

Anil Ada Ariel Procaccia (this time)

CAKE CUTTING

THE PROBLEM

- Cake is interval [0,1]
- Set of players $\mathsf{N} = \{1, \dots, n\}$
- Piece of cake $X \subseteq [0,1]$: finite union of disjoint intervals

THE PROBLEM

- Each player $i \in N$ has a non-negative valuation V_i over pieces of cake
- Additive: for $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: For all $i \in N$, $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ can cut $I' \subseteq I$ s.t. $V_i(I') = \lambda V_i(I)$

 $\frac{\alpha + \beta}{\alpha}$

Carnegie Mellon University

15251 Fall 2017: Lecture 10

FAIRNESS PROPERTIES

- Our goal is to find an allocation A_1, \ldots, A_n
- Proportionality:

 $\forall i \in N, V_i(A_i) \ge \frac{1}{n}$

- Envy-Freeness (EF): $\forall i, j \in N, V_i(A_i) \ge V_i(A_j)$
- Poll 1: For n = 2 which is stronger?
 - 1. Proportionality
 - 2. EF
 - 3. They are equivalent
 - 4. They are incomparable

15251 Fall 2017: Lecture 10

Carnegie Mellon University

FAIRNESS PROPERTIES

- Our goal is to find an allocation A_1,\ldots,A_n
- Proportionality:
 - $\forall i \in N, V_i(A_i) \geq \frac{1}{n}$
- Envy-Freeness (EF):

- Poll 2: For $n \ge 3$ which is stronger?
 - 1. Proportionality
 - 2. EF
 - 3. They are equivalent
 - 4. They are incomparable

Carnegie Mellon University

1/3

1

1/6

CUT-AND-CHOOSE

- Algorithm for n = 2 [Procaccia and Procaccia, circa 1985]
- Player 1 divides into two pieces X, Y s.t. $V_1(X) = 1/2, V_1(Y) = 1/2$

- Player 2 chooses preferred piece
- This is EF (hence proportional)

15251 Fall 2017: Lecture 10

Carnegie Mellon University

TIME COMPLEXITY

- Player 1 divides into two pieces X,Y s.t. $V_1(X) = 1/2, V_1(Y) = 1/2$
- Player 2 chooses preferred piece

THE ROBERTSON-WEBB MODEL

- Input size is n
- Two types of operations
 - Eval_i(x, y) returns $V_i([x, y])$
 - $\operatorname{Cut}_i(x, \alpha)$ returns y such that $V_i([x, y]) = \alpha$

THE ROBERTSON-WEBB MODEL

- Two types of operations
 - $\operatorname{Eval}_i(x, y) = V_i([x, y])$
 - $\operatorname{Cut}_i(x, \alpha) = y \text{ s.t. } V_i([x, y]) = \alpha$
- Poll 3: #operations needed to find an EF allocation when n = 2?

DUBINS-SPANIER

- Referee continuously moves knife
- Repeat: when piece left of knife is worth 1/n to player, player shouts "stop" and gets piece
- That player is removed
- Last player gets remaining piece

15251 Fall 2017: Lecture 10 Carnegie Mellon University of

DUBINS-SPANIER PROTOCOL

DUBINS-SPANIER

- Claim: The Dubins-Spanier protocol produces a proportional allocation
- Proof:
 - At stage 0, each of the n players values the whole cake at 1
 - At each stage, the allocated piece of cake is worth at most 1/n to the remaining players
 - Hence, if at stage k each of the remaining n-k players has value at least 1 - k/n for the remaining cake, then at stage k + 1 each of the remaining n - (k + 1) players has value at least $1-\frac{k+1}{n}$ for the remaining cake \blacksquare

15251 Fall 2017: Lecture 10

Carnegie Mellon University

DUBINS-SPANIER

What is the complexity of Dubins-Spanier in the RW model?

- Moving knife is not really needed
- Repeat: each player makes a mark at his 1/n point, leftmost player gets piece up to its mark

15251 Fall 2017: Lecture 10

 \bigcirc \bigcirc

DUBINS-SPANIER

DUBINS-SPANIER

DUBINS-SPANIER

$V^{1/3}$	$\frac{1/3}{7}$	

15251 Fall 2017: Lecture 10	Carnegie Mellon University 17

DUBINS-SPANIER

DUBINS-SPANIER

• Poll 4: So what is the complexity of Dubins-Spanier in the RW model?

EVEN-PAZ

- Given [x, y], assume $n = 2^k$
- If n = 1, give [x, y] to the single player
- Otherwise, each player i makes a mark z s.t.

$$V_i([x, z]) = \frac{1}{2}V_i([x, y])$$

- Let z^* be the n/2 mark from the left
- Recurse on $[x, z^*]$ with the left n/2 players, and on $[z^*, y]$ with the right n/2 players

15251 Fall 2017: Lecture 10

10 Carnegie Mellon University 20

EVEN-PAZ

- Claim: The Even-Paz protocol produces a proportional allocation
- Proof:
 - At stage 0, each of the n players values the whole cake at 1
 - At each stage the players who share a piece of cake value it at least at $V_i([x,y])/2$
 - Hence, if at stage k each player has value at least $1/2^k$ for the piece he's sharing, then at stage k + 1 each player has value at least $\frac{1}{2^{k+1}}$
 - The number of stages is $\log n \blacksquare$

COMPLEXITY OF PROPORTIONALITY

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the RW model
- The Even-Paz protocol is provably optimal!
- Envy-freeness is a much more complicated story

Carnegie Mellon University 24

SUMMARY

- Terminology:
 - $_{\circ}$ $\,$ Proportionality / envy-freeness
 - The Robertson-Webb model
 - $_{\circ}$ $\,$ The Dubins-Spanier protocol
 - The Even-Paz protocol
- Principles:
 - Concrete complexity models for reasoning about time complexity

15251 Fall 2017: Lecture 10

