Great Theoretical Ideas in CS

Lecture 7: Cantor's Legacy

Anil Ada Ariel Procaccia (this time)

OUR PROTAGONISTS

Georg Cantor 1845-1918 Father of set theory Alan Turing 1912-1954 Father of CS

15251 Fall 2017: Lecture 7

Carl Friedrich Gauss 1777-1855

"Infinity is nothing more than a figure of speech which helps us talk about limits. The notion of a completed infinity doesn't belong in mathematics."

CANTOR'S CONTRIBUTIONS

- Infinite sets are mathematical objects
- Different levels of infinity
- Explicit definition and use of 1-1 correspondences
- $|\mathbb{N}| < |\mathbb{R}|$ even though they are both infinite
- $|\mathbb{N}| = |\mathbb{Z}|$ even though $\mathbb{N} \subsetneq \mathbb{Z}$

Henri Poincaré 1854-1912

"Most of the ideas of Cantorian set theory should be banished from mathematics once and for all!"

Leopold Kronecker 1823-1891

"I don't know what predominates in Cantor's theory — philosophy or theology." "Scientific charlatan." "Corruptor of youth."

Ludwig Wittgenstein 1889-1951

"Wrong."

"Utter nonsense."

"Laughable."

David Hilbert 1862-1943

"No one should expel us from the Paradise that Cantor has created."

Ludwig Wittgenstein 1889-1951

"If one person can see it as a paradise, why should not another see it as a joke?"

15251 Fall 2017: Lecture 7

Ariel Procaccia 1979-?

"Enough monkeying around, let's get down to business."

3 TYPES OF FUNCTIONS

15251 Fall 2017: Lecture 7

COMPARING CARDINALITY

15251 Fall 2017: Lecture 7

SANITY CHECKS

- If $|A| \leq |B|$ then $|B| \geq |A|$
- Indeed, there is an injection $f: A \rightarrow B$, so define $g: B \rightarrow A$ such that $\forall b \in \operatorname{range}(f), g(b) = f^{-1}(b)$

SANITY CHECKS

- If $|A| \leq |B|$ and $|B| \leq |C|$ then $|A| \leq |C|$
- Indeed, there is an injection $f: A \rightarrow B$, and an injection $g: B \rightarrow C$, so $g \circ f: A \rightarrow C$ is an injection

15251 Fall 2017: Lecture 7

What about: If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|?

15251 Fall 2017: Lecture 7

ONE MORE DEFINITION

|A| < |B|
not $|A| \ge |B|$

- There is no surjection from A to B
- There is no injection from B to A
- There is an injection from A to B, but there is no bijection between A and B

These definitions allow us to compare the cardinality of infinite sets!

EXAMPLE: \mathbb{Z}

- Strangely enough, it holds that $|\mathbb{N}|=|\mathbb{Z}|$
- Indeed, the function $f\colon \mathbb{N}\to\mathbb{Z}$ defined by $f(n)=(-1)^{n+1}\left[\frac{n}{2}\right]$

is a bijection

n	0	1	2	3	4	5	6	•••
f(n)	0	1	-1	2	-2	3	-3	•••

15251 Fall 2017: Lecture 7

Wouldn't it be more intuitive to conclude that $|\mathbb{N}| < |\mathbb{Z}|$, as $\mathbb{N} \subsetneq \mathbb{Z}$?

15251 Fall 2017: Lecture 7

INFINITY AND BEYOND

- A set *A* is called:
 - Countable if $|A| \leq |\mathbb{N}|$
 - Countably infinite if it is countable and infinite
 - Uncountable if $|A| > |\mathbb{N}|$
- Perhaps a better name for countable would be listable: Can list the elements of A so that every element appears eventually

EXAMPLE: $\mathbb{Z} \times \mathbb{Z}$

15251 Fall 2017: Lecture 7

EXAMPLE: $\mathbb{N} \times \mathbb{N}$

15251 Fall 2017: Lecture 7

EXAMPLE: \mathbb{Q}

• Idea: list the rational numbers in the order they appear on the line

- Problem: Between any two rational numbers, there is another!
- Better idea: Define a surjection $f: \mathbb{Z} \times \mathbb{Z} \twoheadrightarrow \mathbb{Q}$ via f(a, b) = a/b
- $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{Z}| \leq |\mathbb{N}|$, and, by transitivity, \mathbb{Q} is countable

EXAMPLE: **{0,1}***

- $\{0,1\}^* =$ set of finite-length binary strings
- It is countable because we can enumerate them by length: $\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, ...$
- Similarly for $\Sigma^*,$ where Σ is a finite alphabet

The CS method for showing countability of A: Show that $|A| \leq |\Sigma^*|$ for some alphabet Σ

EXAMPLE: $\mathbb{Q}[x]$

• $\mathbb{Q}[x]$ is the set of polynomials with rational coefficients, e.g.,

$$x^3 + \frac{1}{4}x^2 + 6x - \frac{22}{7}$$

- Let $\Sigma = \{0, \dots, 9, x, +, -, *, /, ^\}$
- Every polynomial can be described by a finite string over Σ , e.g., $x^3 + 1/4x^2 + 6x - 22/7$
- Therefore $\mathbb{Q}[x]$ is countable

CANTOR'S THEOREM

- Just when we were starting to think that every set is countable...
- Cantor's Theorem: For any set A, $|A| < |\mathcal{P}(A)|$
- In particular, $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$, that is, $\mathcal{P}(\mathbb{N})$ is uncountable
- More generally, $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \cdots$

An infinity of infinities!

PROOF OF CANTOR'S THEOREM

- Assume for contradiction that $|A| \geq |\mathcal{P}(A)|$
- Then there exists $f: A \twoheadrightarrow \mathcal{P}(A)$
- Let $S = \{a \in A : a \notin f(a)\} \in \mathcal{P}(A)$
- Since f is a surjection, there is $s \in A$ such that f(s) = S
- But this leads to a contradiction: Is $s \in S$? If $s \in S$ then not $s \notin f(s)$, hence $s \notin S$ If $s \notin S$ then $s \notin f(s)$, hence $s \in S \blacksquare$

DIAGONALIZATION

Example for $f: \mathbb{N} \twoheadrightarrow \mathcal{P}(\mathbb{N})$

15251 Fall 2017: Lecture 7

TEST YOUR INTUITION

- Poll: Which of the following sets is countable?
 - 1. Infinite-length binary strings
 - 2. Finite-length strings of natural numbers
 - 3. Both
 - 4. Neither

15251 Fall 2017: Lecture 7

Why doesn't the diagonalization argument show that $|\mathbb{N}| < |\{0,1\}^*|$?

EXAMPLE: \mathbb{R}

- We can now show that $\mathbb R$ is uncountable by constructing $f\colon \mathbb R\twoheadrightarrow \{0,1,\ldots,9\}^\infty$
- For each $0.\,a_1a_2\cdots\in[0,1),\,f(x)=a_1a_2\cdots$
- Complication:

 $0.499\cdots=0.500\cdots$

so this would not be a surjection

• But in these cases we can map $1.a_1a_2\cdots$ to the alternative representation

RUSSELL'S PARADOX

If S is the set of all sets that do not contain themselves, does S contain itself?

15251 Fall 2017: Lecture 7

SUMMARY

- Terminology:
 - Surjection, injection, bijection
 - Countable and uncountable sets
- Principles:
 - Functions between sets are the right way to compare cardinalities
 - Diagonalization
- Big ideas:
 - Infinity of infinities!

15251 Fall 2017: Lecture 7