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Foreword

These notes are based on the lectures given by Anil Ada and Ariel Procaccia
for the Fall 2017 edition of the course 15-251 “Great Ideas in Theoretical
Computer Science” at Carnegie Mellon University. They are also closely
related to the previous editions of the course, and in particular, lectures
prepared by Ryan O’Donnell.

WARNING: The purpose of these notes is to complement the lectures.
These notes do not contain full explanations of all the material covered dur-
ing lectures. In particular, the intuition and motivation behind many con-
cepts and proofs are explained during the lectures and not in these notes.

There are various versions of the notes that omit certain parts of the
notes. Go to the course webpage to access all the available versions.

In the main version of the notes (i.e. the main document), each chapter
has a preamble containing the chapter structure and the learning goals. The
preamble may also contain some links to concrete applications of the topics
being covered. At the end of each chapter, you will find a short quiz for you
to complete before coming to recitation, as well as hints to selected exercise
problems.

Note that some of the exercise solutions are given in full detail, whereas
for others, we give all the main ideas, but not all the details. We hope the
distinction will be clear.
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Chapter 1

Strings and Encodings
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1.1 Alphabets and Strings

Definition 1.1 (Alphabet, symbol/character).
An alphabet is a non-empty, finite set, and is usually denoted by Σ. The ele-
ments of Σ are called symbols or characters.

Definition 1.2 (String/word, empty string).
Given an alphabet Σ, a string (or word) over Σ is a (possibly infinite) sequence of
symbols, written as a1a2a3 . . ., where each ai ∈ Σ. The string with no symbols
is called the empty string and is denoted by ε.

Definition 1.3 (Length of a string).
The length of a string w, denoted |w|, is the the number of symbols in w. If w
has an infinite number of symbols, then the length is undefined.

Definition 1.4 (Star operation on alphabets).
Let Σ be an alphabet. We denote by Σ∗ the set of all strings over Σ consisting
of finitely many symbols. Equivalently, using set notation,

Σ∗ = {a1a2 . . . an : n ∈ N, and ai ∈ Σ for all i}.

Definition 1.5 (Reversal of a string).
For a string w = a1a2 . . . an, the reversal of w, denoted wR, is the string wR =
anan−1 . . . a1.

Definition 1.6 (Concatenation of strings).
If u and v are two strings in Σ∗, the concatenation of u and v, denoted by uv or
u · v, is the string obtained by joining together u and v.

Definition 1.7 (Powers of a string).
For a word u ∈ Σ∗ and n ∈ N, the n’th power of u, denoted by un, is the word
obtained by concatenating u with itself n times.

Definition 1.8 (Substring).
We say that a string u is a substring of string w if w = xuy for some strings x
and y.

1.2 Languages

Definition 1.9 (Language).
Any (possibly infinite) subset L ⊆ Σ∗ is called a language over the alphabet Σ.
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Definition 1.10 (Reversal of a language).
Given a language L ⊆ Σ∗, we define its reversal, denoted LR, as the language

LR = {wR ∈ Σ∗ : w ∈ L}.

Definition 1.11 (Concatenation of languages).
Given two languages L1, L2 ⊆ Σ∗, we define their concatenation, denoted L1L2

or L1 · L2, as the language

L1L2 = {uv ∈ Σ∗ : u ∈ L1, v ∈ L2}.

Definition 1.12 (Powers of a language).
Given a language L ⊆ Σ∗ and n ∈ N, the n’th power of L, denoted Ln, is the
language obtained by concatenating L with itself n times, that is,1

Ln = L · L · L · · ·L︸ ︷︷ ︸
n times

.

Equivalently,

Ln = {u1u2 · · ·un ∈ Σ∗ : ui ∈ L for all i ∈ {1, 2, . . . , n}}.

Definition 1.13 (Star operation on a language).
Given a language L ⊆ Σ∗, we define the star of L, denoted L∗, as the language

L∗ =
⋃
n∈N

Ln.

Equivalently,

L∗ = {u1u2 · · ·un ∈ Σ∗ : n ∈ N, ui ∈ L for all i ∈ {1, 2, . . . , n}}.

1.3 Encodings

Definition 1.14 (Encoding of a set).
Let A be a set (which is possibly countably infinite2), and let Σ be a alphabet.
An encoding of the elements of A, using Σ, is an injective function Enc : A →
Σ∗. We denote the encoding of a ∈ A by 〈a〉.3

If w ∈ Σ∗ is such that there is some a ∈ A with w = 〈a〉, then we say w is a
valid encoding of an element in A.

A set that can be encoded is called encodable.4

1We can omit parentheses as the order in which the concatenation · is applied does not matter.
2We assume you know what a countable set is, however, we will review this concept in a future

lecture.
3Note that this angle-bracket notation does not specify the underlying encoding function as the

particular choice of encoding function is often unimportant.
4Not every set is encodable. Can you figure out exactly which sets are encodable?
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1.4 Computational Problems and Decision Prob-

lems

Definition 1.15 (Computational problem).
Let Σ be an alphabet. Any function f : Σ∗ → Σ∗ is called a computational
problem over the alphabet Σ.

Definition 1.16 (Decision problem).
Let Σ be an alphabet. Any function f : Σ∗ → {0, 1} is called a decision problem
over the alphabet Σ. The codomain of the function is not important as long as
it has two elements. Other common choices for the codomain are {No,Yes},
{False,True} and {Reject,Accept}.
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Chapter 2

Deterministic Finite Automata
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2.1 Basic Definitions

Definition 2.1 (Deterministic Finite Automaton (DFA)).
A deterministic finite automaton (DFA) M is a 5-tuple

M = (Q,Σ, δ, q0, F ),

where

• Q is a non-empty finite set
(which we refer to as the set of states);

• Σ is a non-empty finite set
(which we refer to as the alphabet of the DFA);

• δ is a function of the form δ : Q× Σ→ Q
(which we refer to as the transition function);

• q0 ∈ Q is an element of Q
(which we refer to as the start state);

• F ⊆ Q is a subset of Q
(which we refer to as the set of accepting states).

Definition 2.2 (Computation path for a DFA).
Let M = (Q,Σ, δ, q0, F ) be a DFA and let w = w1w2 · · ·wn be a string over an
alphabet Σ (so wi ∈ Σ for each i ∈ {1, 2, . . . , n}). Then the computation path of
M with respect to w is a sequence of states

r0, r1, r2, . . . , rn,

where each ri ∈ Q, and such that

• r0 = q0;

• δ(ri−1, wi) = ri for each i ∈ {1, 2, . . . , n}.

We say that the computation path is accepting if rn ∈ F , and rejecting otherwise.

Definition 2.3 (A DFA accepting a string).
We say that DFA M = (Q,Σ, δ, q0, F ) accepts a word w ∈ Σ∗ if the computation
path of M with respect to w is an accepting computation path. Otherwise, we
say that M rejects the string w.

Definition 2.4 (Extended transition function).
Let M = (Q,Σ, δ, q0, F ) be a DFA. The transition function δ : Q × Σ → Q can
be extended to δ∗ : Q× Σ∗ → Q, where δ∗(q, w) is defined as the state we end
up in if we start at q and read the string w. In fact, often the star in the notation
is dropped and δ is overloaded to represent both a function δ : Q×Σ→ Q and
a function δ : Q× Σ∗ → Q.
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Definition 2.5 (Language recognized/accepted by a DFA).
For a deterministic finite automaton M , we let L(M) denote the set of all
strings that M accepts, i.e. L(M) = {w ∈ Σ∗ : M accepts w}. We refer to
L(M) as the language recognized by M (or as the language accepted by M , or as
the language decided by M ).1

Definition 2.6 (Regular language).
A language L ⊆ Σ∗ is called regular if there is a deterministic finite automaton
M such that L = L(M).

2.2 Irregular Languages

Theorem 2.7 (0n1n is not regular).
Let Σ = {0, 1}. The language L = {0n1n : n ∈ N} is not regular.

Proof. Our goal is to show that L = {0n1n : n ∈ N} is not regular. The proof is
by contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automa-
ton M that recognizes L. Let k denote the number of states of M . For n ∈ N,
let rn denote the state that M reaches after reading 0n (i.e., rn = δ(q0, 0

n)).
By the pigeonhole principle,2 we know that there must be a repeat among
r0, r1, . . . , rk (a sequence of k + 1 states). In other words, there are indices
i, j ∈ {0, 1, . . . , k} with i 6= j such that ri = rj . This means that the string 0i

and the string 0j end up in the same state in M . Therefore 0iw and 0jw, for any
string w ∈ {0, 1}∗, end up in the same state in M . We’ll now reach a contradic-
tion, and conclude the proof, by considering a particular w such that 0iw and
0jw end up in different states.

Consider the string w = 1i. Then since M recognizes L, we know 0iw =
0i1i must end up in an accepting state. On the other hand, since i 6= j, 0jw =
0j1i is not in the language, and therefore cannot end up in an accepting state.
This is the desired contradiction.

Theorem 2.8 (A unary non-regular language).
Let Σ = {a}. The language L = {a2n

: n ∈ N} is not regular.

Proof. Our goal is to show that L = {a2n

: n ∈ N} is not regular. The proof is
by contradiction. So let’s assume that L is regular.

Since L is regular, by definition, there is some deterministic finite automa-
tonM that recognizes L. Let k denote the number of states ofM . For n ∈ N, let
rn denote the state thatM reaches after reading a2n

(i.e. rn = δ(q0, a
2n

)). By the
pigeonhole principle, we know that there must be a repeat among r0, r1, . . . , rk
(a sequence of k+ 1 states). In other words, there are indices i, j ∈ {0, 1, . . . , k}
with i < j such that ri = rj . This means that the string a2i

and the string

1Here the word “accept” is overloaded since we also use it in the context of a DFA accepting
a string. However, this usually does not create any ambiguity. Note that the letter L is also over-
loaded since we often use it to denote a language L ⊆ Σ∗. In this definition, you see that it can
also denote a function that maps a DFA to a language. Again, this overloading should not create
any ambiguity.

2The pigeonhole principle states that if n items are put inside m containers, and n > m, then
there must be at least one container with more than one item. The name pigeonhole principle comes
from thinking of the items as pigeons, and the containers as holes. The pigeonhole principle is
often abbreviated as PHP.
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a2j

end up in the same state in M . Therefore a2i

w and a2j

w, for any string
w ∈ {a}∗, end up in the same state in M . We’ll now reach a contradiction,
and conclude the proof, by considering a particular w such that a2i

w ends up
in an accepting state but a2j

w ends up in a rejecting state (i.e. they end up in
different states).

Consider the string w = a2i

. Then a2i

w = a2i

a2i

= a2i+1

, and therefore
must end up in an accepting state. On the other hand, a2j

w = a2j

a2i

= a2j+2i

.
We claim that this word must end up in a rejecting state because 2j + 2i cannot
be written as a power of 2 (i.e., cannot be written as 2t for some t ∈ N). To see
this, note that since i < j, we have

2j < 2j + 2i < 2j + 2j = 2j+1,

which implies that if 2j+2i = 2t, then j < t < j+1. So 2j+2i cannot be written
as 2t for t ∈ N, and therefore a2j+2i

leads to a reject state in M as claimed.

2.3 Closure Properties of Regular Languages

Theorem 2.9 (Regular languages are closed under union).
Let Σ be some finite alphabet. If L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then
the language L1 ∪ L2 is also regular.

Proof. Given regular languages L1 and L2, we want to show that L1 ∪ L2 is
regular. Since L1 and L2 are regular languages, by definition, there are DFAs
M = (Q,Σ, δ, q0, F ) and M ′ = (Q′,Σ, δ′, q′0, F

′) that recognize L1 and L2 re-
spectively (i.e. L(M) = L1 and L(M ′) = L2). To show L1 ∪ L2 is regular,
we’ll construct a DFA M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′) that recognizes L1 ∪ L2. The
definition of M ′′ will make use of M and M ′. In particular:

• the set of states is Q′′ = Q×Q′ = {(q, q′) : q ∈ Q, q′ ∈ Q′};

• the transition function δ′′ is defined such that for (q, q′) ∈ Q′′ and a ∈ Σ,

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a));

(Note that for w ∈ Σ∗, δ′′((q, q′), w) = (δ(q, w), δ′(q′, w)).)

• the initial state is q′′0 = (q0, q
′
0);

• the set of accepting states is F ′′ = {(q, q′) : q ∈ F or q′ ∈ F ′}.

This completes the definition of M ′′. It remains to show that M ′′ indeed rec-
ognizes the language L1 ∪ L2, i.e. L(M ′′) = L1 ∪ L2. We will first argue that
L1 ∪ L2 ⊆ L(M ′′) and then argue that L(M ′′) ⊆ L1 ∪ L2. Both inclusions will
follow easily from the definition of M ′′ and the definition of a DFA accepting
a string.

L1 ∪ L2 ⊆ L(M ′′): Suppose w ∈ L1 ∪ L2, which means w either belongs
to L1 or it belongs to L2. Our goal is to show that w ∈ L(M ′′). Without loss
of generality, assume w belongs to L1, or in other words, M accepts w (the
argument is essentially identical when w belongs to L2). So we know that
δ(q0, w) ∈ F . By the definition of δ′′, δ′′((q0, q

′
0), w) = (δ(q0, w), δ′(q′0, w)). And

since δ(q0, w) ∈ F , (δ(q0, w), δ′(q′0, w)) ∈ F ′′ (by the definition of F ′′). So w is
accepted by M ′′ as desired.

L(M ′′) ⊆ L1 ∪ L2: Suppose that w ∈ L(M ′′). Our goal is to show that
w ∈ L1 or w ∈ L2. Since w is accepted by M ′′, we know that δ′′((q0, q

′
0), w) =

(δ(q0, w), δ′(q′0, w)) ∈ F ′′. By the definition ofF ′′, this means that either δ(q0, w) ∈
F or δ′(q′0, w) ∈ F ′, i.e., w is accepted by M or M ′. This implies that either
w ∈ L(M) = L1 or w ∈ L(M ′) = L2, as desired.
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Corollary 2.10 (Regular languages are closed under intersection).
Let Σ be some finite alphabet. If L1 ⊆ Σ∗ and L2 ⊆ Σ∗ are regular languages, then
the language L1 ∩ L2 is also regular.

Proof. We want to show that regular languages are closed under the intersec-
tion operation. We know that regular languages are closed under union (Theo-
rem 2.9 (Regular languages are closed under union)) and closed under comple-
mentation (Exercise (Are regular languages closed under complementation?)).
The result then follows since A ∩B = A ∪B.

Theorem 2.11 (Regular languages are closed under concatenation).
If L1, L2 ⊆ Σ∗ are regular languages, then the language L1L2 is also regular.

Proof. Given regular languages L1 and L2, we want to show that L1L2 is regu-
lar. Since L1 and L2 are regular languages, by definition, there are DFAs M =
(Q,Σ, δ, q0, F ) and M ′ = (Q′,Σ, δ′, q′0, F

′) that recognize L1 and L2 respec-
tively. To show L1L2 is regular, we’ll construct a DFA M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′)
that recognizes L1L2. The definition of M ′′ will make use of M and M ′.

Before we formally define M ′′, we will introduce a few key concepts and
explain the intuition behind the construction.

We know that w ∈ L1L2 if and only if there is a way to write w as uv where
u ∈ L1 and v ∈ L2. With this in mind, we first introduce the notion of a thread.
Given a word w = w1w2 . . . wn ∈ Σ∗, a thread with respect to w is a sequence of
states

r0, r1, r2, . . . , ri, si+1, si+2, . . . , sn,

where r0, r1, . . . , ri is an accepting computation path of M with respect to
w1w2 . . . wi, 3 and q′0, si+1, si+2, . . . , sn is a computation path (not necessar-
ily accepting) of M ′ with respect to wi+1wi+2 . . . wn. A thread like this cor-
responds to simulating M on w1w2 . . . wi (at which point we require that an
accepting state of M is reached), and then simulating M ′ on wi+1wi+2 . . . wn.
For each way of writing w as uv where u ∈ L1, there is a corresponding thread
for it. Note that w ∈ L1L2 if and only if there is a thread in which sn ∈ F ′. Our
goal is to construct the DFA M ′′ such that it keeps track of all possible threads,
and if one of the threads ends with a state in F ′, then M ′′ accepts.

At first, it might seem like one cannot keep track of all possible threads us-
ing only constant number of states. However this is not the case. Let’s identify a
thread with its sequence of sj ’s (i.e. the sequence of states fromQ′ correspond-
ing to the simulation of M ′). Consider two threads (for the sake of example,
let’s take n = 10):

s3, s4,s5, s6, s7, s8, s9, s10

s′5, s
′
6, s
′
7, s
′
8, s
′
9, s
′
10

If, say, si = s′i = q′ ∈ Q′ for some i, then sj = s′j for all j > i (in particular,
s10 = s′10). At the end, all we care about is whether s10 or s′10 is an accepting
state ofM ′. So at index i, we do not need to remember that there are two copies
of q′; it suffices to keep track of one copy. In general, at any index i, when we
look at all the possible threads, we want to keep track of the unique states that
appear at that index, and not worry about duplicates. Since we do not need
to keep track of duplicated states, what we need to remember is a subset of Q′

(recall that a set cannot have duplicated elements).

3This means r0 = q0, ri ∈ F , and when the symbol wj is read, M transitions from state rj−1

to state rj . See Definition 2.2 (Computation path for a DFA)).
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The construction of M ′′ we present below keeps track of all the threads
using constant number of states. Indeed, the set of states is4

Q′′ = Q× P(Q′) = {(q, S) : q ∈ Q,S ⊆ Q′},

where the first component keeps track of which state we are at in M , and the
second component keeps track of all the unique states of M ′ that we can be at
if we are following one of the possible threads.

Before we present the formal definition of M ′′, we introduce one more def-
inition. Recall that the transition function of M ′ is δ′ : Q′ × Σ → Q′. Using δ′

we define a new function δ′P : P(Q′)× Σ→ P(Q′) as follows. For S ⊆ Q′ and
a ∈ Σ, δ′P(S, a) is defined to be the set of all possible states that we can end up
at if we start in a state in S and read the symbol a. In other words,

δ′P(S, a) = {δ′(q′, a) : q′ ∈ S}.

It is appropriate to view δ′P as an extension/generalization of δ′.
Here is the formal definition of M ′′:

• The set of states is Q′′ = Q× P(Q′) = {(q, S) : q ∈ Q,S ⊆ Q′}.
(The first coordinate keeps track of which state we are at in the first ma-
chineM , and the second coordinate keeps track of the set of states we can
be at in the second machine M ′ if we follow one of the possible threads.)

• The transition function δ′′ is defined such that for (q, S) ∈ Q′′ and a ∈ Σ,

δ′′((q, S), a) =

{
(δ(q, a), δ′P(S, a)) if δ(q, a) 6∈ F,
(δ(q, a), δ′P(S, a) ∪ {q′0}) if δ(q, a) ∈ F.

(The first coordinate is updated according to the transition rule of the
first machine. The second coordinate is updated according to the tran-
sition rule of the second machine. Since for the second machine, we are
keeping track of all possible states we could be at, the extended transi-
tion function δ′P gives us all possible states we can go to when reading
a character a. Note that if after applying δ to the first coordinate, we get
a state that is an accepting state of the first machine, a new thread must
be created and kept track of. This is accomplished by adding q′0 to the
second coordinate.)

• The initial state is

q′′0 =

{
(q0, ∅) if q0 6∈ F,
(q0, {q′0}) if q0 ∈ F.

(Initially, if q0 6∈ F , then there are no threads to keep track of, so the sec-
ond coordinate is the empty set. On the other hand, if q0 ∈ F , then there
is already a thread that we need to keep track of – the one corresponding
to running the whole input word w on the second machine – so we add
q′0 to the second coordinate to keep track of this thread.)

• The set of accepting states is F ′′ = {(q, S) : q ∈ Q,S ⊆ Q′, S ∩ F ′ 6= ∅}.
(In other words, M ′′ accepts if and only if there is a state in the second
coordinate that is an accepting state of the second machine M ′. So M ′′

accepts if and only if one of the possible threads ends in an accepting
state of M ′.)

4Recall that for any set Q, the set of all subsets of Q is called the power set of Q, and is denoted
by P(Q).
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This completes the definition of M ′′.
To see that M ′′ indeed recognizes the language L1L2, i.e. L(M ′′) = L1L2,

note that by construction, M ′′ with input w, does indeed keep track of all the
possible threads. And it accepts w if and only if one of those threads ends in
an accepting state of M ′. The result follows since w ∈ L1L2 if and only if there
is a thread with respect to w that ends in an accepting state of M ′.
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Chapter 3

Turing Machines
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3.1 Basic Definitions

Definition 3.1 (Turing machine).
A Turing machine (TM) M is a 7-tuple

M = (Q,Σ,Γ, δ, q0, qaccept, qreject),

where

• Q is a non-empty finite set
(which we refer to as the set of states);

• Σ is a non-empty finite set that does not contain the blank symbol t
(which we refer to as the input alphabet);

• Γ is a finite set such that t ∈ Γ and Σ ⊂ Γ
(which we refer to as the tape alphabet);

• δ is a function of the form δ : Q× Γ→ Q× Γ× {L,R}
(which we refer to as the transition function);

• q0 ∈ Q is an element of Q
(which we refer to as the initial state or starting state);

• qacc ∈ Q is an element of Q
(which we refer to as the accepting state);

• qrej ∈ Q is an element of Q such that qrej 6= qacc
(which we refer to as the rejecting state).

Definition 3.2 (A TM accepting or rejecting a string).
Let M be a Turing machine where Q is the set of states, t is the blank symbol,
and Γ is the tape alphabet.1 To understand howM ’s computation proceeds we
generally need to keep track of three things: (i) the state M is in; (ii) the con-
tents of the tape; (iii) where the tape head is. These three things are collectively
known as the “configuration” of the TM. More formally: a configuration for M
is defined to be a string uqv ∈ (Γ∪Q)∗, where u, v ∈ Γ∗ and q ∈ Q. This repre-
sents that the tape has contents · · ·tttuvttt· · · , the head is pointing at the
leftmost symbol of v, and the state is q. We say the configuration is accepting if
q is M ’s accept state and that it’s rejecting if q is M ’s reject state.2

Suppose that M reaches a certain configuration α (which is not accepting
or rejecting). Knowing just this configuration and M ’s transition function δ,
one can determine the configuration β that M will reach at the next step of the
computation. (As an exercise, make this statement precise.) We write

α `M β

and say that “α yields β (in M )”. If it’s obvious what M we’re talking about,
we drop the subscript M and just write α ` β.

Given an input x ∈ Σ∗ we say that M(x) halts if there exists a sequence of
configurations (called the computation trace) α0, α1, . . . , αT such that:

(i) α0 = q0x, where q0 is M ’s initial state;

(ii) αt `M αt+1 for all t = 0, 1, 2, . . . , T − 1;
1Supernerd note: we will always assume Q and Γ are disjoint sets.
2There are some technicalities: The string u cannot start with t and the string v cannot end

with t. This is so that the configuration is always unique. Also, if v = ε it means the head is
pointing at the t immediately to the right of u.
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(iii) αT is either an accepting configuration (in which case we say M(x) ac-
cepts) or a rejecting configuration (in which case we say M(x) rejects).

Otherwise, we say M(x) loops.

Definition 3.3 (Decider Turing machine).
A Turing machine is called a decider if it halts on all inputs.

Definition 3.4 (Language accepted and decided by a TM).
LetM be a Turing machine (not necessarily a decider). We denote by L(M) the
set of all strings that M accepts, and we call L(M) the language accepted by M .
When M is a decider, we say that M decides the language L(M).

Definition 3.5 (Decidable language).
A language L is called decidable (or computable) if L = L(M) for some decider
Turing machine M .

Definition 3.6 (Universal Turing machine).
Let Σ be some finite alphabet. A universal Turing machine U is a Turing machine
that takes 〈M,x〉 as input, where M is a TM and x is a word in Σ∗, and has the
following high-level description:

M : Turing machine. x: string in Σ∗.
U(〈M,x〉):

1 Simulate M on input x (i.e. run M(x)).
2 If it accepts, accept.
3 If it rejects, reject.

Note that if M(x) loops forever, then U loops forever as well. To make sure
M always halts, we can add a third input, an integer k, and have the universal
machine simulate the input TM for at most k steps.

3.2 Decidable Languages

Definition 3.7 (Languages related to encodings of DFAs).
Fix some alphabet Σ. We define the following languages:

ACCEPTSDFA = {〈D,x〉 : D is a DFA that accepts the string x},
SELF-ACCEPTSDFA = {〈D〉 : D is a DFA that accepts the string 〈D〉},

EMPTYDFA = {〈D〉 : D is a DFA with L(D) = ∅},
EQDFA = {〈D1, D2〉 : D1 and D2 are DFAs with L(D1) = L(D2)}.

Theorem 3.8 (ACCEPTSDFA and SELF-ACCEPTSDFA are decidable).
The languages ACCEPTSDFA and SELF-ACCEPTSDFA are decidable.

Proof. Our goal is to show that ACCEPTSDFA and SELF-ACCEPTSDFA are
decidable languages. To show that these languages are decidable, we will give
high-level descriptions of TMs deciding them.

For ACCEPTSDFA, the decider is essentially the same as a universal TM:

15



D: DFA. x: string.
M(〈D,x〉):

1 Simulate D on input x (i.e. run D(x)).
2 If it accepts, accept.
3 If it rejects, reject.

It is clear that this correctly decides ACCEPTSDFA.
For SELF-ACCEPTSDFA, we just need to slightly modify the above ma-

chine:

D: DFA.
M(〈D〉):

1 Simulate D on input 〈D〉 (i.e. run D(〈D〉)).
2 If it accepts, accept.
3 If it rejects, reject.

Again, it is clear that this correctly decides SELF-ACCEPTSDFA.

Theorem 3.9 (EMPTYDFA is decidable).
The language EMPTYDFA is decidable.

Proof. Our goal is to show EMPTYDFA is decidable and we will do so by con-
structing a decider for EMPTYDFA.

A decider for EMPTYDFA takes as input 〈D〉 for some DFAD = (Q,Σ, δ, q0, F ),
and needs to determine if L(D) = ∅. In other words, it needs to determine if
there is any string that D accepts. If we view the DFA as a directed graph,3

then notice that the DFA accepts some string if and only if there is a directed
path from q0 to some state in F . Therefore, the following decider decides
EMPTYDFA correctly.

D: DFA.
M(〈D〉):

1 Build a directed graph from 〈D〉.
2 Run a graph search algorithm starting from the starting

state of D.
3 If a node corresponding to an accepting state is reached,

reject.
4 Else, accept.

Theorem 3.10 (EQDFA is decidable).
The language EQDFA is decidable.

Proof. Our goal is to show that EQDFA is decidable. We will do so by construct-
ing a decider for EQDFA.

Our argument is going to use the fact that EMPTYDFA is decidable (The-
orem 3.9 (EMPTYDFA is decidable)). In particular, the decider we present for
EQDFA will use the decider for EMPTYDFA as a subroutine. Let M denote a
decider TM for EMPTYDFA.

3Even though we have not formally defined the notion of a graph yet, we do assume you are
familiar with the concept from a prerequisite course and that you have seen some simple graph
search algorithms like Breadth-First Search or Depth-First Search.
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A decider for EQDFA takes as input 〈D1, D2〉, where D1 and D2 are DFAs.
It needs to determine if L(D1) = L(D2) (i.e. accept if L(D1) = L(D2) and reject
otherwise). We can determine if L(D1) = L(D2) by looking at their symmetric
difference4

(L(D1) ∩ L(D2)) ∪ (L(D1) ∩ L(D2)).

Note that L(D1) = L(D2) if and only if the symmetric difference is empty. Our
decider for EQDFA will construct a DFAD such that L(D) = (L(D1)∩L(D2))∪
(L(D1) ∩ L(D2)), and then run M(〈D〉) to determine if L(D) = ∅. This then
tells us if L(D1) = L(D2).

To give a bit more detail, observe that given D1 and D2, we can

• construct DFAsD1 andD2 that accept L(D1) and L(D2) respectively (see
Exercise (Are regular languages closed under complementation?));

• construct a DFA that accepts L(D1) ∩ L(D2) by using the (constructive)
proof that regular languages are closed under the intersection operation;5

• construct a DFA that accepts L(D1) ∩ L(D2) by using the proof that reg-
ular languages are closed under the intersection operation;

• construct a DFA, call itD, that accepts (L(D1)∩L(D2))∪(L(D1)∩L(D2))
by using the constructive proof that regular languages are closed under
the union operation.

The decider for EQDFA is as follows.

D1: DFA. D2: DFA.
M ′(〈D1, D2〉):

1 Construct DFA D as described above.
2 Run M(〈D〉).
3 If it accepts, accept.
4 If it rejects, reject.

By our discussion above, the decider works correctly.

4The symmetric difference of sets A and B is the set of all elements that belong to either A or
B, but not both. In set notation, it corresponds to (A ∩B) ∪ (A ∩B).

5The constructive proof gives us a way to construct the DFA accepting L(D1) ∩ L(D2) given
D1 and D2.
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Chapter 4

Countable and Uncountable Sets
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4.1 Basic Definitions

Definition 4.1 (Injection, surjection, and bijection).
Let A and B be two (possibly infinite) sets.

• A function f : A → B is called injective if for any a, a′ ∈ A such that
a 6= a′, we have f(a) 6= f(a′). We write A ↪→ B if there exists an injective
function from A to B.

• A function f : A → B is called surjective if for all b ∈ B, there exists an
a ∈ A such that f(a) = b. We write A � B if there exists a surjective
function from A to B.

• A function f : A → B is called bijective (or one-to-one correspondence) if it
is both injective and surjective. We write A↔ B if there exists a bijective
function from A to B.

Theorem 4.2 (Relationships between different types of functions).
Let A,B and C be three (possibly infinite) sets. Then,

(a) A ↪→ B if and only if B � A;

(b) if A ↪→ B and B ↪→ C, then A ↪→ C;

(c) A↔ B if and only if A ↪→ B and B ↪→ A.

Definition 4.3 (Comparison of cardinality of sets).
Let A and B be two (possibly infinite) sets.

• We write |A| = |B| if A↔ B.

• We write |A| ≤ |B| if A ↪→ B, or equivalently, if B � A.1

• We write |A| < |B| if it is not the case that |A| ≥ |B|.2

Definition 4.4 (Countable and uncountable sets).

• A set A is called countable if |A| ≤ |N|.

• A set A is called countably infinite if it is countable and infinite.

• A set A is called uncountable if it is not countable, i.e. |A| > |N|.

Theorem 4.5 (Characterization of countably infinite sets).
A set A is countably infinite if and only if |A| = |N|.

1Even though not explicitly stated, |B| ≥ |A| has the same meaning as |A| ≤ |B|.
2Similar to above, |B| > |A| has the same meaning as |A| < |B|.
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4.2 Countable Sets

Proposition 4.6 (Z× Z is countable).
The set Z× Z is countable.

Proof. We want to show that Z×Z is countable. We will do so by listing all the
elements of Z× Z such that every element eventually appears in the list. This
implies that there is a surjective function f from N to Z × Z: f(i) is defined
to be the i’th element in the list. Since there is a surjection from N to Z × Z,
|Z× Z| ≤ |N|, and Z× Z is countable.3

We now describe how to list the elements of Z × Z. Consider the plot of
Z × Z on a 2-dimensional grid. Starting at (0, 0) we list the elements of Z × Z
using a spiral shape, as shown below.

(The picture shows only a small part of the spiral.) Since we have a way to list
all the elements such that every element eventually appears in the list, we are
done.

Proposition 4.7 (Q is countable).
The set of rational numbersQ is countable.

Proof. We want to show Q is countable. We will make use of the previous
proposition to establish this. In particular, every element of Q can be written
as a fraction a/b where a, b ∈ Z. In other words, there is a surjection from
Z×Z toQ that maps (a, b) to a/b (if b = 0, map (a, b) to say 0). This shows that
|Q| ≤ |Z×Z|. Since Z×Z is countable, i.e. |Z×Z| ≤ |N|,Q is also countable,
i.e. |Q| ≤ |N|.

Proposition 4.8 (Σ∗ is countable).
Let Σ be a finite set. Then Σ∗ is countable.

Proof. Recall that Σ∗ denotes the set of all words/strings over the alphabet Σ
with finitely many symbols. We want to show Σ∗ is countable. We will do so
by presenting a way to list all the elements of Σ∗ such that eventually all the
elements appear in the list.

3Note that it is not a requirement that we give an explicit formula for f(i). In fact, sometimes
in such proofs, an explicit formula may not exist. This does not make the proof any less rigorous.

Also note that this proof highlights the fact that the notion of countable is equivalent to the
notion of listable, which can be informally defined as the ability to list the elements of the set so
that every element eventually appears in the list.
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For each n = 0, 1, 2, . . ., let Σn denote the set of words in Σ∗ that have length
exactly n. Note that Σn is a finite set for each n, and Σ∗ is a union of these sets:
Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · . This gives us a way to list the elements of Σ∗ so that
any element of Σ∗ eventually appears in the list. First list the elements of Σ0,
then list the elements of Σ1, then list the elements of Σ2, and so on. This way
of listing the elements gives us a surjective function f from N to Σ∗: f(i) is
defined to be the i’th element in the list. Since there is a surjection from N to
Σ∗, |Σ∗| ≤ |N|, and Σ∗ is countable.

Proposition 4.9 (The set of Turing machines is countable).
The set of all Turing machines {M : M is a TM} is countable.

Proof. Let T = {M : M is a TM}. We want to show that T is countable. We
will do so by using the CS method of showing a set is countable.

Given any Turing machine, there is a way to encode it with a finite length
string because each component of the 7-tuple has a finite description. In par-
ticular, the mapping M 7→ 〈M〉, where 〈M〉 ∈ Σ∗, for some finite alphabet Σ, is
an injective map (two distinct Turing machines cannot have the same encod-
ing). Therefore |T | ≤ |Σ∗|. And since Σ∗ is countable (Proposition 4.8 (Σ∗ is
countable)), i.e., |Σ∗| ≤ |N|, the result follows.

Proposition 4.10 (The set of polynomials with rational coefficients is count-
able).
The set of all polynomials in one variable with rational coefficients is countable.

Proof. Let Q[x] denote the set of all polynomials in one variable with rational
coefficients. We want to show that Q[x] is countable and we will do so using
the CS method. Let

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, /, x}.

Then observe that every element of Q[x] can be written as a string over this
alphabet. For example,

2x3 - 1/34x2 + 99/100x1 + 22/7

represents the polynomial

2x3 − 1/34x2 + 99/100x+ 22/7.

This implies that there is a surjective map from Σ∗ to Q[x]. And therefore
|Q[x]| ≤ |Σ∗|. Since Σ∗ is countable, i.e. |Σ∗| ≤ |N|,Q[x] is also countable.

4.3 Uncountable Sets

Theorem 4.11 (Cantor’s Theorem).
For any set A, |P(A)| > |A|.

Proof. We want to show that for any (possibly infinite) setA, we have |P(A)| >
|A|. The proof that we present here is called the diagonalization argument. The
proof is by contradiction. So assume that there is some setA such that |P(A)| ≤
|A|. By definition, this means that there is a surjective function fromA to P(A).

22



Let f : A → P(A) be such a surjection. So for any S ∈ P(A), there exists an
s ∈ A such that f(s) = S. Now consider the set

S = {a ∈ A : a 6∈ f(a)}.

Since S is a subset of A, S ∈ P(A). So there is an s ∈ A such that f(s) = S. But
then if s 6∈ S, by the definition of S, s is in f(s) = S, which is a contradiction.
If s ∈ S, then by the definition of S, s is not in f(s) = S, which is also a
contradiction. So either way, we get a contradiction, as desired.

Corollary 4.12 (P(N) is uncountable).
The set P(N) is uncountable.

Corollary 4.13 (The set of languages is uncountable).
Let Σ be a finite set with |Σ| > 0. Then P(Σ∗) is uncountable.

Proof. We want to show that P(Σ∗) is uncountable, where Σ is a non-empty
finite set. For such a Σ, note that Σ∗ is a countably infinite set (Proposition 4.8
(Σ∗ is countable)). So by Theorem 4.5 (Characterization of countably infinite
sets), we know |Σ∗| = |N|. Theorem 4.11 (Cantor’s Theorem) implies that
|Σ∗| < |P(Σ∗)|. So we have |N| = |Σ∗| < |P(Σ∗)|, which shows, by the defini-
tion of uncountable sets, that P(Σ∗) is uncountable.

Definition 4.14 (Σ∞).
Let Σ be some finite alphabet. We denote by Σ∞ the set of all infinite length
words over the alphabet Σ. Note that Σ∗ ∩ Σ∞ = ∅.

Theorem 4.15 ({0, 1}∞ is uncountable).
The set {0, 1}∞ is uncountable.

Proof. Our goal is to show that {0, 1}∞ is uncountable. One can prove this
simply by observing that {0, 1}∞ ↔ P(N), and using Corollary 4.12 (P(N) is
uncountable). Here, we will give a direct proof using a diagonalization argu-
ment. The proof is by contradiction, so assume that {0, 1}∞ is countable. By
definition, this means that |{0, 1}∞| ≤ |N|, i.e. there is a surjective map f from
N to {0, 1}∞. Consider the table in which the i’th row corresponds to f(i).
Below is an example.
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(The elements in the diagonal are highlighted.) Using f , we construct an
element a of {0, 1}∞ as follows. If the i’th symbol of f(i) is 1, then the i’th
symbol of a is defined to be 0. And if the i’th symbol of f(i) is 0, then the
i’th symbol of a is defined to be 1. Notice that the i’th symbol of f(i), for
i = 1, 2, 3, . . . corresponds to the diagonal elements in the above table. So we
are creating this element a of {0, 1}∞ by taking the diagonal elements, and
flipping their value.

Now notice that the way a is constructed implies that it cannot appear as
a row in this table. This is because a differs from f(1) in the first symbol, it
differs from f(2) in the second symbol, it differs from f(3) in the third symbol,
and so on. So it differs from every row of the table and hence cannot appear
as a row in the table. This leads to the desired contradiction because f is a
surjective function, which means every element of {0, 1}∞, including a, must
appear in the table.
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Chapter 5

Undecidable Languages
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5.1 Existence of Undecidable Languages

Theorem 5.1 (Almost all languages are undecidable).
Fix some alphabet Σ. There are languages L ⊆ Σ∗ that are not decidable.

Proof. To prove the result, we simply observe that the set of all languages is
uncountable whereas the set of decidable languages is countable. First, con-
sider the set of all languages. Since a language L is defined to be a subset of
Σ∗, the set of all languages is P(Σ∗). By Corollary 4.13 (The set of languages
is uncountable), we know that this set is uncountable. Now consider the set
of all decidable languages, which we’ll denote by D. Let T be the set of all
TMs. By Proposition 4.9 (The set of Turing machines is countable), we know
that T is countable. Furthermore, the mapping M 7→ L(M) can be viewed as
a surjection from T to D (if M is not a decider, just map it to ∅). So |D| ≤ |T |.
Since T is countable, this shows D is countable and completes the proof.

5.2 Examples of Undecidable Languages

Definition 5.2 (Halting problem).
The halting problem is defined as the decision problem corresponding to the
language HALTS = {〈M,x〉 : M is a TM which halts on input x}.

Theorem 5.3 (Turing’s Theorem).
The language HALTS is undecidable.

Proof. Our goal is to show that HALTS is undecidable. The proof is by con-
tradiction, so assume that HALTS is decidable. By definition, this means that
there is a decider TM, call it MHALTS, that decides HALTS. We construct a new
TM, which we’ll call MTURING, that uses MHALTS as a subroutine. The descrip-
tion of MTURING is as follows:

M : TM.
MTURING(〈M〉):

1 Run MHALTS(〈M,M〉).
2 If it accepts, go into an infinite loop.
3 If it rejects, accept.

We get the desired contradiction once we consider what happens when we
feed MTURING as input to itself, i.e. when we run MTURING(〈MTURING〉).

If MHALTS(〈MTURING,MTURING〉) accepts, then MTURING(〈MTURING〉) is sup-
posed to halt by the definition of MHALTS. However, from the description of
MTURING above, we see that it goes into an infinite loop. This is a contra-
diction. The other option is that MHALTS(〈MTURING,MTURING〉) rejects. Then
MTURING(〈MTURING〉) is supposed to lead to an infinite loop. But from the de-
scription of MTURING above, we see that it accepts, and therefore halts. This is
a contradiction as well.

Definition 5.4 (Languages related to encodings of TMs).
We define the following languages:

ACCEPTS = {〈M,x〉 : M is a TM that accepts the input x},
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EMPTY = {〈M〉 : M is a TM with L(M) = ∅},

EQ = {〈M1,M2〉 : M1 and M2 are TMs with L(M1) = L(M2)}.

Theorem 5.5 (ACCEPTS is undecidable).
The language ACCEPTS is undecidable.

Proof. We want to show that ACCEPTS is undecidable. The proof is by contra-
diction, so assume ACCEPTS is decidable and let MACCEPTS be a decider for it.
We will use this decider to come up with a decider for HALTS. Since HALTS
is undecidable (Theorem 5.3 (Turing’s Theorem)), this argument will allow us
to reach a contradiction.

Here is our decider for HALTS:

M : TM. x: string.
MHALTS(〈M,x〉):

1 Run MACCEPTS(〈M,x〉).
2 If it accepts, accept.
3 Construct string 〈M ′〉 by flipping the accept and reject

states of 〈M〉.
4 Run MACCEPTS(〈M ′, x〉).
5 If it accepts, accept.
6 If it rejects, reject.

We now argue that this machine indeed decides HALTS. To do this, we’ll
show that no matter what input is given to our machine, it always gives the
correct answer.

First let’s assume we get any input 〈M,x〉 such that 〈M,x〉 ∈ HALTS. In
this case our machine is supposed to accept. Since M(x) halts, we know that
M(x) either ends up in the accepting state, or it ends up in the rejecting state.
If it ends up in the accepting state, then MACCEPTS(〈M,x〉) accepts (on line 1 of
our machine’s description), and so our program accepts and gives the correct
answer on line 2. If on the other hand,M(x) ends up in the rejecting state, then
M ′(x) ends up in the accepting state. Therefore MACCEPTS(〈M ′, x〉) accepts (on
line 4 of our machine’s description), and so our program accepts and gives the
correct answer on line 5.

Now let’s assume we get any input 〈M,x〉 such that 〈M,x〉 6∈ HALTS. In
this case our machine is supposed to reject. Since M(x) does not halt, it never
reaches the accepting or the rejecting state. By the construction of M ′, this also
implies that M ′(x) never reaches the accepting or the rejecting state. There-
fore first MACCEPTS(〈M,x〉) (on line 1 of our machine’s description) will reject.
And then MACCEPTS(〈M ′, x〉) (on line 4 of our machine’s description) will re-
ject. Thus our program will reject as well, and give the correct answer on line
6.

We have shown that no matter what the input is, our machine gives the
correct answer and decides HALTS. This is the desired contradiction and we
conclude that ACCEPTS is undecidable.

Theorem 5.6 (EMPTY is undecidable).
The language EMPTY is undecidable.

Proof. We want to show that EMPTY is undecidable. The proof is by contradic-
tion, so suppose EMPTY is decidable, and let MEMPTY be a decider for it. Using
this decider, we will construct a decider for ACCEPTS. However, we know
that ACCEPTS is undecidable (Theorem 5.5 (ACCEPTS is undecidable)), so
this argument will allow us to reach a contradiction.

We construct a TM that decides ACCEPTS as follows.
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M : TM. x: string.
MACCEPTS(〈M,x〉):

1 Construct the following string, which we call 〈M ′〉.
2 ”M ′(y):
3 Run M(x).
4 If it accepts, accept.
5 If it rejects, reject.”
6 Run MEMPTY(〈M ′〉).
7 If it accepts, reject.
8 If it rejects, accept.

We now argue that this machine indeed decides ACCEPTS. To do this, we’ll
show that no matter what input is given to our machine, it always gives the
correct answer.

First let’s assume we get an input 〈M,x〉 such that 〈M,x〉 ∈ ACCEPTS, i.e.
x ∈ L(M). Then observe that L(M ′) = Σ∗, because for any input y, M ′(y) will
accept. When we run MEMPTY(〈M ′〉) on line 6, it rejects, and so our machine
accepts and gives the correct answer.

Now assume that we get an input 〈M,x〉 such that 〈M,x〉 6∈ ACCEPTS, i.e.
x 6∈ L(M). Then either M(x) rejects, or loops forever. If it rejects, then M ′(y)
rejects for any y. If it loops forever, then M ′(y) gets stuck on line 3 for any y. In
both cases, L(M ′) = ∅. When we run MEMPTY(〈M ′〉) on line 6, it accepts, and
so our machine rejects and gives the correct answer.

Our machine always gives the correct answer, so we are done.

Theorem 5.7 (EQ is undecidable).
The language EQ is undecidable.

Proof. The proof is by contradiction, so assume EQ is decidable, and let MEQ
be a decider for it. Using this decider, we will construct a decider for EMPTY.
However, EMPTY is undecidable (Theorem 5.6 (EMPTY is undecidable)), so
this argument allows us to reach the desired contradiction.

We construct a TM that decides EMPTY as follows.

M : TM.
MEMPTY(〈M〉):

1 Construct the string 〈M ′〉 where M ′ is a TM that rejects
every input.

2 Run MEQ(〈M,M ′〉).
3 If it accepts, accept.
4 If it rejects, reject.

It is not difficult to see that this machine indeed decides EMPTY. Notice
that L(M ′) = ∅. So when we run MEQ(〈M,M ′〉) on line 2, we are deciding
whether L(M) = L(M ′), i.e. whether L(M) = ∅.

5.3 Undecidability Proofs by Reductions

Theorem 5.8 (HALTS ≤ EMPTY).
HALTS ≤ EMPTY.
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Proof. (This can be considered as an alternative proof of Theorem 5.6 (EMPTY
is undecidable).) We want to show that deciding HALTS reduces to deciding
EMPTY. For this, we assume EMPTY is decidable. Let MEMPTY be a decider for
EMPTY. We need to construct a TM that decides HALTS. We do so now.

M : TM. x: string.
MHALTS(〈M,x〉):

1 Construct the following string, which we call 〈M ′〉.
2 ”M ′(y):
3 Run M(x).

4 Ignore the output and accept.”
5 Run MEMPTY(〈M ′〉).
6 If it accepts, reject.
7 If it rejects, accept.

We now argue that this machine indeed decides HALTS. First consider an
input 〈M,x〉 such that 〈M,x〉 ∈ HALTS. Then L(M ′) = Σ∗ since in this case
M ′ accepts every string. So when we run MEMPTY(〈M ′〉) on line 8, it rejects,
and our machine accepts and gives the correct answer.

Now consider an input 〈M,x〉 such that 〈M,x〉 6∈ HALTS. Then notice
that whatever input is given to M ′, it gets stuck in an infinite loop when it
runs M(x). Therefore L(M ′) = ∅. So when we run MEMPTY(〈M ′〉) on line 8, it
accepts, and our machine rejects and gives the correct answer.

Theorem 5.9 (EMPTY ≤ HALTS).
EMPTY ≤ HALTS.

Proof. We want to show that deciding EMPTY reduces to deciding HALTS.
For this, we assume HALTS is decidable. Let MHALTS be a decider for HALTS.
Using it, we need to construct a decider for EMPTY. We do so now.

M : TM.
MEMPTY(〈M〉):

1 Construct the following string, which we call 〈M ′〉.
2 ”M ′(x):
3 For t = 1, 2, 3, . . .:
4 For each y with |y| ≤ t:
5 Simulate M(y) for at most t steps.
6 If it accepts, accept.”
7 Run MHALTS(〈M ′, ε〉).
8 If it accepts, reject.
9 If it rejects, accept.

We now argue that this machine indeed decides EMPTY. First consider an
input 〈M〉 such that 〈M〉 ∈ EMPTY. Observe that the only way M ′ halts is
if M(y) accepts for some string y. This cannot happen since L(M) = ∅. So
M ′(x), for any x, does not halt (note that M ′ ignores its input). This means that
when we run MHALTS(〈M ′, ε〉), it rejects, and so our decider above accepts, as
desired.

Now consider an input 〈M〉 such that 〈M〉 6∈ EMPTY. This means that
there is some word y such that M(y) accepts. Note that M ′, by construction,
does an exhaustive search, so if such a y exists, then M ′ will eventually find it,
and accept. SoM ′(x) halts for any x. When we runMHALTS(〈M ′, ε〉), it accepts,
and our machine rejects and gives the correct answer.
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Chapter 6

Time Complexity
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6.1 Big-O, Big-Omega and Theta

Definition 6.1 (Big-O).
For f : R+ → R+ and g : R+ → R+, we write f(n) = O(g(n)) if there exist
constants C > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≤ Cg(n).

In this case, we say that f(n) is big-O of g(n).

Definition 6.2 (Big-Omega).
For f : R+ → R+ and g : R+ → R+, we write f(n) = Ω(g(n)) if there exist
constants c > 0 and n0 > 0 such that for all n ≥ n0,

f(n) ≥ cg(n).

In this case, we say that f(n) is big-Omega of g(n).

Definition 6.3 (Theta).
For f : R+ → R+ and g : R+ → R+, we write f(n) = Θ(g(n)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)).

This is equivalent to saying that there exists constants c, C, n0 > 0 such that for
all n ≥ n0,

cg(n) ≤ f(n) ≤ Cg(n).

In this case, we say that f(n) is Theta of g(n).1

Proposition 6.4 (Logarithms in different bases).
For any constant b > 1,

logb n = Θ(log n).

Proof. It is well known that logb n = loga n
loga b . In particular logb n = log2 n

log2 b . Then
taking c = C = 1

log2 b and n0 = 1, we see that c log2 n ≤ logb n ≤ C log2 n for all
n ≥ n0. Therefore logb n = Θ(log2 n).

6.2 Worst-Case Running Time of Algorithms

Definition 6.5 (Worst-case running time of an algorithm).
Suppose we are using some computational model in which what constitutes a
step in an algorithm is understood. Suppose also that for any input x, we have
an explicit definition of its length. The worst-case running time of an algorithm
A is a function TA : N→ N defined by

TA(n) = max
instances/inputs x

of length n

number of steps A takes on input x.

We drop the subscript A and just write T (n) when A is clear from the context.

1The reason we don’t call it big-Theta is that there is no separate notion of little-theta, whereas
little-o o(·) and little-omega ω(·) have meanings separate from big-O and big-Omega. We don’t
cover little-o and little-omega in this course.

32



Definition 6.6 (Names for common growth rates).

Constant time: T (n) = O(1).

Logarithmic time: T (n) = O(log n).

Linear time: T (n) = O(n).

Quadratic time: T (n) = O(n2).

Polynomial time: T (n) = O(nk) for some constant k > 0.

Exponential time: T (n) = O(2n
k

) for some constant k > 0.

Proposition 6.7 (Intrinsic complexity of {0k1k : k ∈ N}).
The intrinsic complexity of L = {0k1k : k ∈ N} is Θ(n).

Proof. We want to show that the intrinsic complexity of L = {0k1k : k ∈ N}
is Θ(n). The proof has two parts. First, we need to argue that the intrinsic
complexity is O(n). Then, we need to argue that the intrinsic complexity is
Ω(n).

To show that L has intrinsic complexity O(n), all we need to do is present
an algorithm that decides L in time O(n). We leave this as an exercise to the
reader.

To show that L has intrinsic complexity Ω(n), we show that no matter what
algorithm is used to decide L, the number of steps it takes must be at least n.
We prove this by contradiction, so assume that there is some algorithm A that
decidesL using n−1 steps or less. Consider the input x = 0k1k (where n = 2k).
Since A uses at most n− 1 steps, there is at least one index j with the property
that A does not access x[j]. Let x′ be the input that is the same as x, except the
j’th coordinate is reversed. Since A does not access the j’th coordinate, it has
no way of distinguishing between x and x′. In other words, A behaves exactly
the same when the input is x or x′. But this contradicts the assumption that A
correctly decides L because A should accept x and reject x′.

6.3 Complexity of Algorithms with Integer Inputs

Definition 6.8 (Integer addition and integer multiplication problems).
In the integer addition problem, we are given two n-bit numbers x and y, and the
output is their sum x+ y. In the integer multiplication problem, we are given two
n-bit numbers x and y, and the output is their product xy.

33



34



Chapter 7

The Science of Cutting Cake
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7.1 The Problem and the Model

Definition 7.1 (Cake cutting problem).
We refer to the interval [0, 1] ⊂ R as the cake, and the set N = {1, 2, . . . , n} as
the set of players. A piece of cake is any set X ⊆ [0, 1] which is a finite union
of disjoint intervals. Let X denote the set of all possible pieces of cake. Each
player i ∈ N has a valuation function Vi : X → R that satisfies the following 4
properties.

• Normalized: Vi([0, 1]) = 1.

• Non-negative: For any X ∈ X , Vi(X) ≥ 0.

• Additive: For X,Y ∈ X with X ∩ Y = ∅, Vi(X ∪ Y ) = Vi(X) + Vi(Y ).

• Divisible: For every interval I ⊆ [0, 1] and 0 ≤ λ ≤ 1, there exists a
subinterval I ′ ⊆ I such that Vi(I ′) = λVi(I).

The goal is to find an allocation A1, A2, . . . , An, where for each i, Ai is a piece
of cake allocated to player i. The allocation is assumed to be a partition of
the cake [0, 1], i.e., the Ai’s are disjoint and their union is [0, 1]. There are 2
properties desired about the allocation:

• Proportionality: For all i ∈ N , Vi(Ai) ≥ 1/n.

• Envy-Freeness: For all i, j ∈ N , Vi(Ai) ≥ Vi(Aj).

Proposition 7.2 (An observation about the Vi’s).
Let A1, . . . , An be an allocation in the cake cutting problem. Then for each player i,
we have

∑
j∈N Vi(Aj) = 1.

Proof. Given any player i, our goal is to show that
∑

j∈N Vi(Aj) = 1. This will
follow from the additivity and normality properties of the valuation functions.

First, recall that the Ai’s form a partition of [0, 1]. So

A1 ∪A2 ∪ · · · ∪An = [0, 1],

and the Ai’s are pairwise disjoint. Now take an arbitrary player i. By the
normality property, we know Vi([0, 1]) = 1. Combining this with the additivity
property, we have

1 = Vi([0, 1]) = Vi(A1 ∪A2 ∪ · · · ∪An) = Vi(A1) + Vi(A2) + · · ·+ Vi(An),

i.e.,
∑

j∈N Vi(Aj) = 1.

Proposition 7.3 (Envy-freeness implies proportionality).
If an allocation is envy-free, then it is proportional.

Proof. Let’s assume we have an allocation A1, . . . , An that is envy-free. We
want to show that it must also be proportional. Take an arbitrary player i. By
the previous proposition, we have

∑
j∈N Vi(Aj) = 1. Therefore, there must be

k ∈ N such that Vi(Ak) ≥ 1/n (otherwise the sum could not be 1). The envy-
freeness property implies that Vi(Ai) ≥ Vi(Ak), and so Vi(Ai) ≥ 1/n. This
establishes that the allocation must be proportional.
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Definition 7.4 (The Robertson-Webb model).
We use the Robertson-Webb model to express cake cutting algorithms and
measure their running times. In this model, the input size is considered to
be the number of players n. There is a referee who is allowed to make two
types of queries to the players:

• Evali(x, y), which returns Vi([x, y]),

• Cuti(x, α), which returns y such that Vi([x, y]) = α.
(If no such y exists, it returns “None”.)

The referee follows an algorithm/strategy and chooses the queries that she wants
to make. What the referee chooses as a query depends only on the results
of the queries she has made before. At the end, she decides on an allocation
A1, A2, . . . , An, and the allocation depends only on the outcomes of the queries.
The time complexity of the algorithm, T (n), is the number of queries she makes
for n players and the worst possible Vi’s. So

T (n) = max
(V1,...,Vn)

number of queries when the valuations are (V1, . . . , Vn).

7.2 Cake Cutting Algorithms in the Robertson-Webb

Model

Proposition 7.5 (Cut and Choose algorithm for 2 players).
When n = 2, there is always an allocation that is proportional and envy-free.

Proof. Given n = 2 players, we will describe a way to allocate the cake so that
it is proportional and envy-free. We first describe how to find the allocation.
We then argue why that allocation is envy-free and proportional.

We can describe how the allocation is found in the following way. The
first player marks a point y in the cake so that V1([0, y]) = V1([y, 1]) = 1/2
(this can be done because of the divisibility property). Then player 2 chooses
the piece (among [0, y] and [y, 1]) that he values more. The remaining piece is
what player 1 gets. In the Robertson-Webb model, this algorithm corresponds
to the following. The referee first queries Cut1(0, 1/2). Say this returns the
value y. Then the referee queries Eval2(0, y) and Eval2(y, 1).1 Whichever gives
the larger value, referee assigns that piece to player 2. The remaining piece is
assigned to player 1.2

The allocation is envy-free: From player 1’s perspective, both players get a
piece of the cake of value 1/2. Therefore V1(A1) ≥ V1(A2) is satisfied. From
player 2’s perspective, since he gets to choose the piece of larger value to him,
V2(A2) ≥ V2(A1) is satisfied. (Also note that we must have V2(A2) > 1/2.)

The allocation is proportional: It is not hard to see that the algorithm is
proportional since each player gets a piece of value at least 1/2.

Theorem 7.6 (Dubins-Spanier Algorithm).
There is an algorithm of time complexity Θ(n2) that produces an allocation for the cake
cutting problem that satisfies the proportionality property.

1In fact, just querying Eval2(0, y) is enough.
2It is common to describe a cake cutting algorithm in terms of what players do to agree on an

allocation. In the Robertson-Webb model we have described, this would correspond to a referee
applying Eval and Cut queries to determine the allocation. The two points of views are equivalent
as long as the actions of the players can be described using Eval and Cut queries.
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Proof. Our goal is to describe a cake cutting algorithm with Θ(n2) complexity
that produces a proportional allocation. We first describe the algorithm. We
then argue that it indeed produces a proportional allocation. Finally, we show
that its complexity is Θ(n2).

The algorithm is as follows. The referee first makes n queries: Cuti(0, 1/n)
for all i. She computes the minimum among these values, which we’ll denote
by y. Let’s assume j is the player that corresponds to the minimum value.
Then the referee assigns Aj = [0, y]. So player j gets a piece that she values at
1/n. After this, we remove player j, and repeat the process on the remaining
cake. So in the next stage, the referee makes n − 1 queries, Cuti(y, 1/n) for
i 6= j, figures out the player corresponding to the minimum value, and assigns
her the corresponding piece of the cake, which she values at 1/n. This repeats
until there is one player left. The last player gets the piece that is left.3

We have to show that the algorithm’s time complexity is Θ(n2) and that it
produces a proportional allocation. First we show that the allocation is propor-
tional. Notice that if the queries that the referee makes never return “None”,
then at each iteration, until one player is left, the player j who is removed is
assigned Aj such that Vj(Aj) = 1/n. So it suffices to argue that:

(i) the queries never return “None”,

(ii) the last player, call it `, gets A` such that V`(A`) ≥ 1/n.

To show (i), assume we have just completed iteration k, where k ∈ {1, 2, . . . , n−
1}. Let j be an arbitrary player who has not been removed yet. The important
observation is that all the pieces that have been removed so far have value at
most 1/n to player j (take a moment to verify this). So the cake remaining after
iteration k has value at least 1− (k/n) ≥ 1/n for player j. This argument holds
for any k ∈ {1, 2, . . . , n − 1} and any player j that remains after iteration k.
So the queries never return “None”. Part (ii) actually follows from the same
argument. The cake remaining after iteration n− 1 has value at least 1− (n−
1)/n = 1/n for the last player. This completes the proof that the allocation is
proportional.

Now we show that the time complexity is Θ(n2). To do this, we’ll first argue
that the number of queries is O(n2), and then argue that it is Ω(n2). Note that
the algorithm has n iterations, and at iteration i, it makes n + 1 − i queries.
There is one exception, which is the last iteration when only one player is left.
In that case, we don’t make any queries. So the total number of queries is

n+ (n− 1) + (n− 2) + · · ·+ 2.

We can upper bound this as follows:

n+ (n− 1) + (n− 2) + · · ·+ 2 ≤ n+ n+ · · ·+ n︸ ︷︷ ︸
n times

= n2.

This implies that the number of queries is O(n2). We can also lower bound the
number of queries by lower bounding the first n/2 terms in the sum by n/2:

n+ (n− 1) + (n− 2) + · · ·+ 2 ≥ n

2
+
n

2
+ · · ·+ n

2︸ ︷︷ ︸
n/2 times

=
n2

4
.

This implies that the number of queries is Ω(n2). Hence, the number of queries
is Θ(n2).

3Note that it is perfectly fine to describe an algorithm in a paragraph as long as you explain
clearly what the algorithm does. A pseudocode is not required.
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Theorem 7.7 (Even-Paz Algorithm).
Assume n is a power of 2, i.e., n = 2t for some t ∈ N. There is an algorithm of time
complexity Θ(n log n) that produces an allocation for the cake cutting problem that
satisfies the proportionality property.

Proof. Our goal is to present a cake cutting algorithm with Θ(n log n) complex-
ity that produces a proportional allocation. The assumption that n is a power
of 2 is there for simplicity in describing and analyzing the algorithm. Below,
we first present the algorithm. Next we show that its complexity is Θ(n log n).
And finally, we show that it produces a proportional allocation.

Our algorithm will be recursive, so we give some flexibility for the input
by allowing it to consist of an interval [x, y] ⊆ [0, 1] and a subset of players S ⊆
{1, 2, . . . , n}. Our algorithm’s name is EP, and we would initially call it with
input in which [x, y] = [0, 1] and S = {1, 2, . . . , n}. Below is the description of
EP. A verbal explanation of what the algorithm does follows its description.

[x, y]: interval in [0, 1]. k: integer in {0, 1, 2, . . . , n}.
S: subset of {1, 2, . . . , n}with |S| = k.
EP(〈[x, y], k, S〉):

1 If k = 1 and S = {i} for some i, then let Ai = [x, y].
2 Else:
3 For i ∈ S, let zi = Cuti(x,Evali(x, y)/2).
4 Sort the zi so that zi1 ≤ zi2 ≤ · · · ≤ zik . Let z∗ = zik/2

.
5 Run EP(〈[x, z∗], k/2, {i1, . . . , ik/2}〉).
6 Run EP(〈[z∗, y], k/2, {ik/2+1, . . . , ik}〉).

The base case of the algorithm is when there is only one player. In this case
we give the whole piece [x, y] to that player. Otherwise, each player i makes a
mark zi such that Vi([x, zi]) = 1

2Vi([x, y]). Let z∗ denote the n/2 mark from the
left. We first recurse on [x, z∗] and the left n/2 players, and then we recurse on
[z∗, y] and the right n/2 players.

We have to show that the algorithm’s time complexity is Θ(n log n) and that
it produces a proportional allocation. First we show that the time complexity
T (n) is Θ(n log n). Observe that the recursive relation that T (n) satisfies is

T (1) = 0, T (n) = 2n+ 2T (n/2) for n > 1.

The base case corresponds to line 1 of the algorithm, and in this case, we don’t
make any queries. In T (n) = 2n + 2T (n/2), the 2n comes from line 3 where
we make 2 queries for each player. The 2T (n/2) comes from the two recursive
calls on lines 5 and 6. To solve the recursion, i.e., to figure out the formula for
T (n), we draw the associated recursion tree.
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The root (top) of the tree corresponds to the input S = {1, 2, . . . , n} and
is therefore labeled with an n. This branches off into two nodes, one corre-
sponding to each recursive call. These nodes are labeled with n/2 since they
correspond to recursive calls in which |S| = n/2. Those nodes further branch
off into two nodes, and so on, until at the very bottom, we end up with nodes
corresponding to inputs S with |S| = 1. The number of queries made for each
node of the tree is provided with a label on top of the node. For example, at the
root (top), we make 2n queries before we do our recursive calls. This is why
we put a 2n on top of that node. Similarly, every other node can be labeled.
We can divide the nodes of the tree into levels according to how far a node is
from the root. So the root corresponds to level 0, the nodes it branches off to
correspond to level 1, and so on. Observe that level j has exactly 2j nodes. The
nodes that are at level j make 2n/2j queries. Therefore, the total number of
queries made for level j is 2n. The only exception is the last level. The nodes at
the last level correspond to the base case and don’t make any queries. In total,
there are exactly 1+log2 n levels (since we are counting the root as well). Thus,
the total number of queries, and hence the time complexity, is exactly 2n log2 n,
which is Θ(n log n).

We now prove that the allocation obtained by the algorithm is proportional.
Observe that when we make the recursive call on [x, z∗] and the left n/2 play-
ers, all these players value [x, z∗] at least at 1/2. Similarly, when we make the
recursive call on [z∗, y] and the right n/2 players, all these players value [z∗, y]
at least at 1/2. This property is preserved at each level of the recursion in the
following way. At level ` of the recursion, the players are divided into groups
of size n/2`. If each player values the corresponding interval at least at 1/2`,
then at level ` + 1, the players will value the interval that they are “assigned
to” at least at 1/2`+1. In particular, when ` = log2 n, each group is a single-
ton, and each player gets assigned a piece of cake that she values at least at
1/2log2 n = 1/n. This shows that the allocation is proportional.

Theorem 7.8 (Edmonds-Pruhs Theorem).
Any algorithm that produces an allocation satisfying the proportionality property
must have time complexity Ω(n log n).
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Chapter 8

Introduction to Graph Theory
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8.1 Basic Definitions

Definition 8.1 (Undirected graph).
An undirected graph1 G is a pair (V,E), where

• V is a finite non-empty set called the set of vertices (or nodes),

• E is a set called the set of edges, and every element of E is of the form
{u, v} for distinct u, v ∈ V .

Definition 8.2 (Neighborhood of a vertex).
Let G = (V,E) be a graph, and e = {u, v} ∈ E be an edge in the graph. In
this case, we say that u and v are neighbors or adjacent. We also say that u and
v are incident to e. For v ∈ V , we define the neighborhood of v, denoted N(v),
as the set of all neighbors of v, i.e. N(v) = {u : {v, u} ∈ E}. The size of the
neighborhood, |N(v)|, is called the degree of v, and is denoted by deg(v).

Definition 8.3 (d-regular graphs).
A graphG = (V,E) is called d-regular if every vertex v ∈ V satisfies deg(v) = d.

Theorem 8.4 (Handshake Theorem).
Let G = (V,E) be a graph. Then∑

v∈V
deg(v) = 2m.

Proof. Our goal is to show that the sum of the degrees of all the vertices is
equal to twice the number of edges. We will use a double counting argument to
establish the equality. This means we will identify a set of objects and count it
size in two different ways. One way of counting it will give us

∑
v∈V deg(v),

and the second way of counting it will give us 2m. This then immediately
implies that

∑
v∈V deg(v) = 2m.

We now proceed with the double counting argument. For each vertex
v ∈ V , put a “token” on all the edges it is incident to. We want to count the total
number of tokens. Every vertex v is incident to deg(v) edges, so the total num-
ber of tokens put is

∑
v∈V deg(v). On the other hand, each edge {u, v} in the

graph will get two tokens, one from vertex u and one from vertex v. So the total
number of tokens put is 2m. Therefore it must be that

∑
v∈V deg(v) = 2m.

Definition 8.5 (Paths and cycles).
Let G = (V,E) be a graph. A path of length k in G is a sequence of distinct
vertices

v0, v1, . . . , vk

such that {vi−1, vi} ∈ E for all i ∈ {1, 2, . . . , k}. In this case, we say that the
path is from vertex v0 to vertex vk.

A cycle of length k (also known as a k-cycle) in G is a sequence of vertices

v0, v1, . . . , vk−1, v0

1Often the word “undirected” is omitted.
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such that v0, v1, . . . , vk−1 is a path, and {v0, vk−1} ∈ E. In other words, a cycle
is just a “closed” path. The starting vertex in the cycle is not important. So for
example,

v1, v2, . . . , vk−1, v0, v1

would be considered the same cycle. Also, if we list the vertices in reverse
order, we consider it to be the same cycle. For example,

v0, vk−1, vk−2 . . . , v1, v0

represents the same cycle as before.
A graph that contains no cycles is called acyclic.

Definition 8.6 (Connected graph, connected component).
Let G = (V,E) be a graph. We say that two vertices in G are connected if there
is a path between those two vertices. We say that G is connected if every pair of
vertices in G is connected.

A subset S ⊆ V is called a connected component of G if G restricted to S, i.e.
the graphG′ = (S,E′ = {{u, v} ∈ E : u, v ∈ S}), is a connected graph, and S is
disconnected from the rest of the graph (i.e. {u, v} 6∈ E when u ∈ S and v 6∈ S).
Note that a connected graph is a graph with only one connected component.

Theorem 8.7 (Min number of edges to connect a graph).
Let G = (V,E) be a connected graph with n vertices and m edges. Then m ≥ n− 1.
Furthermore, m = n− 1 if and only if G is acyclic.

Proof. We first prove that a connected graph with n vertices and m edges satis-
fies m ≥ n−1. Take G and remove all its edges. This graph consists of isolated
vertices and therefore contains n connected components. Let’s now imagine a
process in which we put back the edges of G one by one. The order in which
we do this does not matter. At the end of this process, we must end up with
just one connected component since G is connected. When we put back an
edge, there are two options. Either

(i) we connect two different connected components by putting an edge be-
tween two vertices that are not already connected, or

(ii) we put an edge between two vertices that are already connected, and
therefore create a cycle.

Observe that if (i) happens, then the number of connected components goes
down by 1. If (ii) happens, the number of connected components remains the
same. So every time we put back an edge, the number of connected compo-
nents in the graph can go down by at most 1. Since we start with n connected
components and end with 1 connected component, (i) must happen at least
n− 1 times, and hence m ≥ n− 1. This proves the first part of the theorem. We
now prove m = n− 1⇐⇒ G is acyclic.

m = n − 1 =⇒ G is acyclic: If m = n − 1, then (i) must have happened
at each step since otherwise, we could not have ended up with one connected
component. Note that (i) cannot create a cycle, so in this case, our original
graph must be acyclic.

G is acyclic =⇒ m = n− 1: To prove this direction (using the contraposi-
tive), assumem > n−1. We know that (i) can happen at most n−1 times. So in
at least one of the steps, (ii) must happen. This implies G contains a cycle.
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Definition 8.8 (Tree, leaf, internal node).
A graph satisfying two of the following three properties is called a tree:

(i) connected,

(ii) m = n− 1,

(iii) acyclic.

A vertex of degree 1 in a tree is called a leaf. And a vertex of degree more than
1 is called an internal node.

Definition 8.9 (Directed graph).
A directed graph G is a pair (V,A), where

• V is a finite set called the set of vertices (or nodes),

• A is a finite set called the set of directed edges (or arcs), and every element
of A is a tuple (u, v) for u, v ∈ V . If (u, v) ∈ A, we say that there is a
directed edge from u to v. Note that (u, v) 6= (v, u) unless u = v.

Definition 8.10 (Neighborhood, out-degree, in-degree, sink, source).
Let G = (V,A) be a directed graph. For u ∈ V , we define the neighborhood
of u, N(u), as the set {v ∈ V : (u, v) ∈ A}. The out-degree of u, denoted
degout(u), is |N(u)|. The in-degree of u, denoted degin(u), is the size of the set
{v ∈ V : (v, u) ∈ A}. A vertex with out-degree 0 is called a sink. A vertex with
in-degree 0 is called a source.

8.2 Graph Algorithms

8.2.1 Graph searching algorithms

Definition 8.11 (Arbitrary-first search (AFS) algorithm).
The arbitrary-first search algorithm, denoted AFS, is the following generic al-
gorithm for searching a given graph. Below, “bag” refers to an arbitrary data
structure that allows us to add and retrieve objects.

G = (V,E): graph. s: vertex in V .
AFS(〈G, s〉):

1 Put s into bag.
2 While bag is non-empty:
3 Pick an arbitrary vertex v from bag.
4 If v is unmarked:
5 Mark v.
6 For each neighbor w of v:
7 Put w into bag.

Note that when a vertex w is added to the bag, it gets there because it is the
neighbor of a vertex v that has been just marked by the algorithm. In this case,
we’ll say that v is the parent of w (and w is the child of v). Explicitly keeping
track of this parent-child relationship is convenient, so we modify the above
algorithm to keep track of this information. Below, a tuple of vertices (v, w)
has the meaning that vertex v is the parent of w. The initial vertex s has no
parent, so we denote this situation by (⊥, s).
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G = (V,E): graph. s: vertex in V .
AFS(〈G, s〉):

1 Put (⊥, s) into bag.
2 While bag is non-empty:
3 Pick an arbitrary tuple (p, v) from bag.
4 If v is unmarked:
5 Mark v.
6 parent(v) = p.
7 For each neighbor w of v:
8 Put (v, w) into bag.

Definition 8.12 (Breadth-first search (BFS) algorithm).
The breadth-first search algorithm, denoted BFS, is AFS where the bag is chosen
to be a queue data structure.

Definition 8.13 (Depth-first search (DFS) algorithm).
The depth-first search algorithm, denoted DFS, is AFS where the bag is chosen
to be a stack data structure.

8.2.2 Minimum spanning tree

Definition 8.14 (Minimum spanning tree (MST) problem).
In the minimum spanning tree problem, the input is a connected undirected graph
G = (V,E) together with a cost function c : E → R+. The output is a subset
of the edges of minimum total cost such that, in the graph restricted to these
edges, all the vertices of G are connected.2 For convenience, we’ll assume that
the edges have unique edge costs, i.e. e 6= e′ =⇒ c(e) 6= c(e′).

Theorem 8.15 (MST cut property).
Suppose we are given an instance of the MST problem. For any V ′ ⊆ V , let e =
{u,w} be the cheapest edge with the property that u ∈ V ′ and w ∈ V \V ′. Then e
must be in the minimum spanning tree.

Proof. Let T be the minimum spanning tree. The proof is by contradiction, so
assume that e = {u,w} is not in T . Since T spans the whole graph, there must
be a path from u to w in T . Let e′ = {u′, w′} be the first edge on this path such
that u′ ∈ V ′ and w′ ∈ V \V ′. Let Te−e′ = (T\{e′}) ∪ {e}. If Te−e′ is a spanning
tree, then we reach a contradiction because Te−e′ has lower cost than T (since
c(e) < c(e′)).

2Obviously this subset of edges would not contain a cycle since if it did, we could remove any
edge on the cycle, preserve the connectivity property, and obtain a cheaper set. Therefore, this set
forms a tree.
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Te−e′ is a spanning tree: Clearly Te−e′ has n − 1 edges (since T has n − 1
edges). So if we can show that Te−e′ is connected, this would imply that Te−e′
is a tree and touches every vertex of the graph, i.e., Te−e′ is a spanning tree.
Consider any two vertices s, t ∈ V . There is a unique path from s to t in T .
If this path does not use the edge e′ = {u′, w′}, then the same path exists in
Te−e′ , so s and t are connected in Te−e′ . If the path does use e′ = {u′, w′}, then
instead of taking the edge {u′, w′}, we can take the following path: take the
path from u′ to u, then take the edge e = {u,w}, then take the path from w
to w′. So replacing {u′, w′} with this path allows us to construct a sequence
of vertices starting from s and ending at t, such that each consecutive pair of
vertices is an edge. Therefore s and t are connected.

Theorem 8.16 (Jarnı́k-Prim algorithm for MST).
There is an algorithm that solves the MST problem in polynomial time.

Proof. We first present the algorithm which is due to Jarnı́k and Prim. Given
an undirected graph G = (V,E) and a cost function c : E → R+:

G = (V,E): graph. c : E → R+: edge costs.
MST(〈G, c〉):

1 V ′ = {u} (for some arbitrary u ∈ V )
2 E′ = ∅.
3 While V ′ 6= V :
4 Let {u, v} be the minimum cost edge such that u ∈ V ′

but v 6∈ V ′.
5 Add {u, v} to E′.
6 Add v to V ′.
7 Output E′.

By Theorem 8.15 (MST cut property), the algorithm always adds an edge
that must be in the MST. The number of iterations is n − 1, so all the edges of
the MST are added to E′. Therefore the algorithm correctly outputs the unique
MST.

The running time of the algorithm can be upper bounded by O(nm) be-
cause there are O(n) iterations, and the body of the loop can be done in O(m)
time.

8.2.3 Topological sorting

Definition 8.17 (Topological order of a directed graph).
A topological order of an n-vertex directed graph G = (V,A) is a bijection f :
V → {1, 2, . . . , n} such that if (u, v) ∈ A, then f(u) < f(v).

Definition 8.18 (Topological sorting problem).
In the topological sorting problem, the input is a directed acyclic graph, and the
output is a topological order of the graph.

Lemma 8.19 (Acyclic directed graph has a sink).
If a directed graph is acyclic, then it has a sink vertex.
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Proof. By contrapositive: If a directed graph has no sink vertices, then it means
that every vertex has an outgoing edge. Start with any vertex, and follow an
outgoing edge to arrive at a new vertex. Repeat this process. At some point,
you have to visit a vertex that you have visited before. This forms a cycle.

Theorem 8.20 (Topological sort via DFS).
There is a O(n+m)-time algorithm that solves the topological sorting problem.

Proof. The algorithm is a slight variation of DFS.

G = (V,A): directed acyclic graph.
Top-Sort(〈G〉):

1 p = |V |.
2 For v not marked as visited:
3 Run DFS’(〈G, v〉).

G = (V,A): directed graph. v: v ∈ V .
DFS’(〈G, v〉):

1 Mark v as “visited”.
2 For each neighbor u of v:
3 If u is not marked visited:
4 Run DFS’(〈G, u〉).
5 f(v) = p.
6 p = p− 1.

4 Output f .

The running time is the same as DFS. To show the correctness of the algo-
rithm, all we need to show is that for (u, v) ∈ A, f(u) < f(v). There are two
cases to consider.

• Case 1: u is visited before v. In this case observe that DFS(〈G, v〉) will
finish before DFS(〈G, u〉). Therefore f(v) will be assigned a value before
f(u), and so f(u) < f(v).

• Case 2: v is visited before u. Notice that we cannot visit u from DFS(〈G, v〉)
because that would imply that there is a cycle. Therefore DFS(〈G, u〉) is
called after DFS(〈G, v〉) is completed. As before, f(v) will be assigned a
value before f(u), and so f(u) < f(v).
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Chapter 9

Matchings in Graphs

49



9.1 Maximum Matchings

Definition 9.1 (Matching – maximum, maximal, perfect).
A matching in a graph G = (V,E) is a subset of the edges that do not share an
endpoint. A maximum matching in G is a matching with the maximum number
of edges among all possible matchings. A maximal matching is a matching with
the property that if we add any other edge to the matching, it is no longer a
matching.1 A perfect matching is a matching that covers all the vertices of the
graph.

Definition 9.2 (Maximum matching problem).
In the maximum matching problem the input is an undirected graph G = (V,E)
and the output is a maximum matching in G.

Definition 9.3 (Augmenting path).
Let G = (V,E) be a graph and let M ⊆ E be a matching in G. An augmenting
path in G with respect to M is a path such that

(i) the path is an alternating path, which means that the edges in the path
alternate between being in M and not in M
(a single edge which is not in M satisfies this property),

(ii) the first and last vertices in the path are not a part of the matching M .

Theorem 9.4 (Characterization for maximum matchings).
Let G = (V,E) be a graph. A matching M ⊆ E is maximum if and only if there is no
augmenting path in G with respect to M .

Proof. The statement we want to prove is equivalent to the following. Given a
graph G = (V,E), a matching M ⊆ E is not maximum if and only if there is an
augmenting path in G with respect to M . There are two directions to prove.
First direction: Suppose there is an augmenting path in G with respect to M .
Then we want to show that M is not maximum. Let the augmenting path be
v1, v2, . . . , vk:

The highlighted edges represent edges in M . By the definition of an augment-
ing path, we know that v1 and vk are not matched by M . Since v1 and vk are
not matched and the path is alternating, the number of edges on this path that
are in the matching is one less than the number of edges not in the matching.
To see thatM is not a maximum matching, observe that we can obtain a bigger
matching by flipping the matched and unmatched edges on the augmenting
path. In other words, if an edge on the path is in the matching, we remove
it from the matching, and if an edge on the path is not in the matching, we
put it in the matching. This gives us a matching larger than M , so M is not
maximum.
Second direction: We now prove the other direction. In particular, we want to
show that if M is not a maximum matching, then we can find an augmenting

1Note that a maximal matching is not necessarily a maximum matching, but a maximum
matching is always a maximal matching.
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path in G with respect to M . Let M∗ denote a maximum matching in G. Since
M is not maximum, we know that |M | < |M∗|. We define the set S to be the set
of edges contained inM∗ orM , but not both. That is, S = (M∗∪M)\(M∗∩M).
If we color the edges in M with blue, and the edges in M∗ with red, then
S consists of edges that are colored either blue or red, but not both (i.e. no
purple edges). Below is an example:

(Horizontal edges correspond to the red edges. The rest is blue.) Our goal is to
find an augmenting path with respect to M in S (i.e., with respect to the blue
edges), and once we do this, the proof will be complete.

We now proceed to find an augmenting path with respect to M in S. To do
so, we make a couple of important observations about S. First, notice that each
vertex that is a part of S has degree 1 or 2 because it can be incident to at most
one edge in M and at most one edge in M∗. If the degree was more than 2, M
and M∗ would not be matchings. We make two claims:

(i) Because every vertex has degree 1 or 2, S consists of disjoint paths and
cycles.

(ii) The edges in these paths and cycles alternate between blue and red.

The proof of the first claim is omitted and is left as an exercise for the reader.
The second claim is true because if the edges were not alternating, i.e., if there
were two red or two blue edges in a row, then this would imply the red edges
or the blue edges don’t form a matching (remember that in a matching no two
edges can share an endpoint).

Since M∗ is a bigger matching than M , we know that S has more red edges
than blue edges. Observe that the cycles in S must have even length, because
otherwise the edges cannot alternate between blue and red. Therefore the cy-
cles have an equal number of red and blue edges. This implies that there must
be a path in S with more red edges than blue edges. In particular, this path
starts and ends with a red edge. This path is an augmenting path with re-
spect to M (i.e., the blue edges), since it is clearly alternating between edges
in M and edges not in M , and the endpoints are unmatched with respect to
M . So using the assumption that M is not maximum, we were able to find an
augmenting path with respect to M . This completes the proof.

Definition 9.5 (Bipartite graph).
A graph G = (V,E) is called bipartite if there is a partition2 of V into sets X
and Y such that all the edges in E have one endpoint in X and the other in
Y . Sometimes the bipartition is given explicitly and the graph is denoted by
G = (X,Y,E).

Definition 9.6 (k-colorable graphs).
Let G = (V,E) be a graph. Let k ∈ N+. A k-coloring of V is just a map χ : V →
C where C is a set of cardinality k. (Usually the elements of C are called colors.
If k = 3 then C = {red,green, blue} is a popular choice. If k is large, we often

2Recall that a partition of V into X and Y means that X and Y are disjoint and X ∪ Y = V .
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just call the “colors” 1, 2, . . . , k.) A k-coloring is said to be legal for G if every
edge in E is bichromatic, meaning that its two endpoints have different colors.
(I.e., for all {u, v} ∈ E it is required that χ(u) 6= χ(v).) Finally, we say that G is
k-colorable if it has a legal k-coloring.

Theorem 9.7 (Characterization of bipartite graphs).
A graph is bipartite if and only if it contains no odd-length cycles.

Proof. There are two directions to prove.
(=⇒): For this direction, we want to show that if a graph is bipartite, then it
contains no odd-length cycles. We prove the contrapositive. Observe that it is
impossible to 2-color an odd-length cycle. So if a graph contains an odd-length
cycle, the graph cannot be 2-colored, and therefore cannot be bipartite.
(⇐=): For this direction, we want to show that if a graph does not contain an
odd-length cycle, then it is bipartite. So suppose the graph contains no cycles
of odd length. Without loss of generality, assume the graph is connected (if it
is not, we can apply the argument to each connected component separately).
For u, v ∈ V , let dist(u, v) denote the length of the shortest path from u to v (or
from v to u). Pick a starting vertex/root s and consider the “BFS tree” rooted
at s. In this tree, level 0 corresponds to s, and level i corresponds to all vertices
v with dist(s, v) = i. Color odd-indexed levels blue, and color even-indexed
levels red.

The proof is done once we show that this is a valid 2-coloring of the graph.
To show this, we’ll argue that no edge has its endpoints colored the same color.
There are two types of edges we need to worry about that could potentially
have its endpoints colored the same color. We consider each type below.

First, there could potentially be an edge between two vertices u and v at
the same level. Let’s assume such an edge exists. Let w be the lowest common
ancestor of u and v. Note that dist(u,w) = dist(v, w), so the path from w to u,
plus the path from w to v, plus the edge {u, v}, form an odd-length cycle. This
is a contradiction.

Second, we need to consider the possibility that there is an edge between
a vertex u at level i and a vertex v at level i + 2k for some k > 0. However,
the existence of such an edge implies that dist(s, v) ≤ i + 1, which contradicts
the fact that v is at level i + 2k. So this type of edge cannot exist either. This
completes the proof.

Theorem 9.8 (Finding a maximum matching in bipartite graphs).
There is a polynomial time algorithm to solve the maximum matching problem in bi-
partite graphs.

Proof. Let G = (X,Y,E) be the input graph. The high level steps of the algo-
rithm is as follows.

• Let M = {{x, y}}where {x, y} ∈ E is an arbitrary edge.

• Repeat until there is no augmenting path with respect to M :

– Find an augmenting path with respect to M .

– Update M according to the augmenting path (swapping matched
and unmatched edges along the path).

Every time we find an augmenting path, we increase the size of our match-
ing by one. When there are no more augmenting paths, we stop and correctly
output a maximum matching (the correctness follows from Theorem 9.4 (Char-
acterization for maximum matchings)). The only unclear step of the algorithm
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is finding an augmenting path with respect to M . And we explain how to do
this step below. But before we do that, note that if this step can be done in
polynomial time, then the overall running time of the algorithm is polynomial
time since the loop repeats O(n) times and the work done in each iteration is
polynomial time.

We now show how to find an augmenting path (given G = (X,Y,E) and
M ⊆ E):

• Direct edges in E\M from X to Y .

• Direct edges in M from Y to X .

• For each unmatched x ∈ X :

– Run DFS(G, x).

– If you hit an unmatched y ∈ Y , output the path from x to y.

• Output “no augmenting path found.”

Notice that the goal of the algorithm is to find a directed path from an un-
matched x ∈ X to an unmatched y ∈ Y . The correctness of this part follows
from the following observation: There is an augmenting path with respect to
M if and only if there is a directed path (in the modified graph) from an un-
matched vertex x inX to an unmatched vertex y in Y . (We leave it to the reader
to verify this.) The running time is polynomial time since the loop repeats at
most O(n) times, and the work done in each iteration is polynomial time.

Theorem 9.9 (Hall’s Theorem).
Let G = (X,Y,E) be a bipartite graph. For a subset S of the vertices, let N(S) =⋃

v∈S N(v). Then G has a matching covering all the vertices in X if and only if for all
S ⊆ X , we have |S| ≤ |N(S)|.

Proof. There are two directions to prove.
(=⇒): For this direction, we need to show that if G has a matching covering
all the vertices in X , then every S ⊆ X satisfies |S| ≤ |N(S)|. We consider the
contrapositive. So suppose there is some S ⊆ X such that |S| > |N(S)|. The
vertices in S can only be matched to vertices in N(S), and since |S| > |N(S)|,
there cannot be a matching that covers every element in S. And this implies
there cannot be a matching covering every element of X .
(⇐=): For this direction, we need to show that if every S ⊆ X satisfies |S| ≤
|N(S)|, then there is a matching that covers all the vertices in X . We will prove
the contrapositive. So assume there is no matching that covers all the vertices
in X . Our goal is to find some S ⊆ X such that |S| > |N(S)|.

In order to identify such a set S, we need to make a couple of definitions.
Let M be a maximum matching and let x ∈ X be an element that it does not
cover. We turn G into a directed graph as follows: direct all edges not in M
from X to Y , and direct all edges in M from Y to X . We define L ⊆ X to be
the set of vertices in X that you can reach by a directed path starting at x (L
does not include x). And we define R ⊆ Y to be the set of all vertices in Y that
you can reach by a directed path starting at x. Here is an illustration:
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We will show that for S = L ∪ {x}, we have |S| > |N(S)|. We need two claims
to argue this.

Claim 1: |L| = |R|.
Proof : Each ` ∈ L is matched to some r ∈ R because the only way we can
reach an ` ∈ L is through an edge in the matching. Conversely, each r ∈ R
must be matched to some ` ∈ L since if this was not true, i.e., if there was an
unmatched r ∈ R, that would imply that the path from x to r is an augmenting
path, and this would contradict the fact that M is a maximum matching (The-
orem 9.4 (Characterization for maximum matchings)). Since every element of
L is matched by M to an element of R and vice versa, there is a one-to-one
correspondence between L and R, i.e., |L| = |R|.

Claim 2: In the original undirected graph, N(L ∪ {x}) ⊆ R.
(In fact, N(L ∪ {x}) = R but we only need one side of the inclusion.)
Proof : For any ` ∈ L ∪ {x}, we want to argue that N(`) ⊆ R. First consider the
case that ` = x. Then all the neighbors of x must be in R since all the edges
incident to x are directed from left to right. So N(x) ⊆ R, as desired. Now
consider any ` ∈ L. We want to argue that all the neighbors of ` must be in R.
To argue about the neighbors of `, we look at all the edges incident to `. In this
set of edges incident to `, exactly one edge e is in the matching M . Note that
e ∈ M is directed from Y to X , and must be incident to some r ∈ R because
the only way to reach ` is through some r ∈ R via e. If we now look at all the
other edges incident to `, note that they must be directed from X to Y , and
the vertices K ⊆ Y that they are incident to must be in R. This is because by
definition of L, ` ∈ L is reachable from x, which means the vertices inK would
also be reachable from x, and therefore would be in R (by the definition of R).
This shows that every neighbor of ` is in R, and completes the proof of Claim
2.

Combining Claim 1 and Claim 2 above, we have

|L ∪ {x}| > |R| ≥ |N(L ∪ {x})|,

i.e., for S = L ∪ {x}, |S| > |N(S)|, as desired.

Corollary 9.10 (Characterization of bipartite graphs with perfect matchings).
Let G = (X,Y,E) be a bipartite graph. Then G has a perfect matching if and only if
|X| = |Y | and for any S ⊆ X , we have |S| ≤ |N(S)|.

9.2 Stable Matchings

Definition 9.11 (Complete graph).
A graph G = (V,E) is called complete if E contains all the possible edges, i.e.,
{u, v} ∈ E for any distinct u, v ∈ V . A bipartite graph G = (X,Y,E) is called
complete if E contains all the possible edges between X vertices and Y ver-
tices.

Definition 9.12 (Stable matching problem).
An instance of the stable matching problem is a complete bipartite graph G =
(X,Y,E) with |X| = |Y |, and a preference list for each node of the graph. A
preference list for a node inX is an ordering of the Y vertices, and a preference
list for a node in Y is an ordering of the X vertices. Below is an example of an
instance of the stable matching problem:
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The output of the stable matching problem is a stable matching, which is defined
as a matching that satisfies two properties:

(i) The matching is a perfect matching.

(ii) There are no unstable pairs. A pair of vertices (x, y) where x ∈ X and
y ∈ Y is called unstable if they are not matched to each other, but they
both prefer each other to the partners they are matched to.

Theorem 9.13 (Gale-Shapley proposal algorithm).
There is a polynomial time algorithm which, given an instance of the stable matching
problem, always returns a stable matching.

Proof. We first describe the algorithm (which is called the Gale-Shapley algo-
rithm). For the sake of clear exposition, we refer to the elements of X as men,
and the elements of Y as women.

While there is a male m in X not matched, do the following:

• Let m be an arbitrary unmatched man.

• Let w be the highest ranked woman on m’s preference list to whom m
has not “proposed” yet.

• Let m “propose” to w.

• If w is unmatched or w prefers m over her current partner, match m and
w. (The previous partner of w, if there was any, is now unmatched.)

The theorem will follow once we show the following 3 things:

(a) the number of iterations in the algorithm is at most n2, where n = |X| =
|Y |;

(b) the algorithm always outputs a perfect matching;

(c) there are no unstable pairs with respect to this matching.

Part (a) implies that the algorithm is polynomial time. Parts (b) and (c) imply
that the matching returned by the algorithm is a stable matching.

Proof of (a): Notice that the number of iterations in the algorithm is equal
to the total number of proposals made. No man proposes to a woman more
than once, so each man makes at most n proposals. There are n men in total,
so the total number of proposals is at most n2.

Proof of (b): The proof is by contradiction, so suppose the algorithm does
not output a perfect matching. This means that some man, call it m, is not
matched to any woman. The proof can be broken down as follows:

m is not matched at the end =⇒ all women must be matched at the end
=⇒ all men must be matched at the end.
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This obviously leads to the desired contradiction. The second implication is
quite simple: since there are an equal number of men and women, the only
way all the women can be matched at the end is if all the men are matched.
To show the first implication, notice that since m is not matched at the end, he
got rejected by all the women he proposed to. Either he got rejected because
the woman preferred her current partner, or he got rejected by a woman that
he was already matched with. Either way, all the women that m proposed to
must have been matched to someone at some point in the algorithm. But once
a woman is matched, she never goes back to being unmatched. So at the end
of the algorithm, all the women must be matched.

Proof of (c): We first make a crucial observation. As the algorithm proceeds,
a man can only go down in his preference list, and a woman can only go up in
her preference list. Now consider any pair (m,w) where m ∈ X , w ∈ Y , and
m and w are not matched by the algorithm. We want to show that this pair is
not unstable. Let w′ be the woman that m is matched to, and let m′ be the man
that w is matched to.

There are two cases to consider:

(i) m proposed to w at some point in the algorithm,

(ii) m never proposed to w.

If (i) happened, then w must have rejected m at some point, which implies w
must prefer m′ over m (recall w can only go up in her preference list). This
implies w does not prefer m over her current partner, and so (m,w) is not
unstable. If (ii) happened, then w′ must be higher on the preference list of m
than w (recall m can only go down in his preference list). This implies m does
not prefer w over his current partner, and so (m,w) is not unstable. So in either
case, (m,w) is stable, and we are done.

Definition 9.14 (Best and worst valid partners).
Consider an instance of the stable matching problem. We say that m ∈ X is
a valid partner of w ∈ Y (or w is a valid partner of m) if there is some stable
matching in which m and w are matched. For u ∈ X ∪ Y , we define the best
valid partner of u, denoted best(u), to be the highest ranked valid partner of
u. Similarly, we define the worst valid partner of u, denoted worst(u), to be the
lowest ranked valid partner of u.

Theorem 9.15 (Gale-Shapley is male optimal).
The Gale-Shapley algorithm always matches a malem ∈ X with its best valid partner,
i.e., it returns {(m, best(m)) : m ∈ X}.

Proof. The proof is by contradiction so assume that at the end of the Gale-
Shapley algorithm, there is some man not matched to his best valid partner.
This means that in the algorithm, some man gets rejected by a valid partner.
Consider the first time that this happens in the algorithm. Let m be this man
and w be the valid partner that rejects m. Let m′ be the man that w is matched
to right after rejecting m. Note that w prefers m′ over m.
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Since w is a valid partner of m, by definition, there is some stable match-
ing in which m and w are matched. Let w′ be the match of m′ in this stable
matching.

We will now show that (m′, w) forms an unstable pair in the above stable
matching, so in fact, the matching cannot be stable. This is the desired contra-
diction.

We already know that w prefers m′ over m. So we just need to argue that
m′ prefers w over w′. And this is where we are going to use the assumption
that m is the first male in the Gale-Shapley algorithm to be rejected by a valid
partner. If m′ actually preferred w′ over w, than m′ would have to be rejected
by w′ in the algorithm as m′ later gets matched to w. This would mean m′ was
rejected by a valid partner before m was. Since we know this is not the case,
we know that m′ must prefer w over w′. This concludes the proof.
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Chapter 10

Boolean Circuits
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10.1 Basic Definitions

Definition 10.1 (Boolean circuit).
A Boolean circuit with n-input variables (n ≥ 0) is a directed acyclic graph
with the following properties. Each node of the graph is called a gate and each
directed edge is called a wire. There are 5 types of gates that we can choose to
include in our circuit: AND gates, OR gates, NOT gates, input gates, and con-
stant gates. There are 2 constant gates, one labeled 0 and one labeled 1. These
gates have in-degree/fan-in1 0. There are n input gates, one corresponding to
each input variable. These gates also have in-degree/fan-in 0. An AND gate
corresponds to the binary AND operation ∧ and an OR gate corresponds to
the binary OR operation ∨. These gates have in-degree/fan-in 2. A NOT gate
corresponds to the unary NOT operation ¬, and has in-degree/fan-in 1. One of
the gates in the circuit is labeled as the output gate. Gates can have out-degree
more than 1, with the exception of the output gate, which has out-degree 0.

For each 0/1 assignment to the input variables, the Boolean circuit pro-
duces a one-bit output. The output of the circuit is the output of the gate that
is labeled as the output gate. The output is calculated naturally using the truth
tables of the operations corresponding to the gates. The input-output behavior
of the circuit defines a function f : {0, 1}n → {0, 1} and in this case, we say
that the circuit computes this function.

Definition 10.2 (Circuit family).
A circuit family C is a collection of circuits, (C0, C1, C2, . . .), such that each Cn

is a circuit that has access to n input gates.

Definition 10.3 (A circuit family deciding/computing a decision problem).
Let f : {0, 1}∗ → {0, 1} be a decision problem and let fn : {0, 1}n → {0, 1}
be the restriction of f to words of length n. We say that a circuit family C =
(C0, C1, C2, . . .) decides/computes f if Cn computes fn for every n.

Definition 10.4 (Circuit size and complexity).
The size of a circuit is defined to be the number of gates in the circuit, excluding
the constant gates 0 and 1. The size of a circuit family C = (C0, C1, C2, . . .) is a
function S : N→ N such that S(n) equals the size of Cn. The circuit complexity
of a decision problem f = (f0, f1, f2, . . . ) is the size of the minimal circuit
family that decides f . In other words, the circuit complexity of f is defined
to be a function CCf : N → N such that CCf (n) is the minimum size of a
circuit computing fn. Using the correspondence between decision problems
and languages, we can also define the circuit complexity of a language in the
same manner.2

10.2 3 Theorems on Circuits

Theorem 10.5 (O(2n) upper bound on circuit complexity).
Any language L ⊆ {0, 1}∗ can be computed by a circuit family of size O(2n).

1The in-degree of a gate is also known as the fan-in of the gate.
2Note that circuit complexity corresponds to the intrinsic complexity of the language with re-

spect to the computational model of Boolean circuits. In the case of Boolean circuits, intrinsic
complexity (i.e. circuit complexity) is well-defined.
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Proof. Let

Smax(n) = max
f :{0,1}n→{0,1}

size of the smallest circuit computing f.

Observe that the theorem follows once we show that Smax(n) = O(2n). Take
any function f : {0, 1}n → {0, 1}. Notice that we can write

f(x1, x2, . . . , xn) = (x1 ∧ f(1, x2, . . . , xn)) ∨ (¬x1 ∧ f(0, x2, . . . , xn)).

(This equality can be verified by considering the two cases x1 = 0 and x1 =
1. We leave this part to the reader.) Let C1 be the smallest size circuit that
computes f(1, x2, . . . , xn) and let C2 be the smallest size circuit that computes
f(0, x2, . . . , xn). Note that C1 and C2 compute functions on n−1 variables. We
can then construct a circuit for f(x1, x2, . . . , xn) by constructing a circuit for
(x1 ∧ f(1, x2, . . . , xn))∨ (¬x1 ∧ f(0, x2, . . . , xn)), as shown in the picture below.

Since the circuits C1 and C2 compute functions on n − 1 variables, their
size is bounded by Smax(n − 1) each. Then the size of the above circuit is at
most 2Smax(n−1) + 5 (the extra 5 gates are for x1, the NOT gate, the two AND
gates, and the output OR gate). Our construction above works for any function
f : {0, 1}n → {0, 1}, so we can conclude that Smax(n) ≤ 2Smax(n − 1) + 5.
Observe that Smax(0) = 1. It is then easy to solve the recurrence and verify
that Smax(n) = O(2n) (we omit this part of the proof).

Proposition 10.6 (Number of Boolean functions).
The set of all functions of the form f : {0, 1}n → {0, 1} has size 22n

.

Proof. A function of the form f : {0, 1}n → {0, 1} has 2n possible inputs. For
each input, we have 2 choices for the output, either 0 or 1. Therefore we have
22n

different functions.

Theorem 10.7 (Shannon’s Theorem).
There exists a language L ⊆ {0, 1}∗ such that any circuit family computing L must
have size at least 2n/5n.
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Proof. Our goal is to show that for all n, there is a function fn∗ : {0, 1}n → {0, 1}
which cannot be computed by a circuit of size less than 2n/5n. If we can do
this, then the decision problem f∗ = (f0

∗ , f
1
∗ , f

2
∗ , . . .) (see Note (Dividing the set

of words by length)) corresponds to the language such that any circuit family
computing it must have size at least 2n/5n.

Fix an arbitrary n. To show that there is some function fn∗ : {0, 1}n → {0, 1}
which cannot be computed by a circuit of size less than 2n/5n, our strategy
will be as follows. We will show that the total number of circuits of size less
than 2n/5n is strictly less than the total number of functions f : {0, 1}n → {0, 1}.
Since one circuit computes one function, this implies that there are not enough
circuits of size less than 2n/5n to compute every possible function. So there
exists at least one function which cannot be computed by a circuit of size less
than 2n/5n.

From Proposition 10.6 (Number of Boolean functions) we know that the
total number of functions f : {0, 1}n → {0, 1} is 22n

. In the next lemma
(Lemma 10.8 (Counting circuits)), we show that the number of possible cir-
cuits of size at most s is less than or equal to 25s log s. It is an easy exercise
(which we leave to the reader) to confirm that for s ≤ 2n/5n, 25s log s < 22n

.
In other words, for s ≤ 2n/5n, there are more functions than circuits, and the
result follows.

Lemma 10.8 (Counting circuits).
The number of possible circuits of size at most s is less than or equal to 25s log s.

Proof. Let A be the set of circuits of size at most s. We want to show that
|A| ≤ 25s log s. Let B = {0, 1}5s log s. Recall that |A| ≤ |B| if and only if there
is a surjection from B to A (or equivalently an injection from A to B). Since
|B| = 25s log s, we are done once we show there is a surjection from B to A.

To show that there is a surjection, it suffices to show how to encode a circuit
of size at most s with a binary string of length 5s log s.3 The encoding is as
follows. Number the gates of the circuit 1, 2, . . . , s. Note that it takes log2 s
bits to write down the number of a gate in binary. We’ll assume that the first
gate corresponds to the output gate. For each gate of the circuit, write down in
binary:

(i) type of the gate (constant, input, OR, AND, NOT),

(ii) from which gates the inputs are coming from.

Once we know (i) and (ii) for every gate, we have all the information to re-
construct the circuit. Note that (i) takes 3 bits to specify, and (ii) takes 2 log s
bits.4 Since we do this for each gate in the circuit, the total number of bits is
s(3 + 2 log s), which can be upper bounded by 5s log s.

Theorem 10.9 (Efficient TM implies efficient circuit).
Let L ⊆ {0, 1}∗ be a language which can be decided in O(T (n)) time. Then L can be
computed by a circuit family of size O(T (n)2).

Proof Sketch. 5

3Note the similarity to the CS method for showing a set is countable. Here, instead of showing
that a set if countable, we are putting a finite upper bound on the size of a set using the CS method.
We do this by showing how to encode the elements of the set with finite length strings with an
explicit upper bound on the length.

4It is true that some gates take no input, but we will still use 2 log s bits to specify that.
5The diagrams in this proof are redrawings of the ones in https://lucatrevisan.wordpress.

com/2010/04/25/cs254-lecture-3-boolean-circuits/.
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Let L be decided by a TM M in O(T (n)) time. For simplicity, we will as-
sume that M ’s tape is infinite in one direction (to the right) as opposed to infi-
nite in both directions.

Fix an arbitrary input length n. We want to design a circuit on n input bits
such that for the inputs accepted by M , the circuit will output 1, and for the
inputs rejected by M , the circuit will output 0. The size of our circuit will be
O(T (n)2).

Let’s denote the input by x1, x2, . . . , xn. We know that when M runs on
this input, it goes through configurations (see Definition 3.2 (A TM accepting
or rejecting a string)) c1, c2, . . . , ct, where each configuration ci is of the form
uqv for u, v ∈ Γ∗, q ∈ Q. Here the number of steps M takes is t so t = O(T (n)).
Consider a t× t table where row i corresponds to ci.

Observe that we need at most t columns because the TM can use at most t
cells in t steps. Each cell contains two pieces of information: (i) a state name
or NONE (if no state is given), (ii) a symbol from Γ. Let’s call this table A. In
the table above, NONE is represented with a box 2, and the input is assumed
to be the all-1 string. Observe that the contents of a cell of the table Ai,j are
determined by the contents of Ai−1,j−1, Ai−1,j and Ai−1,j+1.

The transition function of TM M governs this transformation. Assume each
cell encodes k bits of information. Note that k is a constant because |Q| and
|Γ| are constant. So the transition function is of the form {0, 1}3k → {0, 1}k. It
determines the contents of a cell based on the contents of the three cells above
it and it can be implemented by a circuit of constant size since k is constant.6

(Note that we can allow our circuit to have multiple output gates, one for each
output bit of the function.) Let’s call this circuit C. Now we can build a circuit
that computes the answer given by M as shown in the picture below.

6Recall that any function can be computed by a circuit (Theorem 10.5 (O(2n) upper bound on
circuit complexity)).
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The size of the circuit is at most ct2 for some constant c.

Definition 10.10 (Complexity class P).
We denote by P the set of all languages that can be decided in polynomial-time,
i.e., in time O(nk) for some constant k > 0.

Corollary 10.11 (A language in P has polynomial circuit complexity).
If L ∈ P, then L can be computed by a circuit family of polynomial size. Equivalently,
if L cannot be computed by a circuit family of polynomial size, then L 6∈ P.
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Chapter 11

Polynomial-Time Reductions
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11.1 Cook and Karp Reductions

Definition 11.1 (k-Coloring problem).
In the k-coloring problem, the input is an undirected graph G = (V,E), and
the output is True if and only if the graph is k-colorable (see Definition 9.6
(k-colorable graphs)). We denote this problem by kCOL. The corresponding
language is

{〈G〉 : G is a k-colorable graph}.

Definition 11.2 (Clique problem).
Let G = (V,E) be an undirected graph. A subset of the vertices is called a
clique if there is an edge between any two vertices in the subset. We say that
G contains a k-clique if there is a subset of the vertices of size k that forms a
clique.

In the clique problem, the input is an undirected graph G = (V,E) and a
number k ∈ N+, and the output is True if and only if the graph contains a
k-clique. We denote this problem by CLIQUE. The corresponding language is

{〈G, k〉 : G is a graph, k ∈ N+, G contains a k-clique}.

Definition 11.3 (Independent set problem).
Let G = (V,E) be an undirected graph. A subset of the vertices is called an in-
dependent set if there is no edge between any two vertices in the subset. We say
that G contains an independent set of size k if there is a subset of the vertices
of size k that forms an independent set.

In the independent set problem, the input is an undirected graph G = (V,E)
and a number k ∈ N+, and the output is True if and only if the graph contains
an independent set of size k. We denote this problem by IS. The corresponding
language is

{〈G, k〉 : G is a graph, k ∈ N+, G contains an independent set of size k}.

Definition 11.4 (Circuit satisfiability problem).
We say that a circuit is satisfiable if there is 0/1 assignment to the input gates
that makes the circuit output 1. In the circuit satisfiability problem, the input is
a Boolean circuit, and the output is True if and only if the circuit is satisfiable.
We denote this problem by CIRCUIT-SAT. The corresponding language is

{〈C〉 : C is a Boolean circuit that is satisfiable}.

Definition 11.5 (Boolean satisfiability problem).
Let x1, . . . , xn be Boolean variables, i.e., variables that can be assigned True
or False. A literal refers to a Boolean variable or its negation. A clause is an
“OR” of literals. For example, x1 ∨ ¬x3 ∨ x4 is a clause. A Boolean formula in
conjunctive normal form (CNF) is an “AND” of clauses. For example,

(x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x1 ∨ ¬x5)

is a CNF formula. We say that a Boolean formula is satisfiable if there is a 0/1
assignment to the Boolean variables that makes the formula evaluate to 1.
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In the CNF satisfiability problem, the input is a CNF formula, and the output
is True if and only if the formula is satisfiable. We denote this problem by SAT.
The corresponding language is

{〈ϕ〉 : ϕ is a satisfiable CNF formula}.

In a variation of SAT, we restrict the input formula such that every clause has
exactly 3 literals (we call such a formula a 3CNF formula). This variation of
the problem is denoted by 3SAT.

Definition 11.6 (Karp reduction: Polynomial-time many-one reduction).
Let A and B be two languages. Suppose that there is a polynomial-time com-
putable function (also called a polynomial-time transformation) f : Σ∗ → Σ∗

such that x ∈ A if and only if f(x) ∈ B. Then we say that there is a polynomial-
time many-one reduction (or a Karp reduction, named after Richard Karp) from A
to B, and denote it by A ≤P

m B.

Theorem 11.7 (CLIQUE reduces to IS).
CLIQUE ≤P

m IS.

Proof. Following the previous important note, we start by presenting a com-
putable function f : Σ∗ → Σ∗.

G = (V,E): graph. k: positive integer.
f(〈G, k〉):

1 E′ = {{u, v} : {u, v} 6∈ E}.
2 Output 〈G′ = (V,E′), k〉.

(In a Karp reduction from A to B, when we define f : Σ∗ → Σ∗, it is stan-
dard to define it so that invalid instances of A are mapped to invalid instances
of B. We omit saying this explicitly when presenting the reduction, but you
should be aware that this is implicitly there in the definition of f . In the above
definition of f , for example, any string x that does not correspond to a valid
instance of CLIQUE (i.e., not a valid encoding of a graph G together with a
positive integer k) is mapped to an invalid instance of IS (e.g. they can be
mapped to ε, which we can assume to not be a valid instance of IS.))

To show that f works as desired, we first make a definition. Given a graph
G = (V,E), the complement of G is the graph G′ = (V,E′) where E′ = {{u, v} :
{u, v} 6∈ E}. In other words, we construct G′ by removing all the edges of G
and adding all the edges that were not present in G.

We now argue that x ∈ CLIQUE if and only if f(x) ∈ IS. First, assume
x ∈ CLIQUE. Then x corresponds to a valid encoding 〈G = (V,E), k〉 of
a graph and an integer. Furthermore, G contains a clique S ⊆ V of size
k. In the complement graph, this S is an independent set ({u, v} ∈ E for
all distinct u, v ∈ S implies {u, v} 6∈ E′ for all distinct u, v ∈ S). Therefore
〈G′ = (V,E′), k〉 ∈ IS. Conversely, if 〈G′ = (V,E′), k〉 ∈ IS, then G′ contains
an independent set S ⊆ V of size k. This set S is a clique in the complement
of G′, which is G. So the pre-image of 〈G′ = (V,E′), k〉 under f , which is
〈G = (V,E), k〉, is in CLIQUE.

Finally, we argue that the function f can be computed in polynomial time.
This is easy to see since the construction of E′ (and therefore G′) can be done
in polynomial time as there are polynomially many possible edges.
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Theorem 11.8 (CIRCUIT-SAT reduces to 3COL).
CIRCUIT-SAT ≤P

m 3COL.

Proof. To prove the theorem, we will present a Karp reduction from CIRCUIT-SAT
to 3COL. In particular, given a valid CIRCUIT-SAT instance C, we will con-
struct a 3COL instance G such that C is a satisfiable Boolean circuit if and only
if G is 3-colorable. Furthermore, the construction will be done in polynomial
time.

First, using Exercise (NAND is “universal”), we know that any Boolean
circuit with AND, OR, and NOT gates can be converted into an equivalent
circuit that only has NAND gates (in addition to the input gates and constant
gates). This transformation can easily be done in polynomial time. So without
loss of generality, we assume that our circuit C is a circuit with NAND gates,
input gates and constant gates. We constructG by converting each NAND gate
into the following graph.

The vertices labeled with x and y correspond to the inputs of the NAND gate.
The vertex labeled with ¬(x ∧ y) corresponds to the output of the gate. We
construct such a graph for each NAND gate of the circuit, however, we make
sure that if, say, gate g1 is an input to gate g2, then the vertex corresponding
to the output of g1 coincides with (is the same as) the vertex corresponding
to one of the inputs of g2. Furthermore, the vertices labeled with 0, 1 and n
are the same for each gate. In other words, in the whole graph, there is only
one vertex labeled with 0, one vertex labeled with 1, and one vertex labeled
with n. Lastly, we put an edge between the vertex corresponding to the output
vertex of the output gate and the vertex labeled with 0. This completes the
construction of the graph G. Before we prove that the reduction is correct, we
make some preliminary observations.

Let’s call the 3 colors we use to color the graph 0, 1 and n (we think of n
as “none”). Any valid coloring of G must assign different colors to 3 vertices
that form a triangle (e.g. vertices labeled with 0, 1 and n). If G is 3-colorable,
we can assume without loss generality that the vertex labeled 0 is colored with
the color 0, the vertex labeled 1 is colored with color 1, and the vertex labeled
n is colored with the color n. This is without loss of generality because if there
is a valid coloring of G, any permutation of the colors corresponds to a valid
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coloring as well. Therefore we can permute the colors so that the labels of those
vertices coincide with the colors they are colored with.

Notice that since the vertices corresponding to the inputs of a gate (i.e. the
x and y vertices) are connected to vertex n, they will be assigned the colors 0
or 1. Let’s consider two cases:

• If x and y are assigned the same color (i.e. either they are both 0 or they
are both 1), the vertex labeled with x ∧ y will have to be colored with
that same color. That is, the vertex labeled with x ∧ y must get the color
corresponding to the evaluation of x ∧ y. To see this, just notice that the
vertices labeled s1 and s2 must be colored with the two colors that x and
y are not colored with. This forces the vertex x ∧ y to be colored with the
same color as x and y.

• If x and y are assigned different colors (i.e. one is colored with 0 and the
other with 1), the vertex labeled with x ∧ y will have to be colored with
0. That is, as in the first case, the vertex labeled with x ∧ y must get the
color corresponding to the evaluation of x∧y. To see this, just notice that
one of the vertices labeled d1 or d2 must be colored with 1. This forces the
vertex x∧ y to be colored with 0 since it is already connected to vertex n.

In either case, the color of the vertex x∧y must correspond to the evaluation of
x∧y. It is then easy to see that the color of the vertex ¬(x∧y) must correspond
to the evaluation of ¬(x ∧ y).

We are now ready to argue that circuit C is satisfiable if and only if G is
3-colorable. Let’s first assume that the circuit we have is satisfiable. We want
to show that the graph G we constructed is 3-colorable. Since the circuit is sat-
isfiable, there is a 0/1 assignment to the input variables that makes the circuit
evaluate to 1. We claim that we can use this 0/1 assignment to validly color
the vertices of G. We start by coloring each vertex that corresponds to an in-
put variable: In the satisfying truth assignment, if an input variable is set to
0, we color the corresponding vertex with the color 0, and if an input variable
is set to 1, we color the corresponding vertex with the color 1. As we have
argued earlier, a vertex that corresponds to the output of a gate (the vertex at
the very bottom of the picture above) is forced to be colored with the color that
corresponds to the value that the gate outputs. It is easy to see that the other
vertices, i.e., the ones labeled s1, s2, d1, d2 and the unlabeled vertices can be
assigned valid colors. Once we color the vertices in this manner, the vertices
corresponding to the inputs and output of a gate will be consistently colored
with the values that it takes as input and the value it outputs. Recall that in the
construction of G, we connected the output vertex of the output gate with the
vertex labeled with 0, which forces it to be assigned the color 1. We know this
will indeed happen since the 0/1 assignment we started with makes the circuit
output 1. This shows that we can obtain a valid 3-coloring of the graph G.

The other direction is very similar. Assume that the constructed graph G
has a valid 3-coloring. As we have argued before, we can assume without loss
of generality that the vertices labeled 0, 1, and n are assigned the colors 0, 1,
and n respectively. We know that the vertices corresponding to the inputs of a
gate must be assigned the colors 0 or 1 (since they are connected to the vertex
labeled n). Again, as argued before, given the colors of the input vertices of a
gate, the output vertex of the gate is forced to be colored with the value that
the gate would output in the circuit. The fact that we can 3-color the graph
means that the output vertex of the output gate is colored with 1 (since it is
connected to vertex 0 and vertex n by construction). This implies that the colors
of the vertices corresponding to the input variables form a 0/1 assignment that
makes the circuit output a 1, i.e. the circuit is satisfiable.

To finish the proof, we must argue that the construction of graph G, given
circuitC, can be done in polynomial time. This is easy to see since for each gate
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of the circuit, we create at most a constant number of vertices and a constant
number of edges. So if the circuit has s gates, the construction can be done in
O(s) steps.

11.2 Hardness and Completeness

Definition 11.9 (C-hard, C-complete).
Let C be a set of languages containing P.

• We say that L is C-hard (with respect to Cook reductions) if for all lan-
guages K ∈ C, K ≤P L.
(With respect to polynomial time decidability, a C-hard language is at
least as “hard” as any language in C.)

• We say that L is C-complete if L is C-hard and L ∈ C.
(A C-complete language represents the “hardest” language in C with re-
spect to polynomial time decidability.)
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Chapter 12

Non-Deterministic Polynomial Time
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12.1 Non-Deterministic Polynomial Time NP

Definition 12.1 (Non-deterministic polynomial time, complexity class NP).
Fix some alphabet Σ. We say that a languageL can be decided in non-deterministic
polynomial time if there exists

(i) a polynomial-time decider TM V that takes two strings as input, and

(ii) a constant k > 0,

such that for all x ∈ Σ∗:

• if x ∈ L, then there exists u ∈ Σ∗ with |u| ≤ |x|k such that V (x, u) accepts,

• if x 6∈ L, then for all u ∈ Σ∗, V (x, u) rejects.

If x ∈ L, a string u that makes V (x, u) accept is called a proof (or certificate) of x
being in L. The TM V is called a verifier.

We denote by NP the set of all languages which can be decided in non-
deterministic polynomial time.

Proposition 12.2 (3COL is in NP).
3COL ∈ NP.

Proof. To show 3COL is in NP, we need to show that there is a polynomial-time
verifier TM A with the properties stated in Definition 12.1 (Non-deterministic
polynomial time, complexity class NP) (we are using A to denote the verifier
and not V because we will use V to denote the vertex set of a graph). Recall that
an instance of the 3COL problem is an undirected graph G. The description of
A is as follows.

G = (V,E): graph.
A(〈G〉, u):

1 If u is not a valid encoding of a 3-coloring of V , reject.
2 If there is {v, w} ∈ E where v and w have the same color,

reject.
3 Else, accept.

We now show that A satisfies the two conditions stated in Definition 12.1
(Non-deterministic polynomial time, complexity class NP). If x is in the lan-
guage, that means x is a valid encoding of a graph G = (V,E) and this graph
is 3-colorable. When u is a valid 3-coloring, |u| = O(|V |). And for this x and u,
the verifier accepts. On the other hand, if x is not in the language, then either
(i) x is not a valid encoding of a graph or (ii) it is a valid encoding of a graph
which is not 3-colorable. In case (i), the verifier rejects (which is done implicitly
since the input is not of the correct type). In case (ii), any u that does not cor-
respond to a 3-coloring of the vertices makes the verifier reject. Furthermore,
any u that does correspond to a 3-coloring of the vertices must be such that
there is an edge whose endpoints are colored with the same color. Therefore,
in this case, the verifier again rejects, as desired.

Now we show that the machine is polynomial-time. To check whether u is
a valid encoding of a 3-coloring of the vertices takes polynomial time since you
just need to check that you are given |V | colors, each being one of 3 colors. To
check that it is indeed a valid 3-coloring is polynomial time as well since you
just need to go through every edge once.

This completes the proof that 3COL is in NP.
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Proposition 12.3 (CIRCUIT-SAT is in NP).
CIRCUIT-SAT ∈ NP.

Proof. To show CIRCUIT-SAT is in NP, we need to show that there is a polynomial-
time verifier V with the properties stated in Definition 12.1 (Non-deterministic
polynomial time, complexity class NP). We start by presenting V .

C: Boolean circuit.
V (〈C〉, u):

1 If u does not correspond to a valid 0/1 assignment to
input gates, reject.

2 Compute the output of the circuit C(u).
3 If the output is 0, reject.
4 Else, accept.

We first show that the verifier V satisfies the two conditions stated in Def-
inition 12.1 (Non-deterministic polynomial time, complexity class NP). If x is
in the language, that means that x corresponds to a valid encoding of a cir-
cuit and there is some 0/1-assignment to the input gates that makes the circuit
output 1. When u is such a 0/1-assignment, then |u| = O(n) (where n is the
length of x), and the verifier accepts the input (x, u). On the other hand, if x
is not in the language, then either (i) x is not a valid encoding of a circuit or
(ii) it is a valid encoding of a circuit which is not satisfiable. In case (i), the
verifier rejects (which is done implicitly since the input is not of the correct
type). In case (ii), any u that does not correspond to a 0/1-assignment to the
input gates makes the verifier reject. Furthermore, any u that does correspond
to a 0/1-assignment to the input gates must be such that, with this assignment,
the circuit evaluates to 0. Therefore, in this case, the verifier again rejects, as
desired.

Now we show the verifier is polynomial-time. To check whether u is a
valid 0/1-assignment to the input gates takes polynomial time since you just
need to check that you are given t bits, where t is the number of input gates.
The output of the circuit can be computed in polynomial time since it takes
constant number of steps to compute each gate.

This completes the proof of CIRCUIT-SAT is in NP.

Proposition 12.4 (P is contained in NP).
P ⊆ NP.

Proof. Given a language L ∈ P, we want to show that L ∈ NP. Since L is in P,
we know that there is a polynomial-time decider M that decides L. To show
that L ∈ NP, we need to describe a polynomial-time verifier V that has the
properties described in Definition 12.1 (Non-deterministic polynomial time,
complexity class NP). The description of V is as follows.

V (x, u):
1 Run M(x).
2 If it accepts, accept.
3 Else, reject.

First, note that since M is a polynomial time decider, the line “Run M(x)”
takes polynomial time, and so V is polynomial-time. We now check that V
satisfies the two conditions stated in Definition 12.1 (Non-deterministic poly-
nomial time, complexity class NP). If x ∈ L, then M(x) accepts, so for any
u, V (x, u) accepts. For example, V (x, ε) accepts, and clearly |ε| = 0 ≤ |x|. If
x 6∈ L, then M(x) rejects, so no matter what u is, V (x, u) rejects, as desired.
This shows that L ∈ NP.
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Definition 12.5 (Complexity class EXP).
We denote by EXP the set of all languages that can be decided in at most
exponential-time, i.e., in time O(2n

C

) for some constant C > 0.

12.2 NP-complete problems

Theorem 12.6 (Cook-Levin Theorem).
CIRCUIT-SAT is NP-complete.

Theorem 12.7 (3COL is NP-complete).
3COL is NP-complete.

Proof. We have already done all the work to prove that 3COL is NP-complete.
First of all, in Proposition 12.2 (3COL is in NP), we have shown that 3COL ∈
NP. To show that 3COL is NP-hard, by the transitivity of reductions, it suffices
to show that CIRCUIT-SAT ≤P

m 3COL, which we have done in Theorem 11.8
(CIRCUIT-SAT reduces to 3COL).

Theorem 12.8 (3SAT is NP-complete).
3SAT is NP-complete.

Proof Sketch. We sketch the main ideas in the proof. To show that 3SAT is NP-
complete, we have to show that it is in NP and it is NP-hard. We leave the
proof of membership in NP as an exercise.

To show that 3SAT is NP-hard, by the transitivity of reductions, it suffices
to show that CIRCUIT-SAT ≤P

m 3SAT. Given an instance of CIRCUIT-SAT, i.e.
a Boolean circuit C, we will construct an instance of 3SAT, i.e. a Boolean CNF
formula ϕ in which every clause has exactly 3 literals. The reduction will be
polynomial-time and will be such that C is a Yes instance of CIRCUIT-SAT (i.e.
C is satisfiable) if and only if ϕ is a Yes instance of 3SAT (i.e. ϕ is satisfiable).

The construction is as follows. A circuit C has three types of gates (exclud-
ing the input-gates): NOT, OR, AND.

We will convert each such gate of the circuit C into a 3SAT formula. It is easy
to verify that

yi = ¬xi ⇐⇒ (xi ∨ yi) ∧ (¬xi ∨ ¬yi),
yk = xi ∨ xj ⇐⇒ (yk ∨ ¬xi) ∧ (yk ∨ ¬xj) ∧ (¬yk ∨ xi ∨ xj),
yk = xi ∧ xj ⇐⇒ (¬yk ∨ xi) ∧ (¬yk ∨ xj) ∧ (yk ∨ ¬xi ∨ ¬xj).

So the behavior of each gate can be represented using a Boolean formula. As
an example, consider the circuit below.
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In this case, we would let

Clause1 = (x1 ∨ y1) ∧ (¬x1 ∨ ¬y1)

Clause2 = (¬y2 ∨ x2) ∧ (¬y2 ∨ x3) ∧ (y2 ∨ ¬x2 ∨ ¬x3)

Clause3 = (y3 ∨ ¬y1) ∧ (y3 ∨ ¬y2) ∧ (¬y3 ∨ y1 ∨ y2),

and the Boolean formula equivalent to the circuit would be

ϕ = Clause1 ∧ Clause2 ∧ Clause3 ∧ y3.

This is not quite a 3SAT formula since each clause does not necessarily have
exactly 3 literals. However, each clause has at most 3 literals, and every clause
in the formula can be converted into a clause with exactly 3 literals by dupli-
cating a literal in the clause if necessary.

This completes the description of how we construct a 3SAT formula from
a Boolean circuit. We leave it as an exercise to the reader to verify that C is
satisfiable if and only if ϕ is satisfiable, and that the reduction can be carried
out in polynomial time.

Theorem 12.9 (CLIQUE is NP-complete).
CLIQUE is NP-complete.

Proof. To show that CLIQUE is NP-complete, we have to show that it is in NP
and it is NP-hard. Exercise (CLIQUE is in NP) asks you to show that CLIQUE
is in NP, so we will show that CLIQUE is NP-hard by presenting a reduction
from 3SAT to CLIQUE.

Our reduction will be a Karp reduction. Given an instance of 3SAT, i.e. a
Boolean formula ϕ, we will construct an instance of CLIQUE, 〈G, k〉 where G
is a graph and k is a number, such that ϕ is a Yes instance of 3SAT (i.e. ϕ is
satisfiable) if and only if 〈G, k〉 is a Yes instance of CLIQUE (i.e. G contains a
k-clique). Furthermore, this construction will be done in polynomial time.

Let

ϕ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (am ∨ bm ∨ cm),

where each ai, bi and ci is a literal, be an arbitrary 3SAT formula. Notice that
ϕ is satisfiable if and only if there is a truth assignment to the variables so that
each clause has at least one literal set to True. From this formula, we build a
graph G as follows. For each clause, we create 3 vertices corresponding to the
literals of that clause. So in total the graph has 3m vertices. We now specify
which vertices are connected to each other with an edge. We do not put an edge
between two vertices if they correspond to the same clause. We do not put an
edge between xi and ¬xi for any i. Every other pair of vertices is connected
with an edge. This completes the construction of the graph. We still need to
specify k. We set k = m.

As an example, if ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x1 ∨ ¬x1),
then the corresponding graph is as follows:
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We now prove that ϕ is satisfiable if and only if G has a clique of size m. If
ϕ is satisfiable, then there is an assignment to the variables such that in each
clause, there is at least one literal set to True. We claim that the vertices that
correspond to these literals form a clique of size m in G. It is clear that the
number of such vertices is m. To see that they form a clique, notice that the
only way two of these vertices do not share an edge is if they correspond to xi
and ¬xi for some i. But a satisfying assignment cannot assign True to both xi
and ¬xi.

For the other direction, suppose that the constructed graph G has a clique
K of size m. Since there are no edges between two literals if they are in the
same clause, there must be exactly one vertex from each clause in K. We claim
that we can set the literals corresponding to these vertices to True and therefore
show that ϕ is satisfiable. To see this, notice that the only way we could not
simultaneously set these literals to True is if two of them correspond to xi and
¬xi for some i. But there is no edge between such literals, so they cannot both
be in the same clique.

This completes the correctness of the reduction. We still have to argue that
it can be done in polynomial time. This is rather straightforward. Creating
the vertex set of G is clearly polynomial-time since there is just one vertex for
each literal of the Boolean formula. Similarly, the edges can be easily added in
polynomial time as there are at most O(m2) many of them.

Theorem 12.10 (IS is NP-complete).
IS is NP-complete.

Proof. To show that IS is NP-complete, we have to show that it is in NP and it
is NP-hard. Exercise (IS is in NP) asks you to show that IS is in NP, so we show
that IS is NP-hard. By Theorem 12.9 (CLIQUE is NP-complete), we know that
CLIQUE is NP-hard, and by Theorem 11.7 (CLIQUE reduces to IS) we know
that CLIQUE ≤P

m IS. By the transitivity of reductions, we conclude that IS is
also NP-hard.

12.3 Proof of Cook-Levin Theorem

Proof of Cook-Levin Theorem. Using Theorem (Efficient TM implies efficient cir-
cuit), we can prove the famous Cook-Levin Theorem which states that CIRCUIT-
SAT is NP-complete. We present the proof below.

To prove this theorem, we have to show that CIRCUIT-SAT is in NP and
that it is NP-hard. We have already shown that CIRCUIT-SAT is in NP in
Proposition 12.3 (CIRCUIT-SAT is in NP). To show that is is NP-hard, we will
show that for any L ∈ NP, L ≤P

m CIRCUIT-SAT.
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Let L be an arbitrary language in NP. We will define a polynomial-time
computable function f : {0, 1}∗ → {0, 1}∗ that maps x ∈ {0, 1}∗ to a circuit
〈Cx〉 such that

x ∈ L ⇐⇒ Cx is satisfiable.

Since L is in NP, there is a polynomial-time verifier TM V and constants c, k
such that:

x ∈ L ⇐⇒ ∃u, |u| = c|x|k, V (x, u) = 1.

(Here we insist that the proof is of length exactly c|x|k, which is fine to do and
does not change the definition of NP.)

Note that V is just a regular decider TM. Using Theorem (Efficient TM im-
plies efficient circuit), we know that there exists a polynomial-size circuit fam-
ily that simulates V . LetC = C(x, u) be the circuit in this family with |x|+c|x|k
input gates (this is a circuit with input gates corresponding to the x-variables as
well as the u-variables). For x ∈ {0, 1}∗, let Cx be the circuit C where the input
gates xi are replaced with constant gates corresponding to the actual values of
the xi’s. So Cx is a circuit where the input gates correspond to the u-variables
only. Our function f : {0, 1}∗ → {0, 1}∗ thus maps x to 〈Cx〉. Observe that

x ∈ L ⇐⇒ ∃u, |u| = c|x|k, V (x, u) = 1

⇐⇒ Cx is satisfiable.

This shows x ∈ L if and only if 〈Cx〉 ∈ CIRCUIT-SAT, as desired.
It is not hard to argue that 〈Cx〉 can be constructed in polynomial time

(which we leave as an exercise to the reader).
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Chapter 13

Computational Social Choice
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13.1 Basic Definitions and Results

Definition 13.1 (Election, voters, alternatives, preference profile, voting rule).
An election is specified by 4 objects:

• Voters: a set of n voters N = {1, 2, . . . , n};

• Alternatives: a set of m alternatives denoted by A;

• Preference profile: for each voter, a ranking over the alternatives from
rank 1 to rank m;

• Voting rule: a function that maps a preference profile to an alternative.

The output of the voting rule is called the winner of the election.

Definition 13.2 (Pairwise election).
In a pairwise election, m = 2 and an alternative x wins if the majority of voters
prefer x over the other alternative.

Definition 13.3 (Condorcet winner).
We say that an alternative is a Condorcet winner if it beats every other alternative
in a pairwise election.

Definition 13.4 (Various voting rules).
The following are definitions of various voting rules. 1

• Plurality: Each voter awards one point to their top-ranked alternative.
The alternative with the most points is declared the winner.

• Borda count: Each voter awards m − k points to their k’th ranked alter-
native. The alternative with the most points is declared the winner.

• Plurality with runoff: There are 2 rounds. In the first round, a plurality
rule is applied to identify the top two alternatives. In the second round,
a pairwise election is done to determine the winner.

• Single transferable vote (STV): There are m − 1 rounds. In each round
a plurality rule is applied to identify and eliminate the alternative with
the lowest points. The alternative that survives every round is selected
as the winner.

• Copeland: An alternative’s score is the number of alternatives it would
beat in a pairwise election. The winner of the election is the alternative
with the highest score.

• Dodgson: Given a preference profile, define the Dodgson score of an alter-
native x as the number of swaps between adjacent alternatives needed in
the preference profile in order to make x a Condorcet winner. In Dodg-
son voting rule, the winner is an alternative with the minimum Dodgson
score.

1We’ll assume that ties are broken deterministically according to some order on the alternatives.
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Theorem 13.5 (Bartholdi-Tovey-Trick 1989).
Consider the following computational problem. Given as input an election, an alter-
native x in the election, and a number k, the output is True if and only if the Dodgson
score of x is at most k. This problem is NP-complete.

Definition 13.6 (Types of voting rules).
We call a voting rule

• majority consistent if given a preference profile such that a majority of
the voters rank an alternative x first, then x is the winner of the election;

• Condorcet consistent if given a preference profile such that there is an
alternative x that beats every other alternative in a pairwise election (i.e.
x is a Condorcet winner), then x is the winner of the election;

• onto if for any alternative, there is a preference profile such that the al-
ternative wins;

• dictatorial if there is a voter v such that no matter what the preference
profile is, the winner is v’s most preferred alternative;

• constant if no matter what the preference profile is, the same alternative
is the winner.

(The first 3 are considered to be desirable types of voting rules, whereas the
last 2 are considered undesirable.)

Definition 13.7 (Manipulation, strategy-proof (SP) voting rule).
Consider an election in which alternative x wins. We say that a voter can ma-
nipulate the voting rule of the election if by changing their preference list, they
can change the winner of the election to an alternative y that the voter ranks
higher than x. A voting rule is called strategy-proof if no voter can manipulate
the voting rule.

Theorem 13.8 (Gibbard-Satterthwaite).
If m ≥ 3 then any voting rule that is strategy-proof and onto is dictatorial. Equiva-
lently, any voting rule that is onto and nondictatorial is manipulable.

Definition 13.9 (r-Manipulation problem).
Let r be some voting rule. In the r-Manipulation problem, the input is an elec-
tion, a voter (called the manipulator), and an alternative (called the preferred
candidate). The output is True if there exists a ranking over the alternatives
for the manipulator that makes the preferred candidate a unique winner of the
election.

Theorem 13.10 (Greedy algorithm solves r-Manipulation problem for various
voting rules).
The greedy algorithm above is a polynomial-time algorithm that correctly solves the
r-Manipulation problem for

r ∈ {plurality, Borda count, plurality with runoff, Copeland}.

Theorem 13.11 (Bartholdi-Orlin 1991).
The r-Manipulation problem is NP-complete for r being the single transferable voting
(STV) rule.
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Chapter 14

Approximation Algorithms
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14.1 Basic Definitions

Definition 14.1 (Optimization problem).
A minimization optimization problem is a function f : Σ∗ × Σ∗ → R≥0 ∪ {no}. If
f(x, y) = α ∈ R≥0, we say that y is a solution to x with value α. If f(x, y) = no,
then y is not a solution to x. We let OPTf (x) denote the minimum f(x, y)
among all solutions y to x.1 We drop the subscript f , and just write OPT(x),
when f is clear from the context.

In a maximization optimization problem, OPTf (x) is defined using a maxi-
mum rather than a minimum.

We say that an optimization problem f is computable if there is an algo-
rithm such that given as input x ∈ Σ∗, it produces as output a solution y to
x such that f(x, y) = OPT(x). We often describe an optimization problem by
describing the input and a corresponding output (i.e. a solution y such that
f(x, y) = OPT(x)).

Definition 14.2 (Optimization version of the Vertex-cover problem).
Given an undirected graph G = (V,E), a vertex cover in G is a set S ⊆ V such
that for all edges in E, at least one of its endpoints is in S.2

The VERTEX-COVER problem is the following. Given as input an undi-
rected graph G together with an integer k, output True if and only if there is a
vertex cover in G of size at most k. The corresponding language is

{〈G, k〉 : G is a graph that has a vertex cover of size at most k}.

In the optimization version of VERTEX-COVER, we are given as input an
undirected graphG and the output is a vertex cover of minimum size. We refer
to this problem as MIN-VC.

Using the notation in Definition 14.1 (Optimization problem), the corre-
sponding function f is defined as follows. Let x = 〈G〉 for some graph G. If y
represents a vertex cover in G, then f(x, y) is defined to be the size of the set
that y represents. Otherwise f(x, y) = no.

Definition 14.3 (Approximation algorithm).

• Let f be a minimization optimization problem and let α > 1 be some
parameter. We say that an algorithm A is an α-approximation algorithm
for f if for all instances x, f(x,A(x)) ≤ α ·OPT(x).

• Let f be a maximization optimization problem and let 0 < β < 1 be some
parameter. We say that an algorithm A is a β-approximation algorithm
for f if for all instances x, f(x,A(x)) ≥ β ·OPT(x).

14.2 Examples of Approximation Algorithms

Lemma 14.4 (Vertex cover vs matching).
Given a graph G = (V,E), let M ⊆ E be a matching in G, and let S ⊂ V be a vertex
cover in G. Then, |S| ≥ |M |.

1There are a few technicalities. We will assume that f is such that every x has at least one
solution y, and that the minimum always exists.

2We previously called such a set a popular set.
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Proof. Observe that in a vertex cover, one vertex cannot be incident to more
than one edge of a matching. Therefore, a vertex cover must have at least |M |
vertices in order to touch every edge of M . (Recall that the size of a matching,
|M |, is the number of edges in the matching.)

Theorem 14.5 (Gavril’s Algorithm).
There is a polynomial-time 2-approximation algorithm for the optimization problem
MIN-VC.

Proof. We start by presenting the algorithm, which greedily chooses a maximal
matching M in the graph, and then outputs all the vertices that are incident to
an edge in M .

G = (V,E): undirected graph.
A(〈G〉):

1 Let M = ∅.
2 For each edge e ∈ E do:
3 If M ∪ {e} is a matching, let M = M ∪ {e}.
4 Let S = set of all the vertices incident to an edge in M .
5 Output S.

We need to argue that the algorithm runs in polynomial time and that it is
a 2-approximation algorithm. It is easy to see that the running-time is poly-
nomial. We have a loop that repeats |E| times, and in each iteration, we do at
most O(|E|) steps. So the total cost of the loop is O(|E|2). The construction of
S takes O(|V |) steps, so in total, the algorithm runs in polynomial time.

Now we argue that the algorithm is a 2-approximation algorithm. To do
this, we need to argue that

(i) S is indeed a valid vertex-cover,

(ii) if S∗ is a vertex cover of minimum size, then |S| ≤ 2|S∗|.

For (i), notice that the M constructed by the algorithm is a maximal matching,
i.e., there is no edge e ∈ E such thatM∪{e} is a matching. This implies that the
set S is indeed a valid vertex-cover, i.e., it touches every edge in the graph. For
(ii), a convenient lower bound on |S∗| is given by Lemma 14.4 (Vertex cover vs
matching): for any matching M , |S∗| ≥ |M |. Observe that |S| = 2|M |. Putting
the two together, we get |S| ≤ 2|S∗| as desired.

Definition 14.6 (Max-cut problem).
Let G = (V,E) be a graph. Given a coloring of the vertices with 2 colors, we
say that an edge e = {u, v} is cut if u and v are colored differently. In the max-
cut problem, the input is a graph G, and the output is a coloring of the vertices
with 2 colors that maximizes the number of cut edges. We denote this problem
by MAX-CUT.

Theorem 14.7 ((1/2)-approximation algorithm for MAX-CUT).
There is a polynomial-time 1

2 -approximation algorithm for the optimization problem
MAX-CUT.

Proof. Here is the algorithm:
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G = (V,E): undirected graph.
A(〈G〉):

1 Color every vertex with the same color. Let c = 0. (c
stores the number of cut edges.)

2 Repeat:
3 If there is a vertex such that changing its color increases

the number of cut edges, change the color of that vertex.
Update c.

4 Else, output the current coloring of the vertices.

We first argue that the algorithm runs in polynomial time. Note that the
maximum number of cut edges possible is |E|. Therefore the loop repeats at
most |E| times. In each iteration, the number of steps we need to take is at
most O(|V |2) since we can just go through every vertex once, and for each one
of them, we can check all the edges incident to it. So in total, the number of
steps is polynomial in the input length.

We now show that the algorithm is a 1
2 -approximation algorithm. It is clear

that the algorithm returns a valid coloring of the vertices. Therefore, if c is the
number of cut edges returned by the algorithm, all we need to show is that
c ≥ 1

2 OPT(〈G〉). We will use the trivial upper bound of m (the total number of
edges) on OPT(〈G〉), i.e. OPT(〈G〉) ≤ m. So our goal will be to show c ≥ 1

2m.
Observe that in the coloring that the algorithm returns, for each v ∈ V , at

least deg(v)/2 edges incident to v are cut edges. To see this, notice that if there
was a vertex such that this was not true, then we could change the color of the
vertex to obtain a solution that has strictly more cut edges, so our algorithm
would have changed the color of this vertex. From Theorem 8.4 (Handshake
Theorem), we know that when we count the number of edges of a graph by
adding up the degrees of all the vertices, we count every edge exactly twice,
i.e. 2m =

∑
v deg(v). In a similar way we can count the number of cut edges,

which implies 2c ≥
∑

v deg(v)/2. The RHS of this inequality is equal to m, so
we have c ≥ 1

2m, as desired.

Definition 14.8 (Traveling salesperson problem (TSP)).
In the Traveling salesperson problem, the input is a connected graph G = (V,E)
together with edge costs c : E → N. The output is a Hamiltonian cycle that
minimizes the total cost of the edges in the cycle, if one exists.

A popular variation of this problem is called Metric-TSP. In this version of
the problem, instead of outputting a Hamiltonian cycle of minimum cost, we
output a “tour” that starts and ends at the same vertex and visits every vertex
of the graph at least once (so the tour is allowed to visit a vertex more than
once). In other words, the output is a list of vertices vi1 , vi2 , . . . , vik , vi1 such
that the vertices are not necessarily unique, all the vertices of the graph appear
in the list, any two consecutive vertices in the list form an edge, and the total
cost of the edges is minimized.

Theorem 14.9 (2-approximation algorithm for Metric-TSP).
There is a polynomial-time 2-approximation algorithm for Metric-TSP.

Proof. The algorithm first computes a minimum spanning tree, and then does a
depth-first search on the tree starting from an arbitrary vertex. More precisely:

G = (V,E): connected graph. c : E → N: function.
A(〈G, c〉):

1 Compute a MST T of G.
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2 Let v be an arbitrary vertex in V .
3 Let L be an empty list.
4 Run DFS(〈T, v〉).

G = (V,E): graph. v: v ∈ V .
DFS(〈G, v〉):

1 Mark v as “visited”.
2 Add v to L.
3 For each u ∈ N(v):
4 If u is not marked “visited”, then

run DFS(〈G, u〉).
5 Add v to L.

5 Output L.

This is clearly a polynomial-time algorithm since computing a minimum
spanning tree (Theorem 8.16 (Jarnı́k-Prim algorithm for MST)) and doing a
depth-first search both take polynomial time.

To see that the algorithm outputs a valid tour, note that it visits every vertex
(since T is a spanning tree), and it starts and ends at the same vertex v.

Let c(L) denote the total cost of the tour that the algorithm outputs. Let
L∗ be a optimal solution (so c(L∗) = OPT(〈G, c〉)). Our goal is to show that
c(L) ≤ 2c(L∗). The graph induced by L∗ is a connected graph on all of the
vertices. Let T ∗ be a spanning tree within this induced graph. It is clear that
c(L∗) ≥ c(T ∗) and this will be the convenient lower bound we use on the
optimum. In other words, we’ll show c(L) ≤ 2c(T ∗). Clearly c(L) = 2c(T )
since the tour uses every edge of T exactly twice. Furthermore, since T is a
minimum spanning tree, c(T ) ≤ c(T ∗). Putting these together, we have c(L) ≤
2c(T ∗), as desired.

Definition 14.10 (Max-coverage problem).
In the max-coverage problem, the input is a set X , a collection of (possibly inter-
secting) subsets S1, S2, . . . , Sm ⊆ X (we assume the union of all the sets is X),
and a number k ∈ {0, 1, . . . ,m}. The output is a set T ⊆ {1, 2, . . . ,m} of size
k that maximizes | ∪i∈T Si| (the elements in this intersection are called covered
elements). We denote this problem by MAX-COVERAGE.
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Chapter 15

Probability Theory
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15.1 Probability I: The Basics

15.1.1 Basic Definitions

Definition 15.1 (Finite probability space, sample space, probability distribu-
tion).
A finite probability space is a tuple (Ω,Pr), where

• Ω is a non-empty finite set called the sample space;

• Pr : Ω → [0, 1] is a function, called the probability distribution, with the
property that

∑
`∈Ω Pr[`] = 1.

The elements of Ω are called outcomes or samples. If Pr[`] = p, then we say that
the probability of outcome ` is p.

Definition 15.2 (Uniform distribution).
If a probability distribution Pr : Ω → [0, 1] is such that Pr[`] = 1/|Ω| for all
` ∈ Ω, then we call it a uniform distribution.

Definition 15.3 (Event).
Let (Ω,Pr) be a probability space. Any subset of outcomes E ⊆ Ω is called
an event. We abuse notation and write Pr[E] to denote

∑
`∈E Pr[`]. Using this

notation, Pr[∅] = 0 and Pr[Ω] = 1. We use the notation E to denote the event
Ω\E.

Definition 15.4 (Disjoint events).
We say that two events A and B are disjoint if A ∩B = ∅.

Definition 15.5 (Conditional probability).
Let B be an event with Pr[B] 6= 0. The conditional probability of outcome ` ∈ Ω
given B, denoted Pr[` | B], is defined as

Pr[` | B] =

{
0 if ` 6∈ B
Pr[`]
Pr[B] if ` ∈ B

For an event A, the conditional probability of A given B, denoted Pr[A | B], is
defined as

Pr[A | B] =
Pr[A ∩B]

Pr[B]
. (15.1)
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15.1.2 Three Useful Rules

Proposition 15.6 (Chain rule).
Let n ≥ 2 and let A1, A2, . . . , An be events. Then

Pr[A1 ∩ · · · ∩An] =

Pr[A1] ·Pr[A2 | A1] ·Pr[A3 | A1 ∩A2] · · ·Pr[An | A1 ∩A2 ∩ · · · ∩An−1].

Proof. We prove the proposition by induction on n. The base case with two
events follows directly from the definition of conditional probability. Let A =
An and B = A1 ∩ . . . ∩An−1. Then

Pr[A1 ∩ · · · ∩An] = Pr[A ∩B]

= Pr[B] ·Pr[A | B]

= Pr[A1 ∩ · · · ∩An−1] ·Pr[An | A1 ∩ · · · ∩An−1],

where we used the definition of conditional probability for the second equality.
Applying the induction hypothesis to Pr[A1 ∩ · · · ∩ An−1] gives the desired
result.

Proposition 15.7 (Law of total probability).
LetA1, A2, . . . , An, B be events such that theAi’s form a partition of the sample space
Ω. Then

Pr[B] = Pr[B ∩A1] + Pr[B ∩A2] + · · ·+ Pr[B ∩An].

Equivalently,

Pr[B] = Pr[A1] ·Pr[B | A1] + Pr[A2] ·Pr[B | A2] + · · ·+ Pr[An] ·Pr[B | An].

Proposition 15.8 (Bayes’ rule).
Let A and B be events. Then,

Pr[A | B] =
Pr[A] ·Pr[B | A]

Pr[B]
.

Proof. Since by definition Pr[B | A] = Pr[A∩B]/Pr[A], the RHS of the equal-
ity above simplifies to Pr[A ∩B]/Pr[B]. This, by definition, is Pr[A | B].

15.1.3 Independence

Definition 15.9 (Independent events).

• LetA andB be two events. We say thatA andB are independent if Pr[A∩
B] = Pr[A] · Pr[B]. Note that if Pr[B] 6= 0, then this is equivalent to
Pr[A | B] = Pr[A]. If Pr[A] 6= 0, it is also equivalent to Pr[B | A] =
Pr[B].

• Let A1, A2, . . . , An be events with non-zero probabilities. We say that
A1, . . . , An are independent if for any subset S ⊆ {1, 2, . . . , n},

Pr

[⋂
i∈S

Ai

]
=
∏
i∈S

Pr[Ai].
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15.2 Probability II: Random Variables

15.2.1 Basics of random variables

Definition 15.10 (Random variable).
A random variable is a function X : Ω→ R.

Definition 15.11 (Common events through a random variable).
Let X be a random variable and x ∈ R be some real value. We use

X = x to denote the event {` ∈ Ω : X(`) = x},
X ≤ x to denote the event {` ∈ Ω : X(`) ≤ x},
X ≥ x to denote the event {` ∈ Ω : X(`) ≥ x},
X < x to denote the event {` ∈ Ω : X(`) < x},
X > x to denote the event {` ∈ Ω : X(`) > x}.

For example, Pr[X = x] denotes Pr[{` ∈ Ω : X(`) = x}]. More generally, for
S ⊆ R, we use

X ∈ S to denote the event {` ∈ Ω : X(`) ∈ S}.

Definition 15.12 (Probability mass function (PMF)).
Let X : Ω→ R be a random variable. The probability mass function (PMF) of X
is a function pX : R→ [0, 1] such that for any x ∈ R, pX(x) = Pr[X = x].

Definition 15.13 (Expected value of a random variable).
Let X be a random variable. The expected value of X , denoted E[X], is defined
as follows:

E[X] =
∑
`∈Ω

Pr[`] ·X(`).

Equivalently,

E[X] =
∑

x∈range(X)

Pr[X = x] · x,

where range(X) = {X(`) : ` ∈ Ω}.

Proposition 15.14 (Linearity of expectation).
Let X and Y be two random variables, and let c1, c2 ∈ R be some constants. Then
E[c1X + c2Y ] = c1 E[X] + c2 E[Y ].

92



Proof. Define the random variable Z as Z = c1X + c2Y . Then using the defi-
nition of expected value, we have

E[c1X + c2Y ] = E[Z]

=
∑
`∈Ω

Pr[`] ·Z(`)

=
∑
`∈Ω

Pr[`] · (c1X(`) + c2Y (`))

=
∑
`∈Ω

Pr[`] · c1X(`) + Pr[`] · c2Y (`)

=

(∑
`∈Ω

Pr[`] · c1X(`)

)
+

(∑
`∈Ω

Pr[`] · c2Y (`)

)

= c1

(∑
`∈Ω

Pr[`] ·X(`)

)
+ c2

(∑
`∈Ω

Pr[`] · Y (`)

)
= c1 E[X] + c2 E[Y ],

as desired.

Corollary 15.15 (Linearity of expectation 2).
Let X1,X2, . . . ,Xn be random variables, and c1, c2, . . . , cn ∈ R be some constants.
Then

E[c1X1 + c2X2 + · · ·+ cnXn] = c1 E[X1] + c2 E[X2] + · · ·+ cn E[Xn].

In particular, when all the ci’s are 1, we get

E[X1 + X2 + · · ·+ Xn] = E[X1] + E[X2] + · · ·+ E[Xn].

Definition 15.16 (Indicator random variable).
Let E ⊆ Ω be some event. The indicator random variable with respect to E is
denoted by IE and is defined as

IE(`) =

{
1 if ` ∈ E,
0 otherwise.

Proposition 15.17 (Expectation of an indicator random variable).
Let E be an event. Then E[IE ] = Pr[E].

Proof. By the definition of expected value,

E[IE ] = Pr[IE = 1] · 1 + Pr[IE = 0] · 0
= Pr[IE = 1]

= Pr[{` ∈ Ω : IE(`) = 1}]
= Pr[{` ∈ Ω : ` ∈ E}]
= Pr[E].
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Definition 15.18 (Conditional expectation).
Let X be a random variable and E be an event. The conditional expectation of
X given the event E, denoted by E[X | E], is defined as

E[X | E] =
∑

x∈range(X)

x ·Pr[X = x | E].

Proposition 15.19 (Law of total expectation).
Let X be a random variable and A1, A2, . . . , An be events that partition the sample
space Ω. Then

E[X] = E[X | A1] ·Pr[A1] + E[X | A2] ·Pr[A2] + · · ·+ E[X | An] ·Pr[An].

Definition 15.20 (Independent random variables).
Two random variables X and Y are independent if for all x, y ∈ R, the events
X = x and Y = y are independent. The definition generalizes to more than
two random variables analogous to Definition 15.9 (Independent events).

15.2.2 The most fundamental inequality in probability theory

Theorem 15.21 (Markov’s inequality).
Let X be a non-negative random variable with non-zero expectation. Then for any
c > 0,

Pr[X ≥ cE[X]] ≤ 1

c
.

Proof. Let I be the indicator random variable for the event [X ≥ cE[X]]. Then
E[I] = Pr[X ≥ cE[X]], which corresponds to the LHS of the inequality above.
We claim that

I ≤ X

cE[X]
.

First, observe that the result follows from this claim: if we take the expectations
of both sides of the inequality, we get E[I] ≤ E[ X

cE[X] ] = E[X]
cE[X] = 1

c , as desired.
We now prove the above claim. The indicator random variable I can be

equal to either 0 or 1. If it is 0, then the inequality holds trivially because by
assumption X is non-negative (so E[X] is also non-negative) and c > 0. If
on the other hand I = 1, then the above inequality becomes equivalent to
1 ≤ X

cE[X] ⇔X ≥ cE[X], which must hold by the definition of I .1

1The notation I = 1 may seem strange at first. After all, I is a function, and 1 is an integer.
The meaning of this equality, however, should be clear from the context. When we are considering
the case I = 1, we are considering all ` ∈ Ω such that I(`) = 1. We have a similar situation for
I = 0. When we want to prove an inequality involving random variables, we must show that the
inequality holds for all inputs ` ∈ Ω.
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15.2.3 Three popular random variables

Definition 15.22 (Bernoulli random variable).
Let 0 < p < 1 be some parameter. If X is a random variable with probability
mass function pX(1) = p and pX(0) = 1−p, then we say that X has a Bernoulli
distribution with parameter p (we also say that X is a Bernoulli random variable).
We write X ∼ Bernoulli(p) to denote this. The parameter p is often called the
success probability.

Definition 15.23 (Binomial random variable).
Let X = X1+X2+· · ·+Xn, where the Xi’s are independent and for all i, Xi ∼
Bernoulli(p). Then we say that X has a binomial distribution with parameters n
and p (we also say that X is a binomial random variable). We write X ∼
Bin(n, p) to denote this.

Definition 15.24 (Geometric random variable).
Let X be a random variable with probability mass function pX such that for
n ∈ {1, 2, . . .}, pX(n) = (1 − p)n−1p. Then we say that X has a geometric dis-
tribution with parameter p (we also say that X is a geometric random variable).
We write X ∼ Geometric(p) to denote this.
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Chapter 16

Randomized Algorithms
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16.1 Monte Carlo and Las Vegas Algorithms

Definition 16.1 (Monte Carlo algorithm).
Let f : Σ∗ → Σ∗ be a computational problem. Let 0 ≤ ε < 1 be some parameter
and T : N→ N be some function. Suppose A is a randomized algorithm such
that

• for all x ∈ Σ∗, Pr[A(x) 6= f(x)] ≤ ε;

• for all x ∈ Σ∗, Pr[number of steps A(x) takes is at most T (|x|)] = 1.

(Note that the probabilities are over the random choices made by A.) Then
we say that A is a T (n)-time Monte Carlo algorithm that computes f with ε
probability of error.

Definition 16.2 (Las Vegas algorithm).
Let f : Σ∗ → Σ∗ be a computational problem. Let T : N→ N be some function.
Suppose A is a randomized algorithm such that

• for all x ∈ Σ∗, Pr[A(x) = f(x)] = 1, where the probability is over the
random choices made by A;

• for all x ∈ Σ∗, E[number of steps A(x) takes] ≤ T (|x|).

Then we say that A is a T (n)-time Las Vegas algorithm that computes f .

16.2 Monte Carlo Algorithm for the Minimum Cut

Problem

Definition 16.3 (Minimum cut problem).
In the minimum cut problem, the input is a connected undirected graph G,
and the output is a 2-coloring of the vertices such that the number of cut edges
is minimized. (See Definition 14.6 (Max-cut problem) for the definition of a cut
edge.) Equivalently, we want to output a non-empty subset S ( V such that
the number of edges between S and V \S is minimized. Such a set S is called
a cut and the size of the cut is the number of edges between S and V \S (note
that the size of the cut is not the number of vertices). We denote this problem
by MIN-CUT.

Definition 16.4 (Multi-graph).
A multi-graph G = (V,E) is an undirected graph in which E is allowed to be a
multi-set. In other words, a multi-graph can have multiple edges between two
vertices.1

Definition 16.5 (Contraction of two vertices in a graph).
Let G = (V,E) be a multi-graph and let u, v ∈ V be two vertices in the graph.
Contraction of u and v produces a new multi-graphG′ = (V ′, E′). Informally, in
G′, we collapse/contract the vertices u and v into one vertex and preserve the
edges between these two vertices and the other vertices in the graph. Formally,
we remove the vertices u and v, and create a new vertex called uv, i.e. V ′ =
V \{u, v} ∪ {uv}. The multi-set of edges E′ is defined as follows:

1Note that this definition does not allow for self-loops.
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• for each {u,w} ∈ E with w 6= v, we add {uv,w} to E′;

• for each {v, w} ∈ E with w 6= u, we add {uv,w} to E′;

• for each {w,w′} ∈ E with w,w′ 6∈ {u, v}, we add {w,w′} to E′.

Below is an example:

Theorem 16.6 (Contraction algorithm for min cut).
There is a polynomial-time Monte-Carlo algorithm that solves the MIN-CUT problem
with error probability at most 1/en, where n is the number of vertices in the input
graph.

Proof. The algorithm has two phases. The description of the first phase is as
follows.

G: connected undirected graph.
A(〈G〉):

1 Repeat until two vertices remain:
2 Select an edge {u, v} uniformly at random.
3 Contract u and v to obtain a new graph.
4 Two vertices remain, which corresponds to a partition of
V into V1 and V2. Output V1.

Let Gi denote the graph we have after i iterations of the algorithm. So
G0 = G, G1 is the graph after we contract one of the edges, and so on. Note
that the algorithm has n− 2 iterations because in each iteration the number of
vertices goes down by exactly one and we stop when 2 vertices remain.

This makes it clear that the algorithm runs in polynomial time: we have n−
2 iterations, and in each iteration we can contract an edge, which can be done
in polynomial time. Our goal now is to show that the success probability of the
first phase, i.e., the probability that the above algorithm outputs a minimum
cut, is at least

2

n(n− 1)
≥ 1

n2
.

In the second phase, we’ll boost the success probability to the desired 1−1/en.
We make two observations.
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Observation 1: For any i, a cut in Gi of size k corresponds to a cut in G = G0 of
size k. (We leave the proof of this as an exercise.)

Observation 2: For any i and any vertex v in Gi, the size of the minimum cut
(in G) is at most degGi

(v). This is because a single vertex v forms a cut by itself
(i.e. S = {v} is a cut), and the size of this cut is deg(v). By Observation 1, the
original graph G has a corresponding cut with the same size. Since the mini-
mum cut has the minimum possible size among all cuts in G, its size cannot be
larger than deg(v).

We are now ready to analyze the success probability of the first phase. Let
F ⊆ E correspond to an optimum solution, i.e., a minimum size set of cut
edges. We will show

Pr[algorithm finds F ] ≥ 2

n(n− 1)
.

Observe that if the algorithm picks an edge in F to contract, its output cannot
correspond to F . If the algorithm never contracts an edge in F , then its output
corresponds to F .2 In other words, the algorithm’s output corresponds to F if
and only if it never contracts an edge of F . Let Ei be the event that at iteration
i of the algorithm, an edge in F is contracted. As noted above, there are n − 2
iterations in total. Therefore

Pr[algorithm finds F ] = Pr[E1 ∩ E2 ∩ . . . ∩ En−2].

Using Proposition 15.6 (Chain rule), we have

Pr[E1 ∩ E2 ∩ . . . ∩ En−2] =

Pr[E1] ·Pr[E2 | E1] ·Pr[E3 | E1 ∩E2] · · ·Pr[En−2 | E1 ∩E2 ∩ . . . ∩En−3].
(16.1)

To lower bound the success probability of the algorithm, we’ll find a lower
bound for each term of the RHS of the above equation. We start with Pr[E1].
It is easy to see that Pr[E1] = |F |/m. However, it will be more convenient to
have a bound on Pr[E1] in terms of |F | and n rather than m. By Observation 2
above, we know

∀v ∈ V, |F | ≤ deg(v).

Using this, we have

2m =
∑
v∈V

deg(v) ≥ |F | · n, (16.2)

or equivalently, |F | ≤ 2m/n. Therefore,

Pr[E1] =
|F |
m
≤ 2

n
,

or equivalently, Pr[E1] ≥ 1−2/n. At this point, going back to Equality ((16.1))
above, we can write

Pr[algorithm finds F ] ≥(
1− 2

n

)
·Pr[E2 | E1] ·Pr[E3 | E1∩E2] · · ·Pr[En−2 | E1∩E2∩ . . .∩En−3].

We move onto the second term Pr[E2 | E1]. Let `1 be the number of edges
remaining after the first iteration of the algorithm. Then

Pr[E2 | E1] = 1−Pr[E2 | E1] = 1− |F |
`1
.

2We are not giving a detailed argument for this, but please do verify this for yourself.
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As before, using Observation 2, for any v in G1, |F | ≤ degG1
(v). Therefore, the

analog of Inequality ((16.2)) above for the graph G1 yields 2`1 ≥ |F |(n − 1).
Using this inequality,

Pr[E2 | E1] = 1− |F |
`1
≥ 1− 2|F |

|F |(n− 1)
= 1− 2

n− 1
.

Thus

Pr[algorithm finds F ] ≥(
1− 2

n

)
·
(

1− 2

n− 1

)
·Pr[E3 | E1∩E2] · · ·Pr[En−2 | E1∩E2∩ . . .∩En−3].

Applying the same reasoning for the rest of the terms in the product above, we
get

Pr[algorithm finds F ] ≥(
1− 2

n

)
·
(

1− 2

n− 1

)
·
(

1− 2

n− 2

)
· · ·
(

1− 2

n− (n− 3)

)
=(

n− 2

n

)
·
(
n− 3

n− 1

)
·
(
n− 4

n− 2

)
· · ·
(

2

4

)
·
(

1

3

)
.

After cancellations between the numerators and denominators of the fractions,
the first two denominators and the last two numerators survive, and the above
simplifies to 2/n(n − 1). So we have reached our goal for the first phase and
have shown that

Pr[algorithm finds F ] ≥ 2

n(n− 1)
=

1(
n
2

) ≥ 1

n2
.

This implies

Pr[algorithm finds a min-cut] ≥ 1

n2
.

In the second phase of the algorithm, we boost the success probability by
repeating the first phase t times using completely new and independent ran-
dom choices. Among the t cuts we find, we return the minimum-sized one. As
t grows, the success probability increases. Our analysis will show that t = n3

is sufficient for the bound we want. Let Ai be the event that our algorithm
does not find a min-cut at repetition i. Note that the Ai’s are independent since
our algorithm uses fresh random bits for each repetition. Also, each Ai has the
same probability, i.e. Pr[Ai] = Pr[Aj ] for all i and j. Therefore

Pr[our algorithm fails to find a min-cut] = Pr[A1 ∩ · · · ∩At]

= Pr[A1] · · ·Pr[At]

= Pr[A1]t.

From the analysis of the first phase, we know that

Pr[A1] ≤ 1− 1

n2
.

So

Pr[our algorithm fails to find a min-cut] ≤
(

1− 1

n2

)t

.

To upper bound this, we’ll use an extremely useful inequality:

∀x ∈ R, 1 + x ≤ ex.

We will not prove this inequality, but we provide a plot of the two functions
below.
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Notice that the inequality is close to being tight for values of x close to 0. Let-
ting x = −1/n2, we see that

Pr[our algorithm fails to find a min-cut] ≤ (1 + x)t ≤ ext = e−t/n
2

.

For t = n3, this probability is upper bounded by 1/en, as desired.
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