

Lecture 16: NP I: Poly-Time Reductions

Anil Ada Ariel Procaccia (this time)

k-COLORING

- Reminder: a ${\it k-coloring}$ of a graph satisfies:
 - $_{\circ}$ $\,$ Each node has a color $\,$
 - $\circ~$ There are at most k different colors
 - Every two nodes connected by an edge have different colors
- A graph is k-colorable iff it has a k-coloring

2-COLORING

• Is this graph 2-colorable?

2-COLORING

- Given a graph G, how can we decide if it is 2-colorable?
- Enumerate all possible 2^n colorings to look for a valid one...
- OK, but how can we efficiently decide if Gis 2-colorable?
 - In polynomial time in the number of vertices п

Carnegie Mellon University

2-COLORING

- Poll 1: G = (V, E) is 2-colorable iff:
 - I G has a Hamiltonian cycle
 - 2. $|E| \le |V| 1$
 - 3. Every vertex in G has even degree
 - 4. G has no odd cycles

2-COLORING

- Algorithm (reminder):
 - Choose an arbitrary node, color it red and its neighbors blue
 - Color the uncolored neighbors of 0 the blue vertices red, etc.
 - $\circ~$ If G is not connected, repeat for every component

Carnegie Mellon Univer

$3\text{-}\mathrm{COLORING}$

• Is this graph 3-colorable?

3-COLORABILITY ORACLES

- We can decide 3-colorability by trying all 3^n possible colorings
- Let's say we can ask an oracle...

3-COLORABILITY ORACLES

• How do we turn a decision oracle into a search oracle?

3-COLORABILITY ORACLES

3-COLORABILITY ORACLES

3-COLORABILITY ORACLES

CLIQUE

• Reminder: A k-clique is a set of k nodes with all possible edges between them

• CLIQUE: Given a graph G and $k \in \mathbb{N}$, does G contain a k-clique?

INDEPENDENT SET

• A *k*-independent set is a set of *k* nodes with no edges between them

• INDEPENDENT-SET: Given a graph G and $k \in \mathbb{N}$, does G contain a k-independent $\operatorname{set}?$

15251 Fall 2017: Lecture 16

Carnegie Mellon University

CLIQUE VS. IS

- Let $G^* = (V, E^*)$ be the complement of G = (V, E) $(u, v) \in E \Leftrightarrow (u, v) \notin E^*$
- Poll 2: *G* has a *k*-clique for $k \geq 2$ iff:
 - 1. G^* has an IS of size k
 - 2. G^* has an IS of size 2k
 - 3. G^* has an IS of size k^2
 - 4. G^* has an IS of size n = |V|

CLIQUE VS. IS

CLIQUE VS. IS

CLIQUE VS. IS

- We can quickly reduce an instance of CLIQUE to an instance of INDEPENDET-SET, and vice versa
- There is a fast method for one iff there is a fast method for the other

POLY-TIME REDUCTIONS

- L has a polynomial-time reduction to L', denoted $L \leq_T^P L'$, if and only if it is possible to solve L in polynomial time using a polynomial-time algorithm for L'
- If $L \leq_T^p L'$ then: $L L' \in \mathbf{P} \Rightarrow L \in \mathbf{P}$

 - 2. $L \notin \mathbf{P} \Rightarrow L' \notin \mathbf{P}$

Carnegie Mellon University 22

CIRCUIT-SAT

- AND, OR, NOT gates wired together
- CIRCUIT-SATISFIABILITY: Given a circuit with n inputs and one output, is there a way to assign 0/1 values to the input wires so that the output value is 1 (true)?

15251 Fall 2017: Lecture 16

Carnegie Mellon University

3-COLORABILITY VS. CIRCUIT-SAT

Fundamentally different problems?

Carnegie Mellon University 24

3-COLORABILITY VS. CIRCUIT-SAT

3-COLORABILITY VS. CIRCUIT-SAT

3-COLORABILITY VS. CIRCUIT-SAT

3-COLORABILITY VS. CIRCUIT-SAT

3-COLORABILITY VS. CIRCUIT-SAT

3-COLORABILITY VS. CIRCUIT-SAT

AND Gate from OR and NOT

Carnegie Mellon University 33

3-COLORABILITY VS. CIRCUIT-SAT

3-COLORABILITY VS. CIRCUIT-SAT

- There is a polynomial-time reduction from CIRCUIT-SAT to 3-COLORABILITY
- Fact: Any of the four problems we discussed polynomial-time reduces to any of the others

SUMMARY

- Terminology:

 - $_\circ$ $\,$ Polynomial-time reduction
- Principles:
 - Computationally efficient reductions between problems!

M 15251 Fall 2017: Lecture 16

