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Great Theoretical

Ideas in CS

Q

Lecture
Turing’s Legacy: Undecidability

Anil Ada
Ariel Procaccia (this time)

OUR PROTAGONISTS

Georg Cantor Alan Turing
1845-1918 1912-1954
Father of set theory Father of CS
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DECIDABLE OR UNDECIDABLE?

* Poll 1: Let X be a finite alphabet. Which
of the following sets is countable?

1. The set of decidable languages over

2. The set of all languages over X
3. Both
1. Neither
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Maybe undecidable
problems are not
interesting?
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The Halting Problem

* Input: Program pseudocode, input to the
program

* Output: True if the given program halts on
the given input, false otherwise

Why is it interesting?
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FERMAT ()
t<3
while true
for all ne{3,..,t}and x,y,z € {1, ..., t}
if x™+y™ =2z" then return (x,y,zn)
end for
t—t+1
end while

Question: Does this program halt?
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Theorem:
The Halting Problem is undecidable!
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PROOF (BY PSEUDOCODE)

¢ Suppose that there exists a procedure
HALT(program, input)
* Consider the program:

Turing(program)

if HALT(program,program) then
loop forever

else
return true

* What is the output of Halt(Turing, Turing)?
o IfHalt(Turing,Turing) then Turing(Turing) doesn’t halt
o If not Halt(Turing,Turing) then Turing(Turing) halrs
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PROOF (MORE FORMAL)

* HALT = {{M, x) : M is a TM that halts on x}
* Suppose the TM My ;7 decides HALT
* Consider the following TM Mrygring

Treat the input as (M) for a TM M
Run My 4 with input (M, M)

If it accepts, go into an infinite loop
If it rejects, accept (i.e., halt)
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PROOF (MORE FORMAL)

* HALT = {{M, x) : M is a TM that halts on x}
* Suppose the TM My, decides HALT
* Consider the following TM Mrygrine

MTURING

(M) —~ (M, M) X v
= (o]
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PROOF (MORE FORMAL)

What happens Wheﬂ (MTURING>
is given as input to Mryring?

MTURING

(M) —t—~ (M, M) x — v
v [o/e]
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DIAGONALIZATION REDUX

(M1) (Mz) (M3) (Ma) (Ms)

M@ B B H BN
M, W H = N
v, @ B B §H H--
M, H H H u--
v @ B B B N-
MTURI;\IG . . . . o

This is nothing but a diagonalization argument!

15251 Fall 2017: Lecture 8 Carnegie Mellon University 13

Is there a way to
show other
languages are
undecidable?

N\
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REDUCTIONS

* We want to define A < B to mean that B
is at least as hard as A

e That is:
o B decidable = A decidable
o A undecidable = B undecidable
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REDUCTIONS

* Terminology: Let A and B be two
languages, we say that A reduces to B, and
write A < B, if it is possible to decide A
using a TM that decides B as a subroutine
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To show that problem
B is undecidable, we
just need to show that
HALT < B
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EXAMPLE: ACCEPTS

* ACCEPTS = {(M, x) : M is a TM that
accepts x}
¢ This means:

o (M,x) € ACCEPTS = x leads to an accept
state in M

o (M,x) ¢ ACCEPTS = x leads to a reject state
or M does not halt

¢ Theorem: ACCEPTS is undecidable
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PROOF (BY ILLUSTRATION)

MHALT
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PROOF (MORE FORMAL)

* We will show that HALT < ACCEPTS
Let Mycceprs be a TM that decides ACCEPTS
* Hereis a TM that decides HALT:
o On input (M, x) run Myccgprs((M, x))
o If it accepts, accept
o Reverse the accept and reverse states of M, call it M’
o Run Mycegprs((M',x))
o Il accepls, accept, and reject otherwise
¢ Argue that:
o If (M,x) € HALT then the machine accepts it
o If (M,x) € HALT then the machine rejects it m
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EXAMPLE: EMPTY

* EMPTY = {{M) : M is a TM that accepts
nothing}

¢ Theorem: EMPTY is undecidable
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PROOF

* We¢ will show that ACCEPTS < EMPTY

* Given (M, x), construct a TM M, that, given y,
runs M(x) and returns its output

The machine Myccgprs constructs My, runs
Mgmpry ((My)), and flips its output
* Two cascs:

o M accepts x = L(M,) = X" = Mgypry rejects (My)
o M rejects x or doesn’t halt on x = L(M,) = @
= Mgumpry accepts (My) m
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These problems
involve TMs, are
there undecidable

problems that don’t?
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PosT’s CORRESPONDENCE PROBLEM

Input Output
A finite collection of Accept if copies of the
“dominoes” with strings dominoes can be arranged
written on each half so that the strings match
becc HEE bec

Undecidable! Proved in 1946 by Post
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WANG TILES

Input Output
A finite collection of Accept if the infinite plane
“Wang tiles” (squares) can be tiled using tiles
with colored edges with matching sides

- 1 - I - N
L0 aro
ENEBEK gL

Undecidable! Proved in 1966 by Berger
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Bi¢ UNDECIDABLE PROBLEMS

* Entscheidungsproblem:
o Pronunciation: https://youtu.be/RG2uPLG5K48

o Can a first-order-logic formula be derived from given axioms?

o Example: =3x,y,zn € N:(n 2 3) A (x™ + y" = z")

o  Formulated by Hilbert in 1928, proved undecidable by Turing
in 1936 (and, independently, by Church)

* Hilbert’s 10" Problem (Diophantine equations):

o Does a given multivariate polynomial with integer coefficients
have an integer root?

o Example: 3x2 —2xy —y2z2-7=0 (x =1,y =2,z=-2)

o One of 23 open problems on Hilbert’s famous 1900 list

o Proved undecidable by Matiyasevich in 1970
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DECIDABLE OR UNDECIDABLE?

e Poll 2: Which of the following problems is
decidable?
. EQ={(M,M'y: M,M’ TMs, L(M) = L(M")}
2. GRAVITON = @ if gravitons exist, {1}
otherwise
3. Both
1. Neither
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https://youtu.be/RG2uPLG5K48

INTERESTING VS. DECIDABLE

Interesting
Decidable

All problems

So what next?
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SUMMARY

Terminology and concepts:

o HALT, ACCEPTS, EMPTY

o Reductions between computational problems
Theorems:

o Most problems are undecidable

HALT, ACCEPTS, EMPTY are undecidable

Big ideas:
o Exploring the limits of computation
via reductions
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