New Phrases

- We say a language is in P if there exists a polynomial time algorithm that decides the language.
- We say a problem is in NP if there exists a polynomial time verifier TM V such that for all $x \in \Sigma^*$, x is in L if and only if there exists a polynomial length certificate u such that $V(x, u) = 1$.
- We say there is a polynomial-time many-one reduction from A to B if there is a polynomial-time computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that $x \in A$ if and only if $f(x) \in B$. We write this as $A \leq^P_m B$. (We also refer to these reductions as Karp reductions.)
- A problem Y is NP-hard if for every problem $X \in NP$, $X \leq^P_m Y$.
- A problem is NP-complete if it is both in NP and NP-hard.

Not oPen

Show that NP is closed under union and intersection. Specifically, prove that if two languages, $L_1, L_2 \in NP$, then $L_1 \cap L_2 \in NP$ and $L_1 \cup L_2 \in NP$.

No Peeking

We define a vertex covering of a graph as a set of vertices such that each edge in the graph is incident to at least one vertex in the set.

$\text{VERTEX-COVER}: \{(G, k) : G \text{ is a graph, } k \text{ a natural number, } G \text{ contain a vertex covering of size } k\}$

Show VERTEX-COVER is NP-complete (Try reducing from 3SAT).

(Extra) No Privacy

DOUBLE-CLIQUE: Given a graph $G = (V, E)$ and a natural number k, does G contain two vertex-disjoint cliques of size k each?

Show DOUBLE-CLIQUE is NP-Complete.

(Bonus) Never Pausing

Prove that the Halting Problem is NP-hard.