Great Ideas in Theoretical CS

Lecture 16: NP I: Poly-Time Reductions

Anil Ada Ariel Procaccia (this time)

k-COLORING

- Reminder: a k-coloring of a graph satisfies:
 - Each node has a color
 - There are at most k different colors
 - Every two nodes connected by an edge have different colors
- A graph is k-colorable iff it has a k-coloring

$2\text{-}\mathrm{COLORING}$

• Is this graph 2-colorable?

15251 Fall 2017: Lecture 16

$2\text{-}\mathrm{COLORING}$

- Given a graph G, how can we decide if it is 2-colorable?
- Enumerate all possible 2^n colorings to look for a valid one...
- OK, but how can we efficiently decide if *G* is 2-colorable?
 - In polynomial time in the number of vertices n

$2\text{-}\mathrm{COLORING}$

- Poll 1: G = (V, E) is 2-colorable iff:
 - 1. G has a Hamiltonian cycle
 - $2. |E| \le |V| 1$
 - 3. Every vertex in G has even degree
 - 4. G has no odd cycles

2-COLORING

- Algorithm (reminder):
 - Choose an arbitrary node, color it red and its neighbors blue
 - Color the uncolored neighbors of the blue vertices red, etc.
 - $\circ \quad \text{If G is not connected, repeat for} \\ \text{every component}$

3-COLORING

• Is this graph 3-colorable?

15251 Fall 2017: Lecture 16

- We can decide 3-colorability by trying all 3^n possible colorings
- Let's say we can ask an oracle...

15251 Fall 2017: Lecture 16

NO / YES

• How do we turn a decision oracle into a search oracle?

What if I gave the oracle partial colorings of G? For each partial coloring of G, I could pick an uncolored node and try different colors on it until the oracle says "YES". I would then have a larger partial coloring

The oracle doesn't accept partial colorings!

15251 Fall 2017: Lecture 16

15251 Fall 2017: Lecture 16 Car

15251 Fall 2017: Lecture 16

15251 Fall 2017: Lecture 16

15251 Fall 2017: Lecture 16

A 3-colorability search oracle can be simulated using a linear number of calls to a decision oracle!

15251 Fall 2017: Lecture 16

CLIQUE

• Reminder: A k-clique is a set of k nodes with all possible edges between them

• CLIQUE: Given a graph G and $k \in \mathbb{N}$, does G contain a k-clique?

15251 Fall 2017: Lecture 16

INDEPENDENT SET

• A k-independent set is a set of k nodes with no edges between them

• INDEPENDENT-SET: Given a graph G and $k \in \mathbb{N}$, does G contain a k-independent set?

15251 Fall 2017: Lecture 16

- Let $G^* = (V, E^*)$ be the complement of G = (V, E) $(u, v) \in E \Leftrightarrow (u, v) \notin E^*$
- Poll 2: G has a k-clique for $k \ge 2$ iff:
 - 1. G^* has an IS of size k
 - 2. G^* has an IS of size 2k
 - 3. G^* has an IS of size k^2
 - 4. G^* has an IS of size n = |V|

15251 Fall 2017: Lecture 16

15251 Fall 2017: Lecture 16

- We can quickly reduce an instance of CLIQUE to an instance of INDEPENDET-SET, and vice versa
- There is a fast method for one iff there is a fast method for the other

CLIQUE and INDEPENDENT-SET are cosmetically different but essentially the same!

15251 Fall 2017: Lecture 16

POLY-TIME REDUCTIONS

- L has a polynomial-time reduction to L', denoted $L \leq_T^P L'$, if and only if it is possible to solve L in polynomial time using a polynomial-time algorithm for L'
- If $L \leq_T^P L'$ then: 1. $L' \in \mathbf{P} \Rightarrow L \in \mathbf{P}$ 2. $L \notin \mathbf{P} \Rightarrow L' \notin \mathbf{P}$

15251 Fall 2017: Lecture 16

CIRCUIT-SAT

- AND, OR, NOT gates wired together
- CIRCUIT-SATISFIABILITY: Given a circuit with n inputs and one output, is there a way to assign 0/1 values to the input wires so that the output value is 1 (true)?

15251 Fall 2017: Lecture 16

Fundamentally different problems?

15251 Fall 2017: Lecture 16

x	У	f(x, y)

15251 Fall 2017: Lecture 16

x	у	f(x, y)
0	0	

15251 Fall 2017: Lecture 16

x	У	f(x, y)
0	0	0
0	1	

15251 Fall 2017: Lecture 16

x	У	f(x, y)
0	0	0
0	1	1
1	0	

15251 Fall 2017: Lecture 16

x	у	f(x, y)
0	0	0
0	1	1
1	0	1
1	1	

15251 Fall 2017: Lecture 16

x	у	f(x, y)
0	0	0
0	1	1
1	0	1
1	1	1

15251 Fall 2017: Lecture 16

x	у	OR
0	0	0
0	1	1
1	0	1
1	1	1

15251 Fall 2017: Lecture 16

x	NOT
0	1
1	0

15251 Fall 2017: Lecture 16

AND Gate from OR and NOT

15251 Fall 2017: Lecture 16

15251 Fall 2017: Lecture 16

15251 Fall 2017: Lecture 16

Circuit

YES/NO

Graph with subgraphs corresponding to gates and edge between output and false

YES/NO

Construct: CIRCUIT-SAT decision oracle e Colorab.

decision oracle

15251 Fall 2017: Lecture 16

- There is a polynomial-time reduction from CIRCUIT-SAT to 3-COLORABILITY
- Fact: Any of the four problems we discussed polynomial-time reduces to any of the others

But nobody knows how to efficiently solve any of these four problems in the worst case!

15251 Fall 2017: Lecture 16

SUMMARY

- Terminology:
 - *k*-coloring, clique, independent-set, circuit-sat
 - Polynomial-time reduction
- Principles:
 - Computationally efficient reductions between problems!

15251 Fall 2017: Lecture 16