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FACEBOOK
Graph is big and changing
4 1billion people
MR 240billion phot

& atrillion connection<

4vertices n = 10°, #edges m = 1012
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KIDNEY EXCHANGE

Vertices =
patient-donor
pairs, edges =
compatibility

UNOS pool, Dec

2010 [Courtesy

John Dickerson,
CMU]|
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WOoORLD WIDE WEB

Structare of

If your problem has a
graph, great. If not,

try to make it have a
graph!
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TYPES OF GRAPHS

0 o “parallel edges”
® ®
o’

@ @

“self-loops™

Simple
Undirected Directed General
Graphs Graphs Graphs
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RETRONYM

Acoustic Electric

Guitar Guitar
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BASIC DEFINITIONS

* A graph G is a pair:

oV is the sct of vertices/nodes; |[V| =n
o E is the set of edges; |[E| =m

* Each edge is a pair {u, v}, 0.0

where u # v ®)

» Example:
o V={ab,cd} @)
o E={{a,b}{a,c}{bc}{cd}}
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EDGE CASES

* A graph with no edges is called an empty
graph

* Example:
o V ={1,234}
o E=9
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THE NULL GRAPH

1S_THE NULL-GRAPH A POINTLESS CONCEPT?

Frank Harary
University of Michigan
and Oxford University

Ronald C. Read

University of Waterloo

ABSTRACT

The graph with no points and no lines is discussed critically. Arguments

for and against its official sdmittance as a graph are presented. This is

accompanied by an extensive survey of the literature. Paradoxical properties

of the null-graph are noted. No conclusion is reached.
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THE NULL GRAPH

Figure 1. The Null Graph
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MR. VERTEX’S NEIGHBORHOOD

s Iffu,v}€E,uisa

neighbor of v 0’0
()

e The neighborhood

N(u) of u is
fvev|{uv}eE} (@)

* The degree deg(u) N(b) ={a,c}
of uis [INW)| deg(b) =2
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e Theorem: Y,¢p deg(u) = 2m

e Proof:

o Each vertex places a
token on each of its edges

o The number of tokens
is Yyey deg(u)

o Each edge has exactly two
tokens placed on it

o The number of tokens
is2mm 242+3+1=2-4
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FACEBOOK, REVISITED

Graph is big and changing
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REGULAR GRAPHS

* A graph is d-regular if all nodes
have degree d
* The empty graph is 0-regular
* 1-regular graph is called a
perfect matching
* Poll 1: How many 2-regular g><g
graphs with V = {a, b, ¢, d} are
there? 1-regular graph
1 3 6 12
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3-REGULAR GRAPHS

There are lots and lots of possibilities

Sy U
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CONNECTEDNESS

e Graph G is connected if for all u,v € V
there is a path between u and v

s os e

This 11-vertex graph is not connected
It has 3 connected components
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CONNECTEDNESS

What is the
minimum number of
edges needed to
make a connected
27-vertex graph?
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n=1 n=2 n=3
Done m=1 m=2
m=0 necessary necessary
and sufficient and sufficient
n=4
m=3

necessary

and sufficient
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n — 1 edges are always sufficient

to connect an n-vertex graph

“star graph”

“something

else”

“path graph”
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e Theorem: n — 1 edges are also
necessary to connect an
n-vertex graph

e Proof:

o If G has k connected
components, and G’ is formed
from G by adding an edge, then
G' has at least k —1
components

o Add edges one by one; to obtain
a single connected component,
need at least n — 1 steps m
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ACYCLIC GRAPHS

e Poll 2: Assume that G is connected. Then:

. m=n-—1= G is acyclic

2 Gisacyclic=>m=n-1
3 Gisacyclicem=n—1

.. Incomparable

TREES

A tree is a connected acyclic graph

o %0y Ty 0y

“Tree graph”
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ORE’S THEOREM

* A Hamiltonian cycle in G is a
cycle that visits every v € V
exactly once (see Lect. 9)

* Theorem |Ore, 1960]: Let G be
a graph on n > 3 vertices such
that deg(u) + deg(v) =n for
any u,v € V that arc not
neighbors, then G contains a
Hamiltonian Cycle
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PROOF OF ORE’S THEOREM

* Color the edges of G blue,
add red edges to form a
complete graph, and
choose a Hamiltonian
Cycle C

* If C is not completely
blue, will find C" with
more blue edges
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PROOF OF ORE’S THEOREM

Let {a, b} be a red edge in C

Let S be the successors of

N(a) on C
* deg(b) = n — deg(a)
= V|- IN(a)I
=VI-Is|
> VA (S u{bhl

* So b is a neighbor of c € S

* We can find a bluer cycle m
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SUMMARY

* Terminology:
o Regular graph

o Connected graph
o Neighborhood, degree

o Hamiltonian cycle

¢ Theorems:

o If G is connected,
|E| =n—1 & acyclic
o Yyev deg(w) = 2m
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