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DEPTH-FIRST SEARCH

* For each
unexplored uevV

o DFS(G,u)
DFS(graph G, ueV)
* mark u as explored

 for each {u,v} €E
o 1f v 1is

unexplored then Running time
DFS(G,v) O(m+n)

s 15251 Fall 2017: Lecture 12 Carnegie Mellon University 2




P u

GRAPH SEARCH PROBLEMS

* Given a graph G
o Check if there is a path between two given
vertices s and t

o Decide if G is connected

o Identity the connected components of G

* All these problems can be solved directly
using any kind of vertex traversal,

including DFS
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TOPOLOGICAL SORTING

* A topological order of a directed graph G
is a bijection f:V — {1, ...,n} such that if
(u,v) € E then f(u) < f(v)
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TOPOLOGICAL SORTING
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TOPOLOGICAL SORTING

* An undirected graph is a clique iff for all distinct
u,veV, {uv}€eE

* Poll 1: Which of the following undirected graphs
can have an orientation that does not admit a
topological sorting?

1. Tree

2. Clique
3. Both

4. Neither
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TOPOLOGICAL SORTING

* Clearly if a graph has a cycle then it does not
have a topological order

* We will give an algorithm that finds a
topological order given any directed acyclic
graph

* A sink vertex is a vertex with no outgoing
edges

 Lemma: Every directed acyclic graph has a
sink vertex
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PROOF OF LEMMA

* Suppose for contradiction that every
vertex has an outgoing edge

* By following the outgoing edges, after at
most n steps we must revisit an vertex
we’ve already seen, leading to a cycle! =
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NAIVE ALGORITHM

Open
* while p=>1

o If the graph doesn’t
have a sink then
return “not acyclic”

o else find a sink v and
remove 1t from G

. f(0) < p o o o
c pep—1 &%
» OLn
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BETTER ALGORITHM VIA DFS

* pen

* For each unexplored ueV,
DFS(G,u)

DFS(graph G, u€vV)

* mark u as explored

 for each {u,v}€E, if v 1is
unexplored then DFS(G,v)

« f(w) «p
*pep—1
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CORRECTNESS
* Theorem: If G is acyclic and (u,v) € E

then f(u) < f(v)
 Proof: We consider two cases

o Case 1: u is discovered before v, then
because (u,v) € E, v will be explored before
DFS(G,u) returns

o Case 2: v is discovered before u, then we
cannot discover u from DFS(G, v) because
that would imply a cycle, so DFS(G,u) is run
after DFS(G, v) terminates =
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WEIGHTED (GRAPHS

e It is often useful to
consider graphs with
o weights
o lengths
o distances

o COsts

associated to their edges

e Model as a cost function
c:E - R*
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MINIMUM SPANNING TRE!

The year: 1926
The place:  Brno, Moravia
Our hero: Otakar Bortuvka

Bortvka’s had a pal called Jindiich Saxel

who worked for Zapadomoravské elektrarny
(the West Moravian Power Plant company).
Saxel asked him how to figure out the most

efficient way to electrify southwest Moravia.
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¥ to Vienna & Bratislava
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MINIMUM SPANNING TRE!

-

e MST problem:

o Input: Graph G, cost
function c: E —» R*

o Output: E' € E such
that (V,E") is
connected and
Yecp’ €(€) is minimized

 Example: The MST has

cost 42
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Obviously the
optimal solution
forms a tree!
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NUMBER OF MST'S

» Assumption (for convenience): Edges have
distinct weights

* Poll 2: What is the max #MST's
that a 3-clique can have?

.1

2
3. 3
4
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Under the
assumption, the
MST is unique!

This will follow as a

corollary from the

next proof
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PRIM’S ALGORITHM

e V' «arbitrary {u}, E'< @
* While V' #V

o Let (u,v) be a
minimum cost edge
such that ueV’,

vev
o E' <« EU{{u,v}}
o V,(—V,U{v}
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Running time? It’s
clearly polynomial,

and that’s
surprising!
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PROOF OF CORRECTNESS

 Fix an MST T; we will show that for every
0 < k < n, the first k edges added by the
alg arein T

* The proof is by induction
» Base case (k = 0) is vacuously true

* Induction step: Suppose the algorithm has

added k edges so far that are in the MST;
show that next edge is also in the MST
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PROOF OF CORRECTNESS

 Consider the current V'

* Let e = {a, b} be the next
edge added by the alg

* Suppose e is not in the
MST T (shown in red)

* T hasa patha—»b

* Let e’ = (c,d) be the first
edge on the path that exits V'
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PROOF OF CORRECTNESS

e Consider T" =T U{e} \ {e'}
o Its cost 1s lower than T

o It has n —1 edges

* T'is connected because
any pathu—-c—->d - v
that uses e’ is replaced by (g
u—->c—-a—->b-d-v

e SoT is not an MST! m
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Why does the proot
imply that the MST

1S unique’? \
Qeo.

/
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Hmm, did we use
the assumption that
the edges in E' are

in the MST?

\
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THE MST CUT PROPERTY

* A similar proof shows: Let G and V' €V,

and let e be the cheapest edge between V'
and V' \ V', then e is in the MST

* Using this it is not hard to show that any
natural greedy algorithm works, e.g.,

* Kruskal’s Algorithm:

o Go through edges from cheapest to most
expensive

o Add the next edge if it doesn’t create a cycle
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RUN-TIME RAC:

L FOR MST

A naive implementation of Kruskal and
Prim runs in time 0(m?)

A better implementation runs in time

O(mlogm)
That’s very good!

In practice, these algorithms are great

Nevertheless, algorithms and data
structures wizards tried to do better
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RUN TIME RACE FOR MST

1984: Fredman and
Tarjan invent the
Fibonacci heap data
structure

O(mlogm) = O(mlog™ m)

Tarjan  Not Also not
Fredman Fredman
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RUN TIME RACE FOR MST

1986: Gabow, Galil, Spencer, and Tarjan
improved the algorithm

O(mlog™m) - O(mlog(log™m))




L FOR MST

RUN TIME RAC:

2000: Chazelle invents
the soft heap data
structure

O(mlog(log®m))

- 0(m - a(m))

What is a(-)?
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DETOUR: a(-)

* log*(m) = #times you need to do log to get down to 1
* log**(m) = #times you need to do log” to get down to 1
e log™*(m) = #times you need to do log™ to get down to 1

* a(m) = Fstars you need to do so that log**(m) < 2

It is incomprehensibly slow growing!
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RUN TIME RACE FOR MST

* 2002: Pettie and
Ramachandran give an
optimal MST algorithm

* But... nobody knows
what its running time
is!

Ramachandran
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SUMMARY

* Terminology:

o Topological order

o Weighted graph

o Minimum spanning tree
e Algorithms:

o DFS

o Topological sort via DF'S

o Prim’s Algorithm X
 Theorems: \ ‘\‘

o MST Cut property
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