Great Ideas in Theoretical CS

Lecture 16:
NP I: Poly-Time Reductions

Anil Ada
Ariel Procaccia (this time)
k-COLORING

• Reminder: a k-coloring of a graph satisfies:
 o Each node has a color
 o There are at most k different colors
 o Every two nodes connected by an edge have different colors

• A graph is k-colorable iff it has a k-coloring
2-COLORING

• Is this graph 2-colorable?
2-COLORING

• Given a graph G, how can we decide if it is 2-colorable?

• Enumerate all possible 2^n colorings to look for a valid one...

• OK, but how can we **efficiently** decide if G is 2-colorable?
 - In polynomial time in the number of vertices n
2-COLORING

• Poll 1: $G = (V, E)$ is 2-colorable iff:
 1. G has a Hamiltonian cycle
 2. $|E| \leq |V| - 1$
 3. Every vertex in G has even degree
 4. G has no odd cycles
2-COLORING

- Algorithm (reminder):
 - Choose an arbitrary node, color it red and its neighbors blue
 - Color the uncolored neighbors of the blue vertices red, etc.
 - If G is not connected, repeat for every component
3-COLORING

• Is this graph 3-colorable?
3-COLORABILITY ORACLES

• We can decide 3-colorability by trying all 3^n possible colorings
• Let’s say we can ask an oracle...

3-colorability decision oracle
3-COLORABILITY ORACLES

- How do we turn a decision oracle into a search oracle?

NO / YES, here’s how

3-colorability search oracle
3-COLORABILITY ORACLES

What if I gave the oracle partial colorings of G? For each partial coloring of G, I could pick an uncolored node and try different colors on it until the oracle says “YES”. I would then have a larger partial coloring.

The oracle doesn’t accept partial colorings!
3-COLORABILITY ORACLES

Given: 3-colorability decision oracle

YES
3-COLORABILITY ORACLES

Given:
3-colorability decision oracle

YES
3-COLORABILITY ORACLES

Given:
3-colorability decision oracle

NO
3-COLORABILITY ORACLES

Given:
3-colorability decision oracle

YES
A 3-colorability search oracle can be simulated using a linear number of calls to a decision oracle!
CLIQUE

• Reminder: A k-clique is a set of k nodes with all possible edges between them

 1-clique 2-clique 4-clique

• **CLIQUE**: Given a graph G and $k \in \mathbb{N}$, does G contain a k-clique?
INDEPENDENT SET

• A *k*-independent set is a set of *k* nodes with no edges between them

\[G_k \subseteq \mathbb{N} \]

• **INDEPENDENT-SET**: Given a graph \(G \) and \(k \in \mathbb{N} \), does \(G \) contain a *k*-independent set?
CLIQUE vs. IS

- Let $G^* = (V, E^*)$ be the complement of $G = (V, E)$

 $(u, v) \in E \iff (u, v) \notin E^*$

- Poll 2: G has a k-clique for $k \geq 2$ iff:
 1. G^* has an IS of size k
 2. G^* has an IS of size $2k$
 3. G^* has an IS of size k^2
 4. G^* has an IS of size $n = |V|$
CLIQUE vs. IS

\[\langle G, k \rangle \rightarrow \text{YES/NO} \]

Construct:
INDEP.-SET
decision oracle

\[\langle G^*, k \rangle \rightarrow \text{YES/NO} \]

Given:
CLIQUE
decision oracle
Clique vs. IS

\[\langle G, k \rangle \quad \text{YES/NO} \]

Construct: Clique oracle

\[\langle G^*, k \rangle \quad \text{YES/NO} \]

Given: INDEP.-SET oracle
CLIQUE vs. IS

- We can quickly reduce an instance of CLIQUE to an instance of INDEPENDENT-SET, and vice versa
- There is a fast method for one iff there is a fast method for the other

CLIQUE and INDEPENDENT-SET are cosmetically different but essentially the same!
Poly-Time Reductions

- L has a polynomial-time reduction to L', denoted $L \leq^P_T L'$, if and only if it is possible to solve L in polynomial time using a polynomial-time algorithm for L'.

- If $L \leq^P_T L'$ then:
 1. $L' \in \text{P} \Rightarrow L \in \text{P}$
 2. $L \notin \text{P} \Rightarrow L' \notin \text{P}$
Circuit-Sat

- AND, OR, NOT gates wired together
- **Circuit-Satisfiability:** Given a circuit with n inputs and one output, is there a way to assign 0/1 values to the input wires so that the output value is 1 (true)?
3-COLORABILITY VS. CIRCUIT-SAT

Fundamentally different problems?
3-COLORABILITY VS. CIRCUIT-SAT

\[f(x, y) \]

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>f(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3-COLORABILITY VS. CIRCUIT-SAT

\[f(x, y) \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>f(x, y)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
3-COLORABILITY VS. CIRCUIT-SAT

\[
f(x, y) = f(x, y)
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(f(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
3-COLORABILITY VS. CIRCUIT-SAT

\[f(x, y) \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(f(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
3-COLORABILITY VS. CIRCUIT-SAT

\[f(x, y) \]

\[
\begin{array}{c|c|c}
 x & y & f(x, y) \\
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
\end{array}
\]
3-COLORABILITY VS. CIRCUIT-SAT

\[f(x, y) \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(f(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3-COLORABILITY VS. CIRCUIT-SAT

\[f(x, y) \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3-COLORABILITY VS. CIRCUIT-SAT

\[f(x) \]

\[\begin{array}{c|c}
 x & \text{NOT} \\
 \hline
 0 & 1 \\
 1 & 0 \\
\end{array} \]
3-COLORABILITY VS. CIRCUIT-SAT

AND Gate from OR and NOT
3-COLORABILITY VS. CIRCUIT-SAT

\[x \quad y \quad z \]

\[\text{OR} \quad \text{NOT} \quad \text{OR} \]

\[\begin{array}{c}
\text{OR} \\
\text{NOT} \\
\end{array} \]

\[\begin{array}{c}
\text{OR} \\
\text{NOT} \\
\end{array} \]
3-COLORABILITY VS. CIRCUIT-SAT

Circuit is satisfiable
Graph is 3-colorable
3-COLORABILITY VS. CIRCUIT-SAT

Circuit

YES/NO

Construct: CIRCUIT-SAT decision oracle

Graph with subgraphs corresponding to gates and edge between output and false

YES/NO

Given: 3-COLORAB. decision oracle
3-COLORABILITY VS. CIRCUIT-SAT

• There is a polynomial-time reduction from CIRCUIT-SAT to 3-COLORABILITY

• Fact: Any of the four problems we discussed polynomial-time reduces to any of the others

But nobody knows how to efficiently solve any of these four problems in the worst case!
SUMMARY

• Terminology:
 o k-COLORING, CLIQUE, INDEPENDENT-SET, CIRCUIT-SAT
 o Polynomial-time reduction

• Principles:
 o Computationally efficient reductions between problems!