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DEEP QUESTIONS

If I randomly put 100 letters into
100 addressed envelopes, on average
how many will end up in the correct
envelope?

How many times on
average do I need to
flip a fair coin to get
heads?
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RANDOM VARIABLE

* Let S be a sample space

¢ A random variable is a function X:S - R
* Examples:

o X = valuc of red dic when red and blue arc
rolled:
X(3,4) =3, X5 =1
o X =value of the sum of two dice when red
and bluc arc rolled:
X(3,4) =17, X(1,5)=6
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TWO COINS TOSSED

* X:{TT,HT,TH,HH} - {0,1,2} counts the
number of heads

1
3 1
4

p———CD

Distribution on § Distribution on R
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FROM RVS TO EVENTS

¢« For RV X and a € R we can define the event E that
X=a:
Pr[E] = Pr[X = a] = Pr[{t € S |X(t) = a}]

Distribution on § Distribution on R

Pr(X = 1] = Pr[{HT,TH}] = 1/2
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FROM EVENTS TO RVS

* For any event E, define the indicator random variable

for E:
1teE
I (1) = {0 teE
Distribution on § Distribution on R
. E = exactly one head
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INDEPENDENT RVS

¢ Two random variables are independent if
for every a, b, the events X =a and Y =b
are independent
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EXPECTATION

* The expectation of a random variable X is:

E[X] = z Prlt] x X(t) = z PrlX = k] x k
tes k
* Poll 1: X is the #heads in 3 coin tosses. E[X] =?

w1 Don’t always
2 4/3

3/2 cxpect the
? 2/ cxpected!
! Pr[X = E[X]]

could be 0
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EXPECTATION

o If I is the indicator RV for the event E,
E[lz] = Pr[lz = 1] x 1 = Pr[E]

« If X and Y are two RVs (on the same
sample space S) then Z = X +Y is also an
RV, defined by Z(t) = X(t) + Y(t)

* Example: X is one die roll, Y is another,
and Z is their sum
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LINEARITY OF EXPECTATION

e IfZ=X+Y, then
E[Z] = E[X] + E[Y]

Even if X and Y
are not
independent!
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LINEARITY OF EXPECTATION

E[Z] = Z Pr[t]Z(0)
tes

- Z Prit] (X(t) + Y (1))

tes

= Z Prlt] X(¢) + Z Pr(t] Y(t)

tes tes
=E[X]+E[Y] m
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USING LINEARITY OF EXPECTATION

General approach:
View thing you care about
as expected value of some

RV; write this RV as sumn of

simpler RVs (typically
indicator RVs); Solve for
their expectations and add
them up!
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USING LINEARITY OF EXPECTATION

* If I randomly put 100 letters into 100
addressed envelopes, what is the expected
number of letters that will end up in their
correct envelopes?

USING LINEARITY OF EXPECTATION

* Let A; be the event that the ith letter is in
the correct envelope

* Let I, be the indicator variable for A;
o Not independent!
* E[l,,] = Pr[4; = 1] = 1/100

* We are interested in Z = 3129 Iy,

« E[Z] =100 x — =1
100
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USING LINEARITY OF EXPECTATION

* Poll 2: We flip n coins of bias p; what is
the expected number of heads?
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BALLS AND BINS

* n jobs are assigned to n servers uniformly
at random

* What is the expected number of jobs per

 EOEEE
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BALLS AND BINS

* Let X; be the number of jobs on server i

e n=E[X; + - X,] = E[X;] + -+ E[X,]

* By symmetry, E[X;] =1 for all i

* Fact: The expected number of jobs
assigned to the busiest server is roughly
logn /loglogn
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BALLS AND BINS

* n jobs are assigned to n servers, but for
every job we choose two servers uniformly
at random, and use the less busy server

* Poll 3: Expected number of jobs per server?
. 1/n
2 1/4
5z 1/2
4 1

* Fact: Busiest server has ~ loglogn jobs
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CONDITIONAL EXPECTATION

E[X |E] =X Pr[X =k|E] xk
Similarly to conditional probability:
E[X] = E[X | E] X Pr[E] + E[X |E] X Pr[E]
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GEOMETRIC RVS

* Flip a coin with probability p of heads

e X = #flips until first heads

» E[X] = E[X | H] Pr[H] + E[X | T] Pr[T]
=1-p+ (EX]+ DA -p)
=1+ E[X]1 -p)

* It follows that E[X] =1/p
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» All 15251 students fly off to space and colonize Mars

* Faced with the problem that there are 57% men, the
authorities impose a new rule: When having kids, stop after
you have a girl

e Poll 4 yes/no: Will the number of new boys be larger than
the number of new girls?

* Poll 5 yes/no: What if the rule is: stop after having two
girls?

15251 Fall 2017: Lecture 22 Carnegie Mellon University 22

CAPSTONE PROJECT *

computational
social choice +
approximation algs +
linearity of expectation
(+ randomized algs)

* Just for fun Carnegie Mellon Uni

SELECTING A SUBSET *

* A k-selection system receives a directed
graph as input and outputs V' € V such
that |V'| =k

* Edges are interpreted as approval votes,
trust, or support

* Think of graph as directed social network

* A k-selection system f is impartial if
i € f(G) does not depend on the votes of i
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SELECTING A SUBSET *

* Optimization target: sum of
indegrees of selected vertices

* Optimal solution: not impartial

* k =n: no problem

e k = 1: no positive impartial

approximation @
¢ k =n—1: no positive impartial

approximation, even if each vertex
has at most onc outgoing cdge!
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SELECTINC A SUBSET *

e Each tribe member votes for at most one
member

* One member must be eliminated

* Impartial rule cannot have property: if unique
member received votes he is not eliminated
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SELECTING A SUBSET *

* The random partition algorithm:

o Assign vertices uniformly at
random to 2 subscts

K
o For each subset, select ~ >

vertices with highest indegrees
based on edges from the other
subset

* This mechanism is clearly
impartial
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SELECTING A SUBSET *

* Theorem [Alon et al. 2011]: Random
Partition is a %»approximation algorithm

¢ Proof:

o Assume for ease of exposition: k is even

o Let K be the optimal set

o A partition m = (71, m,) divides K into two
subsets KT = K Nmy and KF = K N1,
o T ={(u,v) € E|lu € my,v € KT}, dF defined
analogously
oPT

o E[d] +d}] = = by linearity of expectation

af+dy

o We get at least 2
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SUMMARY

* Terminology:
o Random variables
o Expectation
o Conditional expectation
o Geometric RVs
e Principles:
o Using the lincarity of expectation by
writing RVs as sums of simple RVs
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