Great Ideas in Theoretical CS

Lecture 10: Cake Cutting

Anil Ada
Ariel Procaccia (this time)
How to **fairly** divide a heterogeneous divisible good between players with different preferences?
THE PROBLEM

- Cake is interval $[0,1]$
- Set of players $N = \{1, \ldots, n\}$
- Piece of cake $X \subseteq [0,1]$: finite union of disjoint intervals
THE PROBLEM

- Each player $i \in N$ has a non-negative valuation V_i over pieces of cake
- Additive: for $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: For all $i \in N$, $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ can cut $I' \subseteq I$ s.t. $V_i(I') = \lambda V_i(I)$
Fairness Properties

• Our goal is to find an allocation A_1, \ldots, A_n

• Proportionality:
 \[\forall i \in N, V_i(A_i) \geq \frac{1}{n} \]

• Envy-Freeness (EF):
 \[\forall i, j \in N, V_i(A_i) \geq V_i(A_j) \]

• Poll 1: For $n = 2$ which is stronger?
 1. Proportionality
 2. EF
 3. They are equivalent
 4. They are incomparable
FAIRNESS PROPERTIES

• Our goal is to find an allocation \(A_1, \ldots, A_n \)

• Proportionality:
 \[\forall i \in N, V_i(A_i) \geq \frac{1}{n} \]

• Envy-Freeness (EF):
 \[\forall i, j \in N, V_i(A_i) \geq V_i(A_j) \]

• Poll 2: For \(n \geq 3 \) which is stronger?
 1. Proportionality
 2. EF
 3. They are equivalent
 4. They are incomparable
Cut-and-Choose

- Algorithm for $n = 2$ [Procaccia and Procaccia, circa 1985]
- Player 1 divides into two pieces X, Y s.t.
 \[V_1(X) = \frac{1}{2}, V_1(Y) = \frac{1}{2} \]
- Player 2 chooses preferred piece
- This is EF (hence proportional)
TIME COMPLEXITY

• Player 1 divides into two pieces X, Y s.t.
 $V_1(X) = 1/2, V_1(Y) = 1/2$

• Player 2 chooses preferred piece

What is the running time of Cut-and-Choose? What is the input size?
The Robertson-Webb Model

- Input size is n
- Two types of operations
 - $Eval_i(x, y)$ returns $V_i([x, y])$
 - $Cut_i(x, \alpha)$ returns y such that $V_i([x, y]) = \alpha$

```
\[ \begin{array}{c}
\text{eval output} \rightarrow \alpha \\
\end{array} \]

$\begin{array}{c}
x \\
y \leftarrow \text{cut output}
\end{array}$
THE ROBERTSON-WEBB MODEL

• Two types of operations
  - \( \text{Eval}_i(x, y) = V_i([x, y]) \)
  - \( \text{Cut}_i(x, \alpha) = y \text{ s.t. } V_i([x, y]) = \alpha \)

• Poll 3: \#operations needed to find an EF allocation when \( n = 2 \)?
  1. 1
  2. 2
  3. 3
  4. 4

This concrete complexity model is a great idea!
Dubins-Spanier

• Referee continuously moves knife
• Repeat: when piece left of knife is worth $1/n$ to player, player shouts “stop” and gets piece
• That player is removed
• Last player gets remaining piece
Dubins-Spanier Protocol
**Dubins-Spanier**

- **Claim:** The Dubins-Spanier protocol produces a proportional allocation

- **Proof:**
  - At stage 0, each of the $n$ players values the whole cake at 1
  - At each stage, the allocated piece of cake is worth at most $1/n$ to the remaining players
  - Hence, if at stage $k$ each of the remaining $n - k$ players has value at least $1 - k/n$ for the remaining cake, then at stage $k + 1$ each of the remaining $n - (k + 1)$ players has value at least $1 - \frac{k+1}{n}$ for the remaining cake
**Dubins-Spanier**

What is the complexity of Dubins-Spanier in the RW model?

- Moving knife is not really needed
- Repeat: each player makes a mark at his $1/n$ point, leftmost player gets piece up to its mark
DUBINS-SHANIER
Dubins-Spanier

\[ \frac{1}{3} \]
DUBINS-SPANIER
Dubins-Spanier
Dubins-Spanier

- **Poll 4:** So what is the complexity of Dubins-Spanier in the RW model?

  1. $\Theta(\sqrt{n})$
  2. $\Theta(n)$
  3. $\Theta(n \log n)$
  4. $\Theta(n^2)$

Can we do better?
**EVEN-PAZ**

- Given \([x, y]\), assume \(n = 2^k\)
- If \(n = 1\), give \([x, y]\) to the single player
- Otherwise, each player \(i\) makes a mark \(z\) s.t.

\[
V_i([x, z]) = \frac{1}{2} V_i([x, y])
\]

- Let \(z^*\) be the \(n/2\) mark from the left
- Recurse on \([x, z^*]\) with the left \(n/2\) players, and on \([z^*, y]\) with the right \(n/2\) players
EVEN-PAZ
**Even-Paz**

- **Claim:** The Even-Paz protocol produces a proportional allocation
- **Proof:**
  - At stage 0, each of the $n$ players values the whole cake at 1
  - At each stage the players who share a piece of cake value it at least at $V_i([x,y])/2$
  - Hence, if at stage $k$ each player has value at least $1/2^k$ for the piece he’s sharing, then at stage $k+1$ each player has value at least $\frac{1}{2^{k+1}}$
  - The number of stages is $\log n$ ■
\[
T(1) = 0, T(n) = 2n + 2T\left(\frac{n}{2}\right)
\]

Overall: \(2n \log n\)
Complexity of proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the RW model.
- The Even-Paz protocol is provably optimal!
- Envy-freeness is a much more complicated story.
PROVABLY FAIR SOLUTIONS.

Spliddit offers quick, free solutions to everyday fair division problems, using methods that provide indisputable fairness guarantees and build on decades of research in economics, mathematics, and computer science.

Share Rent
Split Fare
Assign Credit
Divide Goods
Distribute Tasks
Suggest an App
SUMMARY

• Terminology:
  o Proportionality / envy-freeness
  o The Robertson-Webb model
  o The Dubins-Spanier protocol
  o The Even-Paz protocol

• Principles:
  o Concrete complexity models for reasoning about time complexity