

Computational Social Choice

Anil Ada Ariel Procaccia (this time)

SOCIAL CHOICE THEORY

- A mathematical theory that deals with aggregation of individual preferences
- Origins in ancient Greece
- Formal foundations: 18th Century (Condorcet and Borda)
- 19th Century: Charles Dodgson
- 20th Century: Nobel prizes to Arrow and Sen

15251 Fall 2017: Lecture 19

Carnegie Mellon University

THE VOTING MODEL

- Set of voters $N = \{1, \dots, n\}$
- Set of alternatives A; denote |A| = m
- Each voter has a ranking over the alternatives
- Preference profile = collection of all voters' rankings

Carnegie Mellon University

c b

a c

c b a

а

b

VOTE OVER CUISINES

VOTING RULES

- Voting rule = function from preference profiles to alternatives that specifies the winner of the election
- Plurality
 - Each voter awards one point to top alternative
 - Alternative with most points wins
 - Used in almost all political elections

15251 Fall 2017: Lecture 19

Carnegie Mellon University

MORE VOTING RULES

• Borda count

- $\circ~$ Each voter awards m-k points to alternative ranked $k'{\rm th}$
- $_{\circ}$ $\,$ Alternative with most points wins
- Proposed in the 18th Century by the chevalier de Borda
- $_{\circ}$ $\,$ Used for national elections in Slovenia
- Similar to rule used in the Eurovision song contest

Lordi Eurovision 2006 winners

251 Fall 2017: Lecture 19

- *x* beats *y* in a pairwise election if the majority of voters prefer *x* to *y*
- Plurality with runoff
 - First round: two alternatives with highest plurality scores survive
 - Second round: pairwise election between these two alternatives

M 15251 Fall 2017: Lecture 19

Carnegie Mellon University

Carnegie Mellon University

MORE VOTING RULES

- Single Transferable vote (STV)
 - $_{\circ}~m-1~{\rm rounds}$
 - In each round, alternative with least plurality votes is eliminated
 - $_{\circ}$ $\,$ Alternative left standing is the winner $\,$
 - Used in:
 - Ireland, Malta, Australia, and New Zealand
 - US: Maine (governor, US congress), cities like San Francisco and Cambridge

STV : EXAMPLE

SOCIAL CHOICE AXIOMS

- How do we choose among the different voting rules? Via desirable properties!
- Majority consistency = if a majority of voters rank alternative **x** first, then **x** should be the winner
- Poll 1: Which rule is not majority consistent?
 - 1. Plurality
 - 2. Plurality with runoff
 - 3. Borda count
 - 4. STV

15251 Fall 2017: Lecture 19

Carnegie Mellon University 1

MARQUIS DE CONDORCET

- 18th Century French Mathematician, philosopher, political scientist
- One of the leaders of the French revolution
- After the revolution became a fugitive
- His cover was blown and he died mysteriously in prison

15251 Fall 2017: Lecture 19

CONDORCET WINNER

- Recall: *x* beats *y* in a pairwise election if a majority of voters rank *x* above *y*
- Condorcet winner beats every other alternative in pairwise election

1	2	3	
а	с	b	
b	а	с	
с	b	а	

• Condorcet paradox = cycle in majority preferences

Carnegie Mellon University

CONDORCET CONSISTENCY

- Condorcet consistency = select a Condorcet winner if one exists
- Poll 2: Which rule is Condorcet consistent?
 - 1. Plurality
 - 2. Borda count
 - 3. Both
 - 4. Neither

15251 Fall 2017: Lecture 19

Carnegie Mellon University 1

MORE VOTING RULES

- Copeland
 - $\circ~$ Alternative's score is #alternatives it beats in pairwise elections
 - Why does Copeland satisfy the Condorcet criterion?

AWESOME EXAMPLE

- Plurality: *a*
- Borda: **b**

- Dorua. D	voters	voters	voters	voters	voters	voters
• Condorcet	а	b	с	с	d	е
winner: <i>c</i>	b	d	d	е	е	С
• STV: <i>d</i>	с	с	b	b	с	b
• 51 V: a	d	е	а	d	b	d
 Plurality 	е	а	е	а	а	а
with runoff:						

- Pl
 - е

15251 Fall 2017: Lecture 19

Carnegie Mellon University 1

MANIPULATION

- Using Borda count
- Top profile: **b** wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!
- Borda's response: "My scheme is intended only for honest men!"

d	d	d
1		3
b	b	а
а	а	с
с	С	d

d d b

Carnegie Mellon University

b b a

a a b

c c c

15251 Fall 2017: Lecture 19

STRATEGYPROOFNESS

- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences
- Poll 3: What is the largest value of m for which plurality is SP?
 - m = 1
 - 2. m = 2
 - 3. m = 3
 - $m = \infty$

STRATEGYPROOFNESS

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is constant if the same alternative is always chosen
- Constant functions and dictatorships are SP

Constant function

Carnegie Mellon University

GIBBARD-SATTERTHWAITE

- A voting rule is onto if any alternative can win
- Theorem (Gibbard-Satterthwaite): If $m \ge 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

2017: Lecture 19

Carnegie Mellon University 2

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al. 1989]

Carnegie Mellon University 2[.]

THE COMPUTATIONAL PROBLEM

- *f*-MANIPULATION problem:
 - $\circ~$ Given votes of nonmanipulators and a preferred alternative p
 - Can manipulator cast vote that makes puniquely win under f?
- Example: Borda, p = a

15251 Fall 2017: Lecture 19

Carnegie Mellon University 2

b

а

с

d

а

с

d

b

а

с

d

A GREEDY ALGORITHM

- Rank p in first place
- While there are unranked alternatives:
 - $\circ~$ If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
 - $_{\circ}$ $\,$ Otherwise return false

	1							
1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а		а	а	b	а	а	с
с	с		с	с		С	с	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а	с	а	а	с	а	а	с
с	С	b	С	с	d	С	с	d
d	d		d	d		d	d	b
15251 Fall 2017: Lecture 19 Car				Carneg	ie Mellon U	niversity :		

EXAMPLE: BORDA

WHEN DOES THE ALG WORK?

- Fact: The greedy algorithm is a polynomial-time algorithm for R-MANIPULATION for $R \in \{\text{plurality, Borda count, plurality with runoff, Copeland,...}$
- Theorem [Bartholdi and Orlin, 1991]: The STV-MANIPULATION problem is NP-complete!

Carnegie Mellon University 25

IS SOCIAL CHOICE PRACTICAL?

- UK referendum: Choose between plurality and STV as a method for electing MPs
- Academics agreed STV is better...
- ... but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!

15251 Fall 2017: Lecture 19

Carnegie Mellon University 26

COMPUTATIONAL SOCIAL CHOICE

• However:

- in online voting...
- in human computation...
- in multiagent systems...

the designer is free to employ any voting rule!

SUMMARY

- Terminology:
 - Plurality, Borda count, plurality with runoff, STV, Copeland
 - Majority consistency
 - Condorcet winner, Condorcet consistency
 - \circ Strategyproofness
 - The Gibbard-Satterthwaite Thm
- Principles:
 - $_{\circ}$ $\,$ NP-hardness can be good!

15251 Fall 2017: Lecture 19

