
1 Pancake Sorting Problem

Definition 1.1 (Pancake numbers).
We are given a stack of n pancakes, each of different size. Our goal is to sort this stack
from smallest to largest (largest being on the bottom of the stack). The only thing
we are allowed to do is to insert the spatula in between two pancakes (or between the
bottom pancake and the plate), and flip over all the pancakes that are on top of the
spatula.

We are interested in the maximum number of flips (in terms of n) we would need to
sort a stack of n pancakes, where the maximum is over all stacks with n pancakes. In
other words, we are interested in

Pn = max
S

min
A

number of flips that method A takes to sort stack S.

Here, the maximum is over all pancake stacks of size n, and the minimum is over all
methods/algorithms for sorting a given stack of pancakes. �

Notation 1.2. We represent a stack of n pancakes with a permutation of {1, 2, . . . , n}.
Here, the numbers correspond to how large the pancake is, so 1 represents the smallest
pancake and n represents the largest pancake. For example, (5 2 3 4 1) corresponds to
a stack of 5 pancakes, where the largest pancake 5 is at the top of the stack, and the
smallest pancake 1 is at the bottom.

Proposition 1.3 (Number of flips required for (5 2 3 4 1)). Let X denote the minimum
number of flips needed to sort the stack (5 2 3 4 1). Then X = 4.

Proof. To prove X ≤ 4, we show how to sort (5 2 3 4 1) in 4 flips:

(5 2 3 4 1)→ (1 4 3 2 5)→ (2 3 4 1 5)→ (4 3 2 1 5)→ (1 2 3 4 5).

We now prove X ≥ 4. The proof is by contradiction, so assume that there is a way to
sort (5 2 3 4 1) in 3 or less flips.
Observation. Right before a pancake is placed at the bottom of the stack, it must be
placed at the top of the stack.
Claim. The first flip must put 5 on the bottom of the stack.
Proof of Claim. Suppose the first flip does not put 5 on the bottom of the stack, so it
puts it somewhere in the middle. Then we can show that (5 2 3 4 1) cannot be sorted
in 3 or less flips. We know that after 3 flips, 5 must be placed at the bottom of the
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stack. The observation above implies that the second flip must send 5 to the top. So
in the first two flips, 5 first gets sent from the top to somewhere in the middle, and
then it gets flipped back up to the top. In other words, after 2 flips we end up with the
original stack (5 2 3 4 1). There is no way to sort (5 2 3 4 1) with the remaining flip,
which proves the claim.

So we know that the first flip must be (5 2 3 4 1) → (1 4 3 2 5). In the remaining
two flips, 4 must be placed next to 5. It is clear that 5 should not be touched (i.e., we
should not be flipping the whole stack). So we can ignore 5 and and just consider the
stack of 4 pancakes (1 4 3 2). We need to put 4 at the bottom of this stack in 2 flips.
Again, using the observation stated above, we know that 4 must be first placed at the
top of the stack. So the 2 flips must be (1 4 3 2)→ (4 1 3 2)→ (2 3 1 4). The resulting
stack is not sorted, which is the desired contradiction.

Theorem 1.4. For n ≥ 4, we have

n ≤ Pn ≤ 2n− 3.

The proof of the theorem follows from the following two lemmas.

Lemma 1.5. For n ≥ 2, we have Pn ≤ 2n− 3.

Proof. Consider the following algorithm for sorting an arbitrary stack of n pancakes.

• If n = 1: do nothing.

• If n = 2: sort the pancakes in one flip if they are not already sorted.

• Else (if n ≥ 3):

– Bring the largest pancake to the bottom of the stack in 2 flips.

– Recursively sort the remaining n− 1 pancakes.

Clearly,1 the algorithm correctly sorts a given stack of pancakes. Let T (n) be the
number of flips that this algorithm uses to sort a stack of n pancakes. By the definition
of Pn, Pn ≤ T (n). So we are done once we show T (n) ≤ 2n−3 for n ≥ 2. The recursive
relation that T (n) satisfies is

T (1) = 0,

T (2) ≤ 1,

T (n) ≤ 2 + T (n− 1) for n ≥ 3.

This implies that T (n) ≤ 2n− 3 for n ≥ 2, which completes the proof.2

1You should be careful using the word “clearly”. In this case, it is justified.
2To be more complete, you can prove T (n) ≤ 2n− 3 for n ≥ 2 with a quick induction. This part is

omitted.
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Exercise 1.6. Show by induction that the recurrence relation in the above proof solves
to T (n) ≤ 2n− 3 for n ≥ 2.

Lemma 1.7. For n ≥ 4, we have Pn ≥ n.

Proof. Given i, j ∈ {1, 2, . . . , n} and a pancake stack, we say that (i, j) form a bad pair
with respect to that stack if they are adjacent in the stack, and |i − j| > 1 (i.e., they
are not supposed to be adjacent once the stack is sorted). Observe that if two pancakes
are adjacent in a stack, they will remain adjacent if the spatula is never inserted in
between them. This means that if (i, j) form a bad pair, then any sorting method that
sorts the stack must insert the spatula in between i and j at some point. Note that
we can also consider the bottom pancake and the plate as a bad pair too. If we never
insert the spatula at the bottom of the stack, then the bottom pancake and the plate
will remain adjacent. So we extend our definition of a bad pair to include the plate too.

Now we can conclude that a stack with b bad pairs needs at least b flips to be sorted.
We finish the proof by showing that for n ≥ 4, there is a stack of n pancakes containing
n bad pairs. We do this by considering two cases: when n is even and when n is odd.
When n is even, the following stack has n bad pairs:

(2 4 6 · · · n− 2 n 1 3 5 · · · n− 1).

When n is odd, the following stack has n bad pairs:

(1 3 5 · · · n− 2 n 2 4 6 · · · n− 1).

(Note that the assumption n ≥ 4 is required so that the pancakes right in the middle
of the stacks form a bad pair.)

Exercise 1.8. Suppose we are allowed to take any contiguous set of pancakes and flip
them in place (they need not be on the top of the stack). Let Qn be the maximum over
stacks of size n of the minimum number of flips required to sort that stack, using this
new flipping operation. Show that n/2 ≤ Qn ≤ n− 1 for all n ≥ 2.
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