Great Ideas in Theoretical CS

Lecture 19: Computational Social Choice

Anil Ada Ariel Procaccia (this time)

SOCIAL CHOICE THEORY

- A mathematical theory that deals with aggregation of individual preferences
- Origins in ancient Greece
- Formal foundations: 18th Century (Condorcet and Borda)
- 19th Century: Charles Dodgson
- 20th Century: Nobel prizes to Arrow and Sen

THE VOTING MODEL

- Set of voters $N = \{1, \dots, n\}$
- Set of alternatives A; denote |A| = m
- Each voter has a ranking over the alternatives
- Preference profile = collection of all voters' rankings

1	2	3
а	С	b
b	а	С
С	b	а

VOTE OVER CUISINES

VOTING RULES

- Voting rule = function from preference profiles to alternatives that specifies the winner of the election
- Plurality
 - Each voter awards one point to top alternative
 - Alternative with most points wins
 - Used in almost all political elections

MORE VOTING RULES

- Borda count
 - Each voter awards m k points to alternative ranked k'th
 - $_{\circ}$ $\,$ Alternative with most points wins
 - Proposed in the 18th Century by the chevalier de Borda
 - Used for national elections in Slovenia
 - Similar to rule used in the Eurovision song contest

Lordi Eurovision 2006 winners

MORE VOTING RULES

- x beats y in a pairwise election if the majority of voters prefer x to y
- Plurality with runoff
 - First round: two alternatives with highest plurality scores survive
 Second round: pairwise election
 - between these two alternatives

MORE VOTING RULES

- Single Transferable vote (STV)
 - \circ *m* 1 rounds
 - In each round, alternative with least plurality votes is eliminated
 - Alternative left standing is the winner
 - Used in:
 - Ireland, Malta, Australia, and New Zealand
 - US: Maine (governor, US congress), cities like San Francisco and Cambridge

STV: EXAMPLE

2 voters	2 voters	1voter
а	b	С
b	а	d
С	d	b
d	С	а

2 voters	2 voters	1voter
а	b	С
b	а	b
С	С	а

2 voters	2 voters	1 voter
а	b	b
b	а	а

2	2	1
voters	voters	voter
b	b	b

15251 Fall 2017: Lecture 19

SOCIAL CHOICE AXIOMS

- How do we choose among the different voting rules? Via desirable properties!
- Majority consistency = if a majority of voters rank alternative x first, then x should be the winner
- Poll 1: Which rule is not majority consistent?
 - 1. Plurality
 - 2. Plurality with runoff
 - 3. Borda count
 - 4. STV

MARQUIS DE CONDORCET

- 18th Century French Mathematician, philosopher, political scientist
- One of the leaders of the French revolution
- After the revolution became a fugitive
- His cover was blown and he died mysteriously in prison

15251 Fall 2017: Lecture 19

CONDORCET WINNER

- Recall: x beats y in a pairwise election if a majority of voters rank x above y
- Condorcet winner beats every other alternative in pairwise election

•	Condorcet paradox = cycle in
	majority preferences

1	2	3
а	С	b
b	а	С
С	b	а

15251 Fall 2017: Lecture 19

CONDORCET CONSISTENCY

- Condorcet consistency = select a Condorcet winner if one exists
- Poll 2: Which rule is Condorcet consistent?
 - 1. Plurality
 - 2. Borda count
 - 3. Both
 - 4. Neither

MORE VOTING RULES

• Copeland

- $_{\circ}$ Alternative's score is #alternatives it beats in pairwise elections
- Why does Copeland satisfy the Condorcet criterion?

AWESOME EXAMPLE

- Plurality: *a*
- Borda: **b**
- Condorcet winner: *c*
- STV: *d*

e

• Plurality with runoff:

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters
а	b	С	С	d	е
b	d	d	е	е	С
С	С	b	b	С	b
d	е	а	d	b	d
е	а	е	а	а	а

15251 Fall 2017: Lecture 19

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: *a* wins
- By changing his vote, voter 3 achieves a better outcome!
- Borda's response: "My scheme is intended only for honest men!"

1	2	3
b	b	а
а	а	b
С	С	С
d	d	d

1	2	3
b	b	а
а	а	С
С	С	d
d	d	b

15251 Fall 2017: Lecture 19

Strategyproofness

- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences
- Poll 3: What is the largest value of *m* for which plurality is SP?
 - 1. m = 1
 - 2. m = 2
 - *3.* m = 3

4. $m = \infty$

STRATEGYPROOFNESS

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is **constant** if the same alternative is always chosen
- Constant functions and dictatorships are SP

Dictatorship

GIBBARD-SATTERTHWAITE

- A voting rule is **onto** if any alternative can win
- Theorem (Gibbard-Satterthwaite): If $m \ge 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

Gibbard

Satterthwaite

15251 Fall 2017: Lecture 19

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al. 1989]

THE COMPUTATIONAL PROBLEM

- *f*-MANIPULATION problem:

 - Can manipulator cast vote that makes puniquely win under f?
- Example: Borda, p = a

1	2	3
b	b	
а	а	
С	С	
d	d	

1	2	3
b	b	а
а	а	С
С	С	d
d	d	b

15251 Fall 2017: Lecture 19

A GREEDY ALGORITHM

- Rank p in first place
- While there are unranked alternatives:
 - If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
 - Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а		а	а	b	а	а	С
С	С		С	С		С	С	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а	С	а	а	С	а	а	С
С	С	b	С	С	d	С	С	d
d	d		d	d		d	d	b

15251 Fall 2017: Lecture 19

WHEN DOES THE ALG WORK?

- Fact: The greedy algorithm is a polynomial-time algorithm for R-MANIPULATION for $R \in \{\text{plurality, Borda count, plurality with runoff, Copeland,...}$
- Theorem [Bartholdi and Orlin, 1991]: The STV-MANIPULATION problem is NP-complete!

IS SOCIAL CHOICE PRACTICAL?

- UK referendum: Choose between plurality and STV as a method for electing MPs
- Academics agreed STV is better...
- ... but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!

15251 Fall 2017: Lecture 19

COMPUTATIONAL SOCIAL CHOICE

- However:
 - \circ in online voting...
 - in human computation...
 - in multiagent systems...

the designer is free to employ any voting rule!

AI-Driven Decisions

RoboVote is a free service that helps users combine their preferences or opinions into optimal decisions. To do so, RoboVote employs state-of-the-art voting methods developed in artificial intelligence research. Learn More

Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.

Objective Opinions

In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote's proposed outcome is guaranteed to be as close as possible — based on the available information — to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share. Try the demo.

Subjective Preferences

In this scenario participants' preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group, which destination to choose for a family vacation, or whom to elect as class president. Try the demo.

Ready to get started?

CREATE A POLL

SUMMARY

- Terminology:
 - Plurality, Borda count, plurality with runoff, STV, Copeland
 - Majority consistency
 - Condorcet winner, Condorcet consistency
 - Strategyproofness
 - The Gibbard-Satterthwaite Thm
- Principles:
 - NP-hardness can be good!

