15-251: Great Theoretical Ideas In Computer Science

Recitation 2

Regular Announcements

- Homework Solution Sessions: Saturday and Sunday, 2:30-3:30, GHC 4101
- Homework Resubmission Deadline: Next Friday, 6:30 PM
- Come to us if you had difficulties on Homework 1

Definitions For All

- Deterministic Finite Automaton (DFA): A DFA M is a machine that reads a finite input one character at a time in one pass, transition from state to state, and ultimately accepts or rejects. Formally, M is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where
- Q is a finite, non-empty set of states
- Σ is the finite, non-empty alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the starting state
- $F \subseteq Q$ is the set of accepting states
- Regular language: A language L is regular if $L=L(M)$ for some DFA M (M decides L).
- We have shown that if L_{1} and L_{2} are both regular languages over Σ^{*}, for some fixed Σ, then the following are all regular.
- $\overline{L_{1}}$
- $L_{1} \cup L_{2}$
- $L_{1} \cap L_{2}$
- $L_{1} L_{2}$ (the concatenation of two regular languages)

Odd Ones Out

Draw a DFA that decides the language

$$
L=\{x: x \text { has an even number of } 1 \mathrm{~s} \text { and an odd number of } 0 \mathrm{~s}\}
$$

over the alphabet $\Sigma=\{0,1\}$.

Adam, I'm Ada!

Show that, if $|\Sigma|>1$, then

$$
L=\left\{x \mid x \in \Sigma^{*} \text { and } x=x^{r}\right\}
$$

is an irregular language.

Double Trouble

Given a regular language L over some alphabet Σ, we define

$$
K=\{x \mid x x \in L\} .
$$

Prove that K is also regular.

Multiple Multiples (Extra Problem)

Let $\Sigma=\{0,1\}$. For each $n \geq 1$, define

$$
C_{n}=\left\{x \in \Sigma^{*} \mid x \text { is a binary number that is a multiple of } n\right\} .
$$

Show that C_{n} is regular for all n.

States For Days (Extra Problem)

For any $n \geq 1$, let

$$
\mathcal{R}_{n}=\left\{x \mid x \in\{0,1\}^{*} \text { and the } n \text {-th symbol from the right is a } 1\right\} .
$$

Show that any DFA that accepts \mathcal{R}_{n} must have at least 2^{n} states.

