, the number of uncovered elements
must be strictly less than 1 since

|X|
(

1− 1

k∗

)k∗ ln |X|

< |X|e− ln |X| = 1.

So the algorithm terminates with an output of at most k∗ ln |X| sets, which is
within a factor of ln |X| of the optimum. �

65

66

Chapter 15

Probability Theory

67

Exercise 15.1 (Probability space modeling).
How would you model a roll of a single 6-sided die using Definition (Finite
probability space, sample space, probability distribution)? How about a roll of
two dice? How about a roll of a die and a coin toss together?

Solution. For the case of a single 6-sided die, we want the model to match
our intuitive understanding and real-world experience that the probability of
observing each of the possible die rolls 1, 2, . . . , 6 is equal. We formalize this
by defining the sample space Ω and the probability distribution Pr as follows:

Ω = {1, 2, 3, 4, 5, 6}, Pr[`] =
1

6
for all ` ∈ Ω.

Similarly, to model a roll of two dice, we can let each outcome be an ordered
pair representing the roll of each of the two dice:

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, Pr[`] =

(
1

6

)2

=
1

36
for all ` ∈ Ω.

Lastly, to model a roll of a die and a coin toss together, we can let each
outcome be an ordered pair where the first element represents the result of the
die roll, and the second element represents the result of the coin toss:

Ω = {1, 2, 3, 4, 5, 6} × {Heads,Tails}, Pr[`] =
1

6
· 1

2
=

1

12
for all ` ∈ Ω.

�

Exercise 15.2 (Practice with events).

(a) Suppose we roll two 6-sided dice. How many different events are there?
Write down the event corresponding to “we roll a double” and determine
its probability.

(b) Suppose we roll a 3-sided die and see the number d. We then roll a d-
sided die. How many different events are there? Write down the event
corresponding to “the second roll is a 2” and determine its probability.

Solution. Part (a): We use the model for rolling two 6-sided dice as in Exercise
(Probability space modeling). Since an event is any subset of outcomes E ⊆ Ω,
the number of events is the number of such subsets, which is |P(Ω)| = 2|Ω| =
236 (here P(Ω) denotes the power set of Ω).

The event corresponding to “we roll a double” can be expressed as

E =
{

(`, `) : ` ∈ {1, 2, 3, 4, 5, 6}
}

which has probability

Pr[E] =
∑
`∈E

Pr[`] =
1

36
· |E| = 6

36
=

1

6
.

Part(b): We model the two dice rolls as follows:

Ω =
{

(a, b) ∈ {1, 2, 3}2 : a ≥ b
}
, Pr[(a, b)] =

1

3
· 1

a
=

1

3a
.

The restriction that a ≥ b is imposed because the second die depends on the
first roll and the result of the second roll cannot be larger than that of the first.
Note that we could also have used a model where Ω = {1, 2, 3}2 and assigned
a probability of 0 to the outcomes where a < b, but considering outcomes that
never occur is typically not very useful.

68

In the model we originally defined, the number of events is |P(Ω)| = 2|Ω| =
26 = 64. Note that the number of events depends on the size of the sample
space, so this number can vary depending on the model.

The event corresponding to “the second roll is a 2” is given by

E = {(a, b) ∈ Ω : b = 2} = {(2, 2), (3, 2)}

which has probability

Pr[E] =
∑
`∈E

Pr[`] = Pr[(2, 2)] + Pr[(3, 2)] =
1

3 · 2
+

1

3 · 3
=

5

18
.

�

Exercise 15.3 (Basic facts about probability).
Let A and B be two events. Prove the following.

• If A ⊆ B, then Pr[A] ≤ Pr[B].

• Pr[A] = 1−Pr[A].

• Pr[A ∪B] = Pr[A] + Pr[B]−Pr[A ∩B].

Solution. Part (a): Suppose A ⊆ B. Recall that Pr is a nonnegative function
(i.e. Pr[`] ≥ 0 for all ` ∈ Ω). Hence,

Pr[A] =
∑
`∈A

Pr[`] (by Definition (Event))

≤
∑
`∈A

Pr[`] +
∑

`∈B\A

Pr[`] (by nonnegativity of Pr)

=
∑
`∈B

Pr[`]

= Pr[B].

Part (b): Recall that A denotes Ω \A, and that
∑
`∈Ω Pr[`] = 1. Hence,

Pr[A] =
∑
`∈A

Pr[`] (by Definition (Event))

=
∑
`∈Ω\A

Pr[`]

=
∑
`∈Ω

Pr[`]−
∑
`∈A

Pr[`]

= 1−Pr[A].
(by Definition (Finite probability space, sample space, probability distribution))

Part (c) By partitioning A ∪B into A \B, B \A, and A ∩B, we see that

Pr[A ∪B] =
∑

`∈A∪B

Pr[`] (by Definition (Event))

=
∑

`∈A\B

Pr[`] +
∑

`∈B\A

Pr[`] +
∑

`∈A∩B

Pr[`]

=

(∑
`∈A

Pr[`]−
∑

`∈A∩B

Pr[`]

)
+

(∑
`∈B

Pr[`]−
∑

`∈A∩B

Pr[`]

)
+

∑
`∈A∩B

Pr[`]

=
∑
`∈A

Pr[`] +
∑
`∈B

Pr[`]−
∑

`∈A∩B

Pr[`]

= Pr[A] + Pr[B]−Pr[A ∩B]. (by Definition (Event))

�

69

Exercise 15.4 (Union bound).
Let A1, A2, . . . , An be events. Then

Pr[A1 ∪A2 ∪ · · · ∪An] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[An].

We get equality if and only if the Ai’s are pairwise disjoint.

Solution. By the last part of Exercise (Basic facts about probability), we can
conclude that

Pr[A ∪B] ≤ Pr[A] + Pr[B].

We also notice that equality holds if and only if Pr[A∩B] = 0, which happens
if and only if A and B are disjoint. We will extend this by induction on n.

The expression is identical on both sides for the case where n = 1, and the
case where n = 2 is exactly as above. These serve as the base cases for our
induction.

For the inductive case, assume the proposition holds true for n = k. We
seek to show that it too holds true for n = k+1. Given eventsA1, A2, . . . , Ak, Ak+1,
let

A = A1 ∪A2 ∪ · · · ∪Ak, B = Ak+1.

Then

Pr[A1 ∪A2 ∪ · · · ∪Ak ∪Ak+1] = Pr[A ∪B]

≤ Pr[A] + Pr[B] (by the above result)
= Pr[A1 ∪A2 ∪ · · · ∪Ak] + Pr[Ak+1]

≤ (Pr[A1] + · · ·+ Pr[Ak]) + Pr[Ak+1]
(by the induction hypothesis)

where equality holds if and only if A and B are disjoint and A1, . . . , Ak are
pairwise disjoint. In other words, equality holds if and only if

k⋃
t=1

(At ∩Ak+1) = ∅ and Ai ∩Aj = ∅ for all 1 ≤ i < j ≤ k,

which in turn holds if and only if

Ai ∩Aj = ∅ for all 1 ≤ i < j ≤ k + 1.

(i.e. A1, . . . , Ak+1 are pairwise disjoint). This completes the proof. �

Exercise 15.5 (Conditional probability practice).
Suppose we roll a 3-sided die and see the number d. We then roll a d-sided
die. We are interested in the probability that the first roll was a 1 given that
the second roll was a 1. First express this probability using the notation of
conditional probability and then determine what the probability is.

Solution. We use the model defined in Exercise (Practice with events). The
event that the first roll is a 1 is

E1 = {(1, 1)}

and the event that the second roll is a 1 is

E2 = {(1, 1), (2, 1), (3, 1)}

with corresponding probabilities

Pr[E1] =
1

3
, Pr[E2] =

1

3 · 1
+

1

3 · 2
+

1

3 · 3
=

11

18
.

70

Then the conditional probability we are interested in is

Pr[E1 | E2] =
Pr[E1 ∩ E2]

Pr[E2]
=

Pr[E1]

Pr[E2]
=

1/3

11/18
=

6

11
.

�

Exercise 15.6 (Practice with chain rule).
Suppose there are 100 students in 15-251 and 5 of the students are Trump sup-
porters. We pick 3 students from class uniformly at random. Calculate the
probability that none of them are Trump supporters using Proposition (Chain
rule).

Solution. For i = 1, 2, 3, let Ai be the event that the i-th student we pick is not a
Trump supporter. Then using the chain rule, the probability that none of them
are Trump supporters is

Pr[A1 ∩A2 ∩A3] = Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1 ∩A2] =
95

100
· 94

99
· 93

98
.

�

Exercise 15.7 (Proof of the law of total probability).
Prove the above proposition.

Solution. We note that

B = B ∩Ω = B ∩ (A1 ∪A2 ∪ · · · ∪An) = (B ∩A1)∪ (B ∩A2)∪ · · · ∪ (B ∩An),

with the (B ∩Ai)’s being pairwise disjoint. The first equality

Pr[B] = Pr[B ∩A1] + Pr[B ∩A2] + · · ·+ Pr[B ∩An]

follows from a direct application of Exercise ??. The equivalent statement

Pr[B] = Pr[A1] ·Pr[B | A1] + Pr[A2] ·Pr[B | A2] + · · ·+ Pr[An] ·Pr[B | An]

follows from Definition (Conditional probability). �

Exercise 15.8 (Practice with the law of total probability).
There are 2 bins. Bin 1 contains 6 red balls and 4 blue balls. Bin 2 contains 3 red
balls and 7 blue balls. We choose a bin uniformly at random, and then choose
one of the balls in that bin uniformly at random. Calculate the probability that
the chosen ball is red using Proposition (Law of total probability).

Solution. Let A1 and A2 be the events that we pick the first and second bin
respectively. Note that A1 and A2 partition the sample space, and Pr[A1] =
Pr[A2] = 1

2 . Let B be the event that the chosen ball is red. Then using the law
of total probability,

Pr[B] = Pr[A1] ·Pr[B | A1] + Pr[A2] ·Pr[B | A2] =
1

2
· 6

10
+

1

2
· 3

10
=

9

20
.

�

71

Exercise 15.9 (Practice with Bayes’ rule).
CAPTCHAs are tests designed to be hard for computers to solve but easy for
people to solve. Suppose it is estimated that 3/4 of all attempts to solve a
CAPTCHA are from humans and the remainder are from computers. If a
human has a 9/10 chance of successfully solving a CAPTCHA and a com-
puter has a 1/5 chance, what is the probability that the entity attempting a
CAPTCHA was a human, given that the CAPTCHA was successfully solved?

Solution. Let A be the event that the entity attempting a CAPTCHA was a
human, and let B be the event that the CAPTCHA was successfully solved.
Then we are interested in the probability

Pr[A | B] =
Pr[A] ·Pr[B | A]

Pr[B]
(by Bayes’ rule)

=
Pr[A] ·Pr[B | A]

Pr[A] ·Pr[B | A] + Pr[A] ·Pr[B | A]
(by the law of total probability)

=
3
4 ·

9
10

3
4 ·

9
10 + 1

4 ·
1
5

=
27

29
.

�

Exercise 15.10 (Pair-wise independent but not three-wise).
Give an example of a probability space with 3 events A1, A2 and A3 such that
each pair of events Ai and Aj are independent, however A1, A2, A3 together
are dependent.

Solution. Consider the following probability space:

Ω = {1, 2, 3, 4}, Pr[`] =
1

4
for all ` ∈ Ω.

Define the events A1 = {2, 3}, A2 = {1, 3}, and A3 = {1, 2}. Note that

Pr[A1] = Pr[A2] = Pr[A3] =
1

2

and that for any i, j ∈ {1, 2, 3}with i 6= j, we have |Ai ∩Aj | = 1, and so

Pr[Ai ∩Aj] =
1

4
=

1

2
· 1

2
= Pr[Ai] ·Pr[Aj].

This shows that A1, A2, A3 are pairwise independent. However,

Pr[A1 ∩A2 ∩A3] = Pr[∅] = 0 6= 1

2
· 1

2
· 1

2
= Pr[A1] ·Pr[A2] ·Pr[A3],

so A1, A2, A3 are dependent. �

Exercise 15.11 (Practice with random variables).
Suppose we roll two 6-sided dice. Let X be the random variable that denotes
the sum of the numbers we see. Explicitly write down the input-output pairs
for the function X . Calculate Pr[X ≥ 7].

72

Solution. We use the model for rolling two 6-sided dice as in Exercise (Proba-
bility space modeling). Then

X(1, 1) = 2, X(1, 2) = 3, X(1, 3) = 4, X(1, 4) = 5, X(1, 5) = 6, X(1, 6) = 7,
X(2, 1) = 3, X(2, 2) = 4, X(2, 3) = 5, X(2, 4) = 6, X(2, 5) = 7, X(2, 6) = 8,
X(3, 1) = 4, X(3, 2) = 5, X(3, 3) = 6, X(3, 4) = 7, X(3, 5) = 8, X(3, 6) = 9,
X(4, 1) = 5, X(4, 2) = 6, X(4, 3) = 7, X(4, 4) = 8, X(4, 5) = 9, X(4, 6) = 10,
X(5, 1) = 6, X(5, 2) = 7, X(5, 3) = 8, X(5, 4) = 9, X(5, 5) = 10, X(5, 6) = 11,
X(6, 1) = 7, X(6, 2) = 8, X(6, 3) = 9, X(6, 4) = 10, X(6, 5) = 11, X(6, 6) = 12.

Since the probability distribution is uniform over the outcomes,

Pr[X ≥ 7] =
1

36
· |{` ∈ Ω : X(`) ≥ 7}| = 1

36
· 21 =

7

12
.

�

Exercise 15.12 (Facts about probability mass function).
Verify the following:

•
∑
x∈range(X) pX(x) = 1,

• for S ⊆ R, Pr[X ∈ S] =
∑
x∈S pX(x).

Solution. Part (a):
∑
x∈range(X) pX(x) = 1∑

x∈range(X)

pX(x) =
∑

x∈range(X)

Pr[X = x]

(by Definition (Probability mass function))

=
∑

x∈range(X)

Pr[{` ∈ Ω : X(`) = x}]

(by Definition (Common events through a random variable))

=
∑

x∈range(X)

∑
`∈Ω

X(`)=x

Pr[`] (by Definition (Event))

=
∑
`∈Ω

Pr[`]

(since
{
{` ∈ Ω : X(`) = x} : x ∈ range(X)

}
partitions Ω)

= 1.

Part (b): Pr[X ∈ S] =
∑
x∈S pX(x)

Pr[X ∈ S] = Pr[{` ∈ Ω : X(`) ∈ S}]

(by Definition (Common events through a random variable))

=
∑
`∈Ω

X(`)∈S

Pr[`] (by Definition (Event))

=
∑
x∈S

∑
`∈Ω

X(`)=x

Pr[`] (by splitting the summation over x ∈ S)

=
∑
x∈S

Pr[{` ∈ Ω : X(`) = x}] (by Definition (Event))

=
∑
x∈S

Pr[X = x]

(by Definition (Common events through a random variable))

=
∑
x∈S

pX(x). (by Definition (Probability mass function))

73

�

Exercise 15.13 (Equivalence of expected value definitions).
Prove that the above two expressions for E[X] are equivalent.

Solution. We show a chain of equalities from the RHS to the LHS:∑
x∈range(X)

Pr[X = x] · x =
∑

x∈range(X)

Pr[{` ∈ Ω : X(`) = x}] · x

(by Definition (Common events through a random variable))

=
∑

x∈range(X)

∑
`∈Ω

X(`)=x

Pr[`] · x

(by Definition (Probability mass function))

=
∑

x∈range(X)

∑
`∈Ω

X(`)=x

Pr[`] ·X(`)

(since X(`) = x in the second summation)

=
∑
`∈Ω

Pr[`] ·X(`).

�

Exercise 15.14 (Practice with expected value).
Suppose we roll two 6-sided dice. Let X be the random variable that denotes
the sum of the numbers we see. Calculate E[X].

Solution. We refer to the input-output pairs of X (recall that random variables
are functions) in Exercise (Practice with random variables). With a lot of te-
dious calculations, we can compute

E[X] =
∑

x∈range(X)

Pr[X = x] · x =
1

36
· 2 +

2

36
· 3 +

3

36
· 4 + · · ·+ 1

36
· 12 = 7.

We will see a less tedious way of performing such calculations in the following
exercise. �

Exercise 15.15 (Practice with linearity of expectation).
Suppose we roll three 10-sided dice. Let X be the sum of the three values we
see. Calculate E[X].

Solution. Let X1,X2,X3 be the values of the rolls of each of the three dice.
Note that X1,X2,X3 are random variables and that X = X1 + X2 + X3.
Then since X1,X2,X3 are identically distributed, we can compute

E[X1] = E[X2] = E[X3] =
∑

x∈range(X1)

Pr[X1 = x] · x (by Definition ??)

=

10∑
x=1

Pr[X1 = x] · x

(since range(X1) = {1, 2, . . . , 10})

=

10∑
x=1

1

10
· x (since the die is fair)

=
11

2

74

and by linearity of expectation,

E[X] = E[X1 + X2 + X3] = E[X1] + E[X2] + E[X3] = 3 · 11

2
=

33

2
.

�

Exercise 15.16 (Expectation of product of random variables).
Let X and Y be random variables. Is it always true that E[XY] = E[X]E[Y]?

Solution. No. Consider the experiment of flipping a single fair coin, and the
corresponding model where Ω = {Heads,Tails} and Pr[Heads] = Pr[Tails] =
1/2. Define the random variables X and Y such that

X(`) =

{
1 if ` = Heads,
0 if ` = Tails,

Y (`) =

{
1 if ` = Tails,
0 if ` = Heads.

One can verify that E[X] = E[Y] = 1/2, but XY ≡ 0 since regardless of
whether the outcome is Heads or Tails, one of X and Y evaluates to 0, so their
product is always 0. So

E[XY] = 0 6= 1

4
=

1

2
· 1

2
= E[X]E[Y].

�

Exercise 15.17 (Practice with linearity of expectation and indicators).

(a) There are n balls and n bins. For each ball, you pick one of the bins
uniformly at random and drop the ball in that bin. What is the expected
number of balls in bin 1? What is the expected number of empty bins?

(b) Suppose you randomly color the vertices of the complete graph on n
vertices one of k colors. What is the expected number of paths of length
c (where we assume c ≥ 3) such that no two adjacent vertices on the path
have the same color?

Solution. Part (a): Let X be the number of balls in bin 1. For j = 1, 2, . . . , n,
let Ej be the event that the j-th ball is dropped in bin 1. Observe that X =∑n
j=1 IEj , and that Pr[Ej] = 1/n for all j, since the bin each ball is dropped

into is picked uniformly at random. Then by linearity of expectation,

E[X] = E

 n∑
j=1

IEj

 =

n∑
j=1

E[IEj] =

n∑
j=1

Pr[Ej] =

n∑
j=1

1

n
= 1.

Let Y be the number of empty bins. For j = 1, 2, . . . , n, let Fj be the event that
bin j is empty. Observe that Y =

∑n
j=1 IFj , and that Pr[Fj] = (1 − 1/n)n for

all j, since the probability that any one of the n balls is not dropped in a fixed
bin is 1 − 1/n, and each ball is dropped independently of the others. Then by
linearity of expectation,

E[Y] = E

 n∑
j=1

IFj

 =

n∑
j=1

E[IFj] =

n∑
j=1

Pr[Fj] =

n∑
j=1

(
1− 1

n

)n
= n

(
1− 1

n

)n
.

Part (b): Let X be the number of paths of length c such that no two adjacent
vertices on the path have the same color. There are a total of

N = n(n− 1) · · · (n− c) =
n!

(n− c− 1)!

75

paths of length c. Number the paths from 1 to N , and for j = 1, 2, . . . , N , let Ej
be the event that no two adjacent vertices on the j-th path have the same color.
Note that X =

∑N
j=1 IEj .

We first compute Pr[Ej] for some fixed j. Suppose path j is v0v1 · · · vc.
ThenEj occurs if and only if vi is colored differently from vi−1 for i = 1, 2, . . . , c.
For each i, this happens with probability 1− 1/k, and they are independent of
each other. Hence we can conclude that Pr[Ej] = (1 − 1/k)c for each j. Then
by linearity of expectation,

E[X] = E

 N∑
j=1

IEj

 =

N∑
j=1

E[IEj] =

N∑
j=1

Pr[Ej] =

N∑
j=1

(
1− 1

k

)c
=

n!

(n− c− 1)!

(
1− 1

k

)c
.

�

Exercise 15.18 (Proof of law of total expectation).
Prove the above proposition.

Solution. We show a chain of equalities from the RHS to the LHS:

n∑
j=1

E[X | Aj] ·Pr[Aj] =

n∑
j=1

∑
x∈range(X)

x ·Pr[X = x | Aj] ·Pr[Aj]

(by Definition (Conditional expectation))

=

n∑
j=1

∑
x∈range(X)

x · Pr[(X = x) ∩Aj]
Pr[Aj]

·Pr[Aj]

(by Definition (Conditional probability))

=

n∑
j=1

∑
x∈range(X)

x ·Pr[(X = x) ∩Aj]

(by cancelling Pr[Aj])

=
∑

x∈range(X)

x · n∑
j=1

Pr[(X = x) ∩Aj]


(by moving the outer summation inside)

=
∑

x∈range(X)

x ·Pr[X = x]

(by Proposition (Law of total probability))

= E[X]
(by Definition (Expected value of a random variable))

�

Exercise 15.19 (Practice with law of total expectation).
We first roll a 4-sided die. If we see the value d, we then roll a d-sided die. Let
X be the sum of the two values we see. Calculate E[X].

Solution. Let X1 and X2 be the value of the first and second roll respectively.
Note that X = X1 + X2 and that

E[X2 |X1 = d] =
∑

x∈range(X2)

x ·Pr[X2 = x |X1 = d] =

d∑
x=1

x · 1

d
=
d+ 1

2
.

76

Applying linearity of expectation to the modified probability space (Ω,Pr{X1=d}),
we get

E[X |X1 = d] = E[X1 + X2 |X1 = d]

= E[X1 |X1 = d] + E[X2 |X1 = d]

= d+
d+ 1

2

=
3d+ 1

2
.

Then by the law of total expectation,

E[X] =

4∑
d=1

E[X |X1 = d] ·Pr[X1 = d] =

4∑
d=1

3d+ 1

2
· 1

4
=

17

4
.

�

Exercise 15.20 (Expectation of product of independent random variables).
Show that if X1,X2, . . . ,Xn are independent random variables, then

E[X1X2 · · ·Xn] = E[X1] ·E[X2] · · ·E[Xn].

Solution. We will first show the following sub-claim: if X and Y are indepen-
dent random variables, then

E[XY] = E[X] ·E[Y].

Indeed, noting that the events (X = x) ∩ (Y = y), for x ∈ range(X) and
y ∈ range(Y), partition Ω,

E[XY] =
∑

x∈range(X)

∑
y∈range(Y)

E[XY | (X = x) ∩ (Y = y)] ·Pr[(X = x) ∩ (Y = y)]

(by Proposition (Law of total expectation))

=
∑

x∈range(X)

∑
y∈range(Y)

xy ·Pr[(X = x) ∩ (Y = y)]

(by Definition (Conditional expectation))

=
∑

x∈range(X)

∑
y∈range(Y)

xy ·Pr[X = x] ·Pr[Y = y]

(by independence of the events X = x and Y = y)

=

 ∑
x∈range(X)

x ·Pr[X = x]

 ·
 ∑
y∈range(Y)

y ·Pr[Y = y]


(by rearranging terms)

= E[X] ·E[Y].
(by Definition (Expected value of a random variable))

Now, we prove the original statement by induction on n. Both sides are iden-
tical for the case where n = 1, and the above claim is exactly the case where
n = 2. These are our base cases.

For the inductive case, assume the proposition holds true for n = k. We
seek to show that it also holds for n = k + 1. Suppose X1,X2, . . . ,Xk+1 are

77

independent random variables. Let X =
∏k
j=1 Xj and Y = Xk+1. We have

E

k+1∏
j=1

Xj

 = E[XY]

= E[X] ·E[Y] (by the above claim)

= E

 k∏
j=1

Xj

 ·E[Xk+1]

=

 k∏
j=1

E[Xj]

 ·E[Xk+1] (by the induction hypothesis)

=

k+1∏
j=1

E[Xj]

which completes the proof. �

Exercise 15.21 (Practice with Markov’s inequality).
During the Fall 2017 semester, the 15-251 TAs decide to strike because they
are not happy with the lack of free food in grading sessions. Without the TA
support, the performance of the students in the class drop dramatically. The
class average on the first midterm exam is 15%. Using Markov’s Inequality,
give an upper bound on the fraction of the class that got an A (i.e., at least a
90%) in the exam.

Solution. Let X be the exam score of a student chosen uniformly at random.
We will optimistically assume that X is nonnegative. Then E[X] = 0.15 6=
0 and the fraction of the class that got an A is Pr[X ≥ 0.9]. By Markov’s
inequality,

Pr[X ≥ 0.9] ≤ E[X]

0.9
=

1

6

which is an upper bound on the fraction of the class that got an A. �

Exercise 15.22 (Expectation of a Binomial random variable).
Let X be a random variable with X ∼ Bin(n, p). Determine E[X] (use linearity
of expectation). Also determine X’s probability mass function.

Solution. Express X =
∑n
j=1 Xj where the Xi’s are independent and for all

i, Xi ∼ Bernoulli(p) as in Definition (Binomial random variable). Note that
E[Xi] = p, so by linearity of expectation,

E[X] = E

 n∑
j=1

Xj

 =

n∑
j=1

E [Xj] = np.

78

The probability mass function of X is

pX(x) = Pr[X = x] (by Definition (Probability mass function))

= Pr

 n∑
j=1

Xj = x


=

∑
J∈([n]

x)

Pr

⋂
j∈J

(Xj = 1) ∩
⋂
j /∈J

(Xj = 0)


(by partitioning Ω into

⋂n
j=1(Xj = xj))

=
∑

J∈([n]
x)

∏
j∈J

Pr[Xj = 1] ·
∏
j /∈J

Pr[Xj = 0]


(by independence of the Xj ’s)

=
∑

J∈([n]
x)

(
px · (1− p)n−x

)
(by Definition (Bernoulli random variable))

=

(
n

x

)
px(1− p)n−x.

�

Exercise 15.23 (Practice with Binomial random variable).
We toss a coin 5 times. What is the probability that we see at least 4 heads?

Solution. Let X be the number of heads among the 5 coin tosses. Then X ∼
Binomial(5, 1/2) and so the probability we see at least 4 heads is

Pr[X ≥ 4] = Pr[X = 4]+Pr[X = 5] =

(
5

4

)(
1

2

)4(
1

2

)1

+

(
5

5

)(
1

2

)5(
1

2

)0

=
3

16
.

�

Exercise 15.24 (PMF of a geometric random variable).
Let X be a geometric random variable. Verify that

∑∞
n=1 pX(n) = 1.

Solution. Recall that for |r| < 1,
∑∞
n=0 r

n = 1/(1− r). Then
∞∑
n=1

pX(n) =

∞∑
n=1

(1− p)n−1p = p ·
∞∑
n=0

(1− p)n = p · 1

1− (1− p)
= 1.

�

Exercise 15.25 (Practice with geometric random variable).
Suppose we repeatedly flip a coin until we see a heads for the first time. De-
termine the probability that we flip the coin n times. Determine the expected
number of coin flips.

Solution. Let X be the number of flips until we see a head for the first time.
Observe that X = n if and only if the first n−1 flips land tails and the n-th flip
lands heads. This happens with probability exactly

Pr[X = n] =

(
1− 1

2

)n−1

· 1

2
.

Note that this implies X ∼ Geometric(1/2). The expected number of coin flips
is therefore going to be the expected value of a geometric distribution with
parameter 1/2, which is 2. We will show how to derive this for general p in the
next exercise. �

79

Exercise 15.26 (Expectation of a geometric random variable).
Let X be a random variable with X ∼ Geometric(p). Determine E[X].

Solution. Notice that we can extend the previous exercise to see that X models
the number of flips of a biased coin (that lands heads with probability p) until
the first heads is observed. Let E be the event that the first coin lands heads.
Then Pr[E] = p, and E[X | E] = 1 since if the first coin lands heads X = 1
with probability 1.

If the first coin lands tails, this does not affect the number of future flips
before we see the first heads. In other words, we are at the same state as we
were before flipping the first coin. Thus, we can say that E[X | E] = 1 +E[X].
This is called the memorylessness property of the geometric distribution.

Now, by the law of total expectation, we can say that

E[X] = E[X | E] ·Pr[E] + E[X | E] ·Pr[E] = 1 · p+ (1 + E[X]) · (1− p).

Solving for E[X], we get that E[X] = 1/p. �

80

Chapter 16

Randomized Algorithms

81

Exercise 16.1 (Las Vegas to Monte Carlo).
Suppose you are given a Las Vegas algorithm A that solves f : Σ∗ → Σ∗ in
expected time T (n). Show that for any constant ε > 0, there is a Monte Carlo
algorithm that solves f in time O(T (n)) and error probability ε.

Solution. Given the Las Vegas algorithm A and a constant ε > 0, we construct
a Monte Carlo algorithm A′ with the desired properties as follows.

x: string.
A′(x):

1 Run A(x) for 1
εT (|x|) steps.

2 If A terminates, return its output.
3 Else, return “failure”.

Since ε is a constant, the running time of A′ is O(T (n)). The error proba-
bility of the algorithm can be bounded using Theorem (Markov’s inequality)
as follows. For any x ∈ Σ∗, let Tx be the random variable that denotes the
number of steps A(x) takes. Note that by Definition (Las Vegas algorithm),
E[Tx] ≤ T (|x|) for all x. In the event of A′(x) failing, it must be the case that
Tx >

1
εT (|x|). So the probability that A′(x) fails can be upper bounded by

Pr

[
Tx >

1

ε
T (|x|)

]
≤ Pr

[
Tx ≥

1

ε
E[Tx]

]
≤ ε,

where the last inequality follows from Markov’s Inequality.
Technicality: There is a small technical issue here. Algorithm A′ needs to

be able to compute T (|x|) from x in O(T (|x|)) time. This is indeed the case for
most T (·) that we care about. �

Exercise 16.2 (Monte Carlo to Las Vegas).
Suppose you are given a Monte Carlo algorithm A that runs in worst-case
T1(n) time and solves f : Σ∗ → Σ∗ with success probability at least p (i.e., for
every input, the algorithm gives the correct answer with probability at least p
and takes at most T1(n) steps). Suppose it is possible to check in T2(n) time
whether the output produced by A is correct or not. Show how to convert A
into a Las Vegas algorithm that runs in expected time O((T1(n) + T2(n))/p).

Solution. Given the Monte Carlo algorithm A as described in the question, we
create a Las Vegas algorithm A′ as follows.

x: string.
A′(x):

1 Repeat:
2 Run A(x).
3 If the output is correct, return the output.

For all x ∈ Σ∗, the algorithm gives the correct answer with probability 1.
For x ∈ Σ∗, define Tx to be the random variable corresponding to the num-

ber of iterations of the above algorithm. Observe that Tx is a geometric ran-
dom variable (Definition (Geometric random variable)) with success probabil-
ity p (i.e., Tx ∼ Geometric(p)). The total number of steps A′(x) takes is thus
(T1(|x|)+T2(|x|)) ·Tx (ignoring constant factors). The expectation of this value
is (T1(|x|) + T2(|x|)) ·E[Tx], where E[Tx] = 1/p. So the total expected running
time is O((T1(|x|) + T2(|x|))/p). �

82

Exercise 16.3 (Boosting for one-sided error).
This question asks you to boost the success probability of a Monte Carlo algo-
rithm computing a decision problem with one-sided error.

Let f : Σ∗ → {0, 1} be a decision problem, and let A be a Monte Carlo
algorithm for f such that if x is a YES instance, then A always gives the cor-
rect answer, and if x is a NO instance, then A gives the correct answer with
probability at least 1/2. Suppose A runs in worst-case O(T (n)) time. Design a
new Monte Carlo algorithm A′ for f that runs in O(nT (n)) time and has error
probability at most 1/2n.

Solution. Here is the description of A′.

x: string.
A′(x):

1 Repeat |x| times:
2 Run A(x).
3 If it outputs 0, output 0.
4 Output 1.

We call A(x) n times, and the running time of A is O(T (n)), so the overall
running time of A′ is O(nT (n)).

To prove the required correctness guarantee, we need to show that for all
inputs x, Pr[A′(x) 6= f(x)] ≤ 1/2n. For any x such that f(x) = 1, we know
that Pr[A(x) = 1] = 1, and therefore Pr[A′(x) = 1] = 1. For any x such that
f(x) = 0, we know that Pr[A(x) = 0] ≥ 1/2. The only way A′ makes an
error in this case is if A(x) returns 1 in each of the n iterations. So if Ei is the
event that in iteration i, A(x) returns the wrong answer (i.e. returns 1), we are
interested in upper bounding Pr[error] = Pr[E1 ∩ E2 ∩ · · · ∩ En]. Note that
the Ei’s are independent (one run of A(x) has no effect on other runs of A(x)).
Furthermore, for all i, Pr[Ei] ≤ 1/2. So

Pr[E1 ∩ E2 ∩ · · · ∩ En] = Pr[E1]Pr[E2] · · ·Pr[En] = 1/2n,

as desired. �

Exercise 16.4 (Boosting for two-sided error).
This question asks you to boost the success probability of a Monte Carlo algo-
rithm computing a decision problem with two-sided error.

Let f : Σ∗ → {0, 1} be a decision problem, and let A be a Monte Carlo al-
gorithm for f with error probability 1/4, i.e., for all x ∈ Σ∗, Pr[A(x) 6= f(x)] ≤
1/4. We want to boost the success probability to 1−1/2n, and our strategy will
be as follows. Given x, runA(x) 6n times (where n = |x|), and output the more
common output bit among the 6n output bits (breaking ties arbitrarily). Show
that the probability of outputting the wrong answer is at most 1/2n.

Solution. Let Xi be a Bernoulli random variable corresponding to whether the
algorithm gives the correct answer in iteration i. That is,

Xi =

{
1 if algorithm gives correct answer in iteration i,
0 otherwise.

Let X =
∑6n
i=1 Xi. So X ∼ Bin(6n, 3/4) (see Definition (Binomial random

variable)). Note that

Pr[X = i] =

(
6n

i

)(
3

4

)i(
1

4

)6n−i

.

83

Furthermore, Pr[error] ≤ Pr[X ≤ 3n], and so

Pr[error] ≤
3n∑
i=0

Pr[X = i] =

3n∑
i=0

(
6n

i

)(
3

4

)i(
1

4

)6n−i

.

We simplify the right-hand-side as follows.

3n∑
i=0

(
6n

i

)(
3

4

)i(
1

4

)6n−i

=

3n∑
i=0

(
6n

i

)
3i

46n

≤
3n∑
i=0

(
6n

i

)
33n

46n

=
33n

46n
·

3n∑
i=0

(
6n

i

)
=

33n

46n
· 26n

=
27n

64n
<

1

2n
.

�

Exercise 16.5 (Maximum number of minimum cuts).
Using the analysis of the randomized minimum cut algorithm, show that a
graph can have at most n(n− 1)/2 distinct minimum cuts.

Solution. Suppose there are t distinct minimum cuts F1, F2, . . . Ft. Our goal
is to show t ≤

(
n
2

)
. Let Ai be the event that the first phase of our algorithm

in the proof of Theorem (Contraction algorithm for min cut) outputs Fi (the
first phase refers to the phase before the boosting). We know that for any i,
Pr[Ai] ≥ 1/

(
n
2

)
(as shown in the proof). Furthermore, the eventsAi are disjoint

(if one happens, another cannot happen). So

Pr[A1 ∪A2 ∪ · · · ∪At] = Pr[A1] + Pr[A2] + · · ·+ Pr[At] ≥
t(
n
2

) .
Since Pr[A1 ∪A2 ∪ · · · ∪At] ≤ 1, we can conclude

t ≤
(
n

2

)
.

�

Exercise 16.6 (Contracting two random vertices).
Suppose we modify the min-cut algorithm seen in class so that rather than
picking an edge uniformly at random, we pick 2 vertices uniformly at random
and contract them into a single vertex. True or False: The success probability
of the algorithm (excluding the part that boosts the success probability) is 1/nk

for some constant k, where n is the number of vertices. Justify your answer.

Solution. LetA andB be cliques of size n/2 each. Join them together by a single
edge to form the graph G. Then the minimum cut is S = A with the single
edge connecting A and B being the cut edge. Observe that the algorithm will
output this cut if and only if it never picks vertices a ∈ A and b ∈ B to contract.
The probability that the algorithm never picks a ∈ A and b ∈ B to contract is
exponentially small. (We leave this part to the reader. Note that all you need
is a bound; you do not have to calculate the probability exactly.) �

84

	Strings and Encodings
	Deterministic Finite Automata
	Turing Machines
	Countable and Uncountable Sets
	Undecidable Languages
	Time Complexity
	The Science of Cutting Cake
	Introduction to Graph Theory
	Matchings in Graphs
	Boolean Circuits
	Polynomial-Time Reductions
	Non-Deterministic Polynomial Time
	Computational Social Choice
	Approximation Algorithms
	Probability Theory
	Randomized Algorithms

