

DEEP QUESTIONS

GREAT EXPECTATIONS

RANDOM VARIABLE

- Let S be a sample space
- A random variable is a function $X\colon S\to \mathbb{R}$
- Examples:
 - X = value of red die when red and blue are rolled:

```
X(3,4) = 3, \qquad X(1,5) = 1
```

• X = value of the sum of two dice when red and blue are rolled:

$$X(3,4) = 7, \qquad X(1,5) = 6$$

22 Carnegie Mellon University Carnegie Mellon University

TWO COINS TOSSED

• $X\!:\!\{TT,HT,TH,HH\}\to\{0,1,2\}$ counts the number of heads

FROM RVS TO EVENTS

- For RV X and $a \in \mathbb{R}$ we can define the event E that X = a :

FROM EVENTS TO RVS

• For any event E, define the indicator random variable for E:

INDEPENDENT RVS

• Two random variables are independent if for every a, b, the events X = a and Y = bare independent

EXPECTATION

• The expectation of a random variable \boldsymbol{X} is:

$$\mathbb{E}[X] = \sum_{t \in S} \Pr[t] \times X(t) = \sum_{k} \Pr[X = k] \times k$$

• Poll 1: X is the #heads in 3 coin tosses. $\mathbb{E}[X] = ?$

EXPECTATION

- If \mathbb{I}_E is the indicator RV for the event E, $\mathbb{E}[\mathbb{I}_E] = \Pr[\mathbb{I}_E = 1] \times 1 = \Pr[E]$
- If X and Y are two RVs (on the same sample space S) then Z = X + Y is also an RV, defined by Z(t) = X(t) + Y(t)
- Example: X is one die roll, Y is another, and Z is their sum

LINEARITY OF EXPECTATION

$$\mathbb{E}[Z] = \sum_{t \in S} \Pr[t]Z(t)$$

= $\sum_{t \in S} \Pr[t](X(t) + Y(t))$
= $\sum_{t \in S} \Pr[t]X(t) + \sum_{t \in S} \Pr[t]Y(t)$
= $\mathbb{E}[X] + \mathbb{E}[Y]$

USING LINEARITY OF EXPECTATION

USING LINEARITY OF EXPECTATION

• If I randomly put 100 letters into 100 addressed envelopes, what is the expected number of letters that will end up in their correct envelopes?

USING LINEARITY OF EXPECTATION

- Let A_i be the event that the *i*th letter is in the correct envelope
- Let \mathbb{I}_{A_i} be the indicator variable for A_i • Not independent!
- $\mathbb{E}[\mathbb{I}_{A_i}] = \Pr[A_i = 1] = 1/100$
- We are interested in $Z = \sum_{i=1}^{100} \mathbb{I}_{A_i}$

•
$$\mathbb{E}[Z] = 100 \times \frac{1}{100} = 1$$

USING LINEARITY OF EXPECTATION

- Poll 2: We flip *n* coins of bias *p*; what is the expected number of heads?
 - 1. 1
 - 2. p
 - 3. n
 - 4. np

BALLS AND BINS

- n jobs are assigned to n servers uniformly at random
- What is the expected number of jobs per server?

BALLS AND BINS

- Let X_i be the number of jobs on server i
- $n = \mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n]$
- By symmetry, $\mathbb{E}[X_i] = 1$ for all i
- Fact: The expected number of jobs assigned to the busiest server is roughly $\log n \, / \log \log n$

BALLS AND BINS

- *n* jobs are assigned to *n* servers, but for every job we choose two servers uniformly at random, and use the less busy server
- Poll 3: Expected number of jobs per server?

CONDITIONAL EXPECTATION

- $\mathbb{E}[X \mid E] = \sum_{k} \Pr[X = k \mid E] \times k$
- Similarly to conditional probability: $\mathbb{E}[X] = \mathbb{E}[X \mid E] \times \Pr[E] + \mathbb{E}[X \mid \overline{E}] \times \Pr[\overline{E}]$

GEOMETRIC RVS

- Flip a coin with probability \boldsymbol{p} of heads
- X = #flips until first heads
- $\mathbb{E}[X] = \mathbb{E}[X \mid H] \operatorname{Pr}[H] + \mathbb{E}[X \mid T] \operatorname{Pr}[T]$ = $1 \cdot p + (\mathbb{E}[X] + 1)(1 - p)$ = $1 + \mathbb{E}[X](1 - p)$
- It follows that $\mathbb{E}[X] = 1/p$

251 Land

SELECTING A SUBSET *

- A k-selection system receives a directed graph as input and outputs $V' \subseteq V$ such that |V'| = k
- Edges are interpreted as approval votes, trust, or support
- Think of graph as directed social network
- A k-selection system f is impartial if $i \in f(G)$ does not depend on the votes of i

SELECTING A SUBSET *

- Optimization target: sum of indegrees of selected vertices
- Optimal solution: not impartial
- k = n: no problem
- k = 1: no positive impartial approximation

• k = n - 1: no positive impartial approximation, even if each vertex has at most one outgoing edge!

Carnegie Mellon University 2

Selecting a subset *

- Each tribe member votes for at most one member
- One member must be eliminated
- Impartial rule cannot have property: if unique member received votes he is not eliminated

SELECTING A SUBSET *

- The random partition algorithm:
 - $_{\circ}$ % = Assign vertices uniformly at random to $2~{\rm subsets}$

• For each subset, select $\sim \frac{k}{2}$ vertices with highest indegrees based on edges from the other subset

• This mechanism is clearly impartial

* Just for fun

Selecting a subset *

- Theorem [Alon et al. 2011]: Random Partition is a $\frac{1}{4}$ -approximation algorithm
- Proof:
 - . Assume for ease of exposition: \boldsymbol{k} is even
 - $\circ \quad \text{Let}\,K \text{ be the optimal set} \\$
 - A partition $\pi = (\pi_1, \pi_2)$ divides K into two subsets $K_1^{\pi} = K \cap \pi_1$ and $K_2^{\pi} = K \cap \pi_2$
 - subsets $K_1 = K \cap \pi_1$ and $K_2 = K \cap \pi_2$ o $d_1^{\pi} = \{(u, v) \in E | u \in \pi_2, v \in K_1^{\pi}\}, d_2^{\pi}$ defined analogously
 - $\mathbb{E}[d_1^{\pi} + d_2^{\pi}] = \frac{OPT}{2}$ by linearity of expectation
 - We get at least $\frac{d_1^{\pi} + d_2^{\pi}}{2}$

Carnegie Mellon University 28

5

1

 K_2^1

SUMMARY

- Terminology:
 - Random variables
 - Expectation
 - Conditional expectation
 - Geometric RVs
- Principles:
 - Using the linearity of expectation by writing RVs as sums of simple RVs

15251 Fall 2017: Lecture 22