15-251: Great Theoretical Ideas In Computer Science

Recitation 4

Announcements

Be sure to take advantage of the following resources:

- Homework Solution Sessions - Saturday and Sunday 2:30-3:30 in GHC 4301
- Common Mistakes \& Grading Rubrics - check Piazza!

These Decidable Definitions Have Undecidable Ends

- A decider is a TM that halts on all inputs.
- A language L is undecidable if there is no TM M that halts on all inputs such that $M(x)$ accepts if and only if $x \in L$.
- A language A reduces to B if it is possible to decide A using an algorithm that decides B as a subroutine. Denote this as $A \leq B$ (read: B is at least as hard as A)
- Countability cheat sheet: You are given a set A. Is it countable or uncountable?

$$
|A| \leq|\mathbb{N}|(A \text { is countable }) \quad|A|>|\mathbb{N}|(A \text { is uncountable })
$$

- Show directly an injection from A to \mathbb{N} ($A \hookrightarrow \mathbb{N}$) or a surjection from \mathbb{N} onto A $(\mathbb{N} \rightarrow A)$
- Show $|A| \leq|B|$, where B is one of \mathbb{Z}, $\mathbb{Z} \times \mathbb{Z}, \mathbb{Q}, \Sigma^{*}{ }^{a}, \mathbb{Q}[x]$, etc.
${ }^{a}$ This one is important and very powerful
- Show directly using a diagonalization argument.
- Show that $\left|\{0,1\}^{\infty}\right| \leq|A|$, i.e. an injection from $\{0,1\}^{\infty}$ to A.

Counting sheep

For each set below, determine if it is countable or not. Prove your answers.
(a) $S=\left\{a_{1} a_{2} a_{3} \ldots \in\{0,1\}^{\infty} \mid \forall n \geq 1\right.$ the string $a_{1} \ldots a_{n}$ contains more 1's than 0's. $\}$.
(b) Σ^{*}, where Σ is an alphabet that is allowed to be countably infinite (e.g., $\Sigma=\mathbb{N}$).

Doesn't Look Like Anything (Decidable) To Me

Prove that the following languages are undecidable (below, M, M_{1}, M_{2} refer to TMs).
(a) REGULAR $=\{\langle M\rangle: L(M)$ is regular $\}$.
(b) TOTAL $=\{\langle M\rangle: M$ halts on all inputs $\}$.
(c) DOLORES $=\left\{\left\langle M_{1}, M_{2}\right\rangle: \exists w \in \Sigma^{*}\right.$ such that both $M_{1}(w)$ and $M_{2}(w)$ accept $\}$.

(Extra) Lose All Scripted Responses. Improvisation Only

Let FINITE $=\{\langle M\rangle: M$ is a TM and $L(M)$ is finite $\}$.
Show that TOTAL \leq FINITE.

(Bonus) The Maize is not Meant For You

Josh Corn is trying to write a program P such that given a natural number $n, P(n)$ is the most number of steps a TM on n states can take before halting. Show that this is not possible.

