Recitation 2

Regular Announcements

- Homework Solution Sessions: Saturday and Sunday, 2:30 3:30, GHC 4101
- Homework Resubmission Deadline: Next Friday, 6:30 PM
- Come to us if you had difficulties on Homework 1

Definitions For All

- Deterministic Finite Automaton (DFA): A DFA M is a machine that reads a finite input one character at a time in one pass, transition from state to state, and ultimately accepts or rejects. Formally, M is a 5-tuple M = (Q, Σ, δ, q₀, F), where
 - -Q is a **finite**, **non-empty** set of states
 - Σ is the **finite**, **non-empty** alphabet
 - $\delta:Q\times\Sigma\to Q$ is the transition function
 - $q_0 \in Q$ is the starting state
 - $F \subseteq Q$ is the set of accepting states
- **Regular language**: A language L is regular if L = L(M) for some DFA M (M decides L).
- We have shown that if L_1 and L_2 are both regular languages over Σ^* , for some fixed Σ , then the following are all regular.

$$-\overline{L_1}$$

-
$$L_1 \cup L_2$$

-
$$L_1 \cap L_2$$

- L_1L_2 (the concatenation of two regular languages)

Odd Ones Out

Draw a DFA that decides the language

 $L = \{x : x \text{ has an even number of 1s and an odd number of 0s}\}$

over the alphabet $\Sigma = \{0, 1\}$.

Adam, I'm Ada!

Show that, if $|\Sigma| > 1$, then

$$L = \{x \mid x \in \Sigma^* \text{ and } x = x^r\}$$

is an irregular language.

Double Trouble

Given a regular language L over some alphabet Σ , we define

 $K = \{ x \mid xx \in L \}.$

Prove that K is also regular.

Multiple Multiples (Extra Problem)

Let $\Sigma = \{0, 1\}$. For each $n \ge 1$, define

 $C_n = \{ x \in \Sigma^* \mid x \text{ is a binary number that is a multiple of } n \}.$

Show that C_n is regular for all n.

States For Days (Extra Problem)

For any $n \ge 1$, let

 $\mathcal{R}_n = \{x \mid x \in \{0,1\}^* \text{ and the } n\text{-th symbol from the right is a } 1\}$.

Show that any DFA that accepts \mathcal{R}_n must have at least 2^n states.