15-251: Great Theoretical Ideas In Computer Science

Recitation 4

Announcements

Be sure to take advantage of the following resources :

- Homework Solution Sessions Saturday and Sunday 2:30-3:30 in GHC 4301
- Common Mistakes & Grading Rubrics check Piazza!

These Decidable Definitions Have Undecidable Ends

- A decider is a TM that halts on all inputs.
- A language L is undecidable if there is no TM M that halts on all inputs such that M(x) accepts if and only if x ∈ L.
- A language A reduces to B if it is possible to decide A using an algorithm that decides B as a subroutine. Denote this as A ≤ B (read: B is at least as hard as A)
- Countability cheat sheet : You are given a set A. Is it countable or uncountable?

 $|A| \leq |\mathbb{N}|$ (A is countable)

- Show directly an injection from A to \mathbb{N} $(A \hookrightarrow \mathbb{N})$ or a surjection from \mathbb{N} onto A $(\mathbb{N} \twoheadrightarrow A)$
- Show $|A| \leq |B|$, where B is one of \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$, \mathbb{Q} , $\overline{\Sigma^*}^{\mathfrak{s}}$, $\mathbb{Q}[x]$, etc.
- $|A| > |\mathbb{N}|$ (A is uncountable)
- Show directly using a diagonalization argument.
- Show that $|\{0,1\}^{\infty}| \leq |A|$, i.e. an injection from $\{0,1\}^{\infty}$ to A.

^aThis one is important and very powerful

Counting sheep

For each set below, determine if it is countable or not. Prove your answers.

- (a) $S = \{a_1 a_2 a_3 \dots \in \{0, 1\}^{\infty} \mid \forall n \ge 1 \text{ the string } a_1 \dots a_n \text{ contains more } 1\text{'s than } 0\text{'s.}\}.$
- (b) Σ^* , where Σ is an alphabet that is allowed to be countably infinite (e.g., $\Sigma = \mathbb{N}$).

Doesn't Look Like Anything (Decidable) To Me

Prove that the following languages are undecidable (below, M, M_1 , M_2 refer to TMs).

- (a) **REGULAR** = { $\langle M \rangle : L(M)$ is regular}.
- (b) **TOTAL** = { $\langle M \rangle$: *M* halts on all inputs}.
- (c) **DOLORES** = { $\langle M_1, M_2 \rangle$: $\exists w \in \Sigma^*$ such that both $M_1(w)$ and $M_2(w)$ accept}.

(Extra) Lose All Scripted Responses. Improvisation Only

Let **FINITE** = { $\langle M \rangle$: M is a TM and L(M) is finite}. Show that **TOTAL** \leq **FINITE**.

(Bonus) The Maize is not Meant For You

Josh Corn is trying to write a program P such that given a natural number n, P(n) is the most number of steps a TM on n states can take before halting. Show that this is not possible.