

Anil Ada Ariel Procaccia (this time)

# MILLENNIUM PRIZE PROBLEMS

- Seven famous problems in math stated in 2000 by the Clay Foundation
- \$1,000,000 prize for solving any of them
- One of the problems:  ${\bf P}$  vs.  ${\bf NP}$



## MILLENNIUM PRIZE PROBLEMS



### MILLENNIUM PRIZE PROBLEMS

- The **P** vs. **NP** problem is the only Millennium Prize problem that has the potential to change the world
- So what is it?



## SUDOKU



#### SUDOKU

- **SUDOKU:** Given a partially filled  $n \times n \times n \times n$  Sudoku board, can it be filled?
- Naive decision algorithm: Check all possibilities, in time  $O(n^{2n^4})$
- Verifying a solution:  $O(n^4)$
- For n = 100
  - Verifying a solution: 100M steps
  - Deciding YES/NO: Number with 400M digits!

2017: Lecture 17 15251 Fall

### SUDOKU

- Question: Is there a polynomial-time algorithm that can solve SUDOKU?
- This is equivalent to the **P** vs. **NP** problem!



# P vs. NP

- Informal formulation of  ${\bf P}$  vs.  ${\bf NP}:$ 
  - $\circ~$  Let L be an algorithmic task
  - Suppose there is an efficient algorithm for verifying solutions to  $L \ (L \in NP)$
  - Is there an efficient algorithm for finding solutions to L?  $(L \in P)$



## EFFICIENCY

- Efficient = polynomial time
- Given a decision problem  $L, x \in L$  means that x is a YES instance of L; |x| is its size
- $\mathbf{P}$  = Decision problems L such that there exists a constant c and an algorithm Asuch that A runs in time  $|x|^c$  and A(x) =YES if and only if  $x \in L$
- We saw last time that 2-COLORING is in  ${f P}$



### VERIFYING SOLUTIONS

- In problems like SUDOKU, verifying the solution can be done efficiently
- **NP** = Decision problems whose solutions can be verified in polynomial time in their input size



#### NP: SEMI-FORMAL DEFINITION

- $L \in \mathbf{NP}$  if and only if there are constants c, d and an algorithm V called the verifier such that:
  - V takes two inputs, x and y, where  $|y| \le |x|^d$ ; x is called the instance and y is called the certificate
  - V(x, y) runs in time  $O(|x|^c)$
  - If  $x \in L$ ,  $\exists y$  such that V(x, y) = YES
  - If  $x \notin L$ ,  $\forall y, V(x, y) = NO$

15251 Fall 2017: Lecture 17

Carnegie Mellon University

#### EXAMPLES

- SUDOKU: Given a partially filled  $n \times n \times n \times n$  Sudoku board, can it be completed?
- Input size:  $\boldsymbol{n}$
- Certificate: board filled with numbers
- Verifier: Check that each square, row, and column contain all numbers



| 5        | 3 |   |   | 7 |   |   |   |   |
|----------|---|---|---|---|---|---|---|---|
| 6        |   |   | 1 | 9 | 5 |   |   |   |
|          | 9 | 8 |   |   |   |   | 6 |   |
| 8        |   |   |   | 6 |   |   |   | 3 |
| 4        |   |   | 8 |   | 3 |   |   | 1 |
| 7        |   |   |   | 2 |   |   |   | 6 |
|          | 6 |   |   |   |   | 2 | 8 |   |
|          |   |   | 4 | 1 | 9 |   |   | 5 |
|          |   |   |   | 8 |   |   | 7 | 9 |
| Instance |   |   |   |   |   |   |   |   |



### EXAMPLES

- HAMILTONIAN-CYCLE: Given a graph G = (V, E), does it contain a Hamiltonian cycle?
- Input size: n = |V|
- Certificate: A permutation of the n vertices
- Verifier: Check that the permutation contains each vertex exactly once, and there is an edge between adjacent vertices



Certificate



Carnegie Mellon University 13

#### EXAMPLES

- INDEPENDENT-SET: Given a graph G = (V, E) and  $k \in \mathbb{N}$ , does G contain an independent set of size k?
- Input size: n = |V|
- Certificate: k vertices
- Verifier: Check that there are no edges between pairs of vertices

2017: Lecture 17 15251 Fall 2017: Lecture 17



#### EXAMPLES

- Poll 1: Which of the following two problems is in **NP**?
  - 1. Given numbers  $a_1, \dots, a_n$  and  $k \in \mathbb{N}$ , is there a subset S such that  $\sum_{i \in S} a_i = k$ ?
  - 2. Given a graph G and  $k \in \mathbb{N},$  is the largest clique of size at most k?
  - 3. Both
  - 4. Neither



#### EXAMPLES

- Poll 2: Which of the following two problems is in **NP**?
  - 1. Given a graph G, does it not have a 2-coloring?
  - 2. Given a graph *G*, does it not have an Eulerian cycle?
  - 3. Both
  - 4. Neither



## P vs. NP

- Theorem:  $\mathbf{P} \subseteq \mathbf{NP}$
- Proof:
  - $\circ \quad \text{Suppose} \; L \in \mathbf{P}$
  - $\circ~$  Let A be a poly-time algorithm that decides L
  - . The verifier V takes as input the instance x and an empty certificate y
  - $\circ \quad V(x,y) \text{ outputs } A(x) \blacksquare \\$

15251 Fall 2017: Lecture 17

Carnegie Mellon University 1

## P vs. NP

- We know that  $\mathbf{P} \subseteq \mathbf{NP}$ ; does  $\mathbf{P} = \mathbf{NP}$ ?
- If P = NP then there would be an efficient algorithm for SUDOKU,
  3-COLORING, CIRCUIT-SAT... Awesome!
- If  $\mathbf{P} \neq \mathbf{NP}$  then there is some particular  $L \in \mathbf{NP}$  such that  $L \notin \mathbf{P}$ ; but maybe it is an obscure L?

# THE COOK-LEVIN THEOREM

- Theorem (Cook 71, Levin 73):  $\mathbf{P} = \mathbf{NP}$  if and only if CIRCUIT-SAT  $\in \mathbf{P}$
- In particular, if  $\mathbf{P} \neq \mathbf{NP}$  then CIRCUIT-SAT  $\notin \mathbf{P}$
- In a sense, CIRCUIT-SAT is the hardest problem in  ${\bf NP}$





Carnegie Mellon University

#### REDUCTIONS, REVISITED

- L has a polynomial-time reduction to L', denoted  $L \leq_T^P L'$ , if and only if it is possible to solve L in polynomial time using a polynomial-time algorithm for L'
- If  $L \leq_T^P L'$  then:
  - $L L' \in \mathbf{P} \Rightarrow L \in \mathbf{P}$
  - 2.  $L \notin \mathbf{P} \Rightarrow L' \notin \mathbf{P}$



Carnegie Mellon University 2

### THE HARDEST PROBLEM(S)

- If CIRCUIT-SAT is in  ${\bf P}$  then all of  ${\bf NP}$  is in  ${\bf P}$
- Last lecture: there is a poly-time reduction from CIRCUIT-SAT to 3-COLORING

 $\Rightarrow \text{ If 3-COLORING is in } \mathbf{P} \text{ then CIRCUIT-} \\ \text{SAT is in } \mathbf{P}, \text{ and hence all of } \mathbf{NP} \text{ is in } \mathbf{P} \\ \end{cases}$ 

 $\Rightarrow$  **P** = **NP** if and only if 3-COLORING  $\in$  **P** 



## THE HARDEST PROBLEM(S)

- Theorem (Yato-Seta 2002): There is a poly-time reduction from 3-COLORING to SUDOKU
  - $\Rightarrow$  If SUDOKU is in  ${\bf P}$  then 3-COLORING is in  ${\bf P},$  and hence all of  ${\bf NP}$  is in  ${\bf P}$
  - $\Rightarrow$   $\mathbf{P}$  =  $\mathbf{NP}$  if and only if SUDOKU  $\in$   $\mathbf{P}$



Carnegie Mellon University 22

### COOK-LEVIN, REVISITED

• Actual statement of Cook-Levin: Let  $L \in \mathbf{NP}$ , then there is a poly-time reduction from L to CIRCUIT-SAT

CIRCUIT-SAT  $\in \mathbf{P} \Rightarrow \mathbf{P} = \mathbf{NP}$  $\mathbf{P} = \mathbf{NP} \Rightarrow \text{CIRCUIT-SAT} \in \mathbf{P}$ 



### NP-COMPLETENESS

- *L* is **NP**-hard if every problem in **NP** has a polynomial time reduction to *L*
- L is  $\operatorname{\mathbf{NP-complete}}$  if  $L\in\operatorname{\mathbf{NP}}$  and L is  $\operatorname{\mathbf{NP-hard}}$
- To show that a problem is **NP**-complete:
  - $_{\circ}~$  Show that it is in  ${\bf NP}$
  - $_{\circ}$   $\,$  Show that a known NP-hard problem reduces to it







### NP-COMPLETE PROBLEMS

- Tens of thousands of problems are known to be  ${\bf NP}{\rm -complete}$
- If even one of them has a poly-time algorithm then all of them are in **P**



## NP-COMPLETE PROBLEMS

- CYCLE-COVER: Given a directed graph and  $L \in \mathbb{N}$ , is there a collection of disjoint cycles of length  $\leq L$  that covers  $\geq k$  vertices?
- Theorem: CYCLE-COVER is
   NP-complete
- Relevant to kidney exchange



# NP-COMPLETE PROBLEMS



# NP-COMPLETE PROBLEMS



# P vs. NP

- So what do the experts think about the P vs. NP problem?
- Two polls from 2002 and 2012
  - $_\circ$  ~100 respondents in 2002
  - $_\circ$  ~152 respondents in 2012

|    | Year                       | P≠NP | P=NP | Ind. | DC                            | BM  |  |  |
|----|----------------------------|------|------|------|-------------------------------|-----|--|--|
|    | 2002                       | 61%  | 9%   | 4%   | 1%                            | 22% |  |  |
|    | 2012                       | 83%  | 9%   | 3%   | 3%                            | 1%  |  |  |
|    |                            |      |      |      |                               |     |  |  |
| 15 | 5251 Fall 2017: Lecture 17 |      |      |      | Carnegie Mellon University 30 |     |  |  |

## THE TWO POSSIBLE WORLDS





COMPLEXITY UNIVERSE





# SUMMARY

- Terminology / facts
  - $\circ~{\bf P} {\rm ~and~} {\bf NP}$
  - Cook-Levin Theorem
  - **NP**-complete
- Principles:
  - Proving that problems are in **P**, **NP**, or **NP**-complete



