15-251: Great Theoretical Ideas In Computer Science

Recitation 6

Announcements

- Midterm 1 next Wednesday, October 11! It will be held in DH 2315 from 6.30pm to 9.30pm in place of the writing session. (Note the later end time.)
- We will be holding topical reviews with the venues and times to be confirmed. Watch Piazza for updates!

Recap of some definitions and facts

- Regular graph
- The tree-nity (the three salient features of a tree)
- Hamiltonian cycle
- The handshake lemma

"Clearly" Correct

A connected graph with no cycles is a tree. Consider the following claim and its proof.
Claim: Any graph with n vertices and $n-1$ edges is a tree.
Proof: We prove the claim by induction. The claim is clearly true for $n=1$ and $n=2$. Now suppose the claim holds for $n=k$. We'll prove that it also holds for $n=k+1$. Let G be a graph with k vertices and $k-1$ edges. By the induction hypothesis, G is a tree (and therefore clearly connected). Add a new vertex v to G by connecting it with any other vertex in G. So we create a new graph G^{\prime} with $k+1$ vertices and k edges. The new vertex we added is clearly a leaf, so it clearly does not create a cycle. Also, since G was connected, G^{\prime} is clearly also connected. A connected graph with no cycles is a tree, so G^{\prime} is also a tree. So the claim follows by induction.

Explain why the given proof is incorrect.

23 Proofs 4 You

Give two proofs (one using induction and another using a degree counting argument) for the following claim: the number of leaves in a tree with $n \geq 2$ vertices is

$$
2+\sum_{\substack{v \in V \\ \operatorname{deg}(v) \geq 3}}(\operatorname{deg}(v)-2)
$$

Counting Colors 1, 2, 3, ...

Let $G=(V, E)$ be an undirected graph. Let $k \in \mathbb{N}^{+}$. A k-coloring of V is just a map $\chi: V \rightarrow C$ where C is a set of cardinality k. (Usually the elements of C are called colors. If $k=3$ then \{red, green, blue\} is a popular choice. If k is large, we often just call the colors $1,2, \ldots, k$.) A k-coloring is said to be
legal for G if every edge in E is bichromatic, meaning that its two endpoints have different colors. (I.e., for all $\{u, v\} \in E$ it is required that $\chi(u) \neq \chi(v)$.) Finally, we say that G is k-colorable if it has a legal k-coloring.
(a) Suppose G has no cycles of length greater than 251. Prove that G is 251-colorable. Hint: DFS.
(b) Give an example to show that the above is tight, i.e., find a graph G with no cycles of length greater than 251 that is not 250 -colorable.

(Extra) Long Walks

Suppose a graph G has minimum degree δ (so the vertex of lowest degree has degree δ). Show that G contains a path of length (at least) δ.

(Bonus) Graphitti

How many colors do you need to color the vertices of this graph?

