

OUR PROTAGONISTS

15251 Fall 2017: Lecture 8

Carnegie Mellon University

DECIDABLE OR UNDECIDABLE?

- Poll 1: Let Σ be a finite alphabet. Which of the following sets is countable?
 - 1. The set of decidable languages over Σ
 - 2. The set of all languages over $\boldsymbol{\Sigma}$
 - з. Both
 - 4. Neither

1					
	15251	Fall	2017:	Lecture	8

The Halting Problem

- $\bullet\,$ Input: Program pseudocode, input to the
- Output: True if the given program halts on the given input, false otherwise

Why is it interesting?

15251 Fall 2017: Lecture 8

	Arithmeticon	um Liber II.	бī		
	1 N. atque ideo maior 1 N. + 2. Oportet itaque 4 N. + 4. triplos effe ad 2. & ad-	દુ કોઇદ, હે લેલન શહેદીના કેવતા દુ કોઇદ શે જના લેલન હાદાવામાંથી છે મહત્વનીયદ હે જાણાતો શે) હા છે. હે કેવા ઇન્જાફેજરૂરા શકે છે. જ મહત્વનીયદ હિંદી શકે છે. કેવન કોઇક દર્દા હે	pis ace there are no natural a, b, e		
	tis vnitatibus 10. æquatur 4 N. + 4. &	A v. mermanomuce u') . 15010 H	way and such shall		
	fit 1 N. 3. Erit ergo minor 3. maior 5. & farisfaciunt quattioni.	σαν μ' γ', ο δ'ς μάζων μ' τ. 2) π πρόβλεμα	tuin gà d' th' Th.		
	- N	.0 15 18	9 have a		
	IN QUAEST	IONEM VII.	truly		
	ONDITIONIS appolitæ cadem rattio ef aliud requirit quam vt quadratus internalli i Canones iidem hie etiam locum habebunt, vt n	l que & appofite precedenti questioni , i numerorum fit minor interuallo quadrato nanifestum est.	nil cnim marvelous orum, & demonstration of this		
	QVÆST	IO VIII.	proposition		
	PROPOSITYM quadratum diuidere induos quadratos. Imperatum fit ve	δύο τετραγώσους, έπιτε άλω	on Th		
	16. diuidatur in duos quadratos. Ponatur primus t Q.Oportet igitur 16-1 Q.aqua-	δηλοίν οις δύο τυτρας ώντις, και το σεώτος διαμάμεως μιας, δεώτοι ά	ex usid-centain.		
	les esse quadrato, Fingo quadratum à nu- meris quotquot libuerit, cum desectu tot	dus is heifer dirausus mus laus			
	vnitarum quod continet latus ipfius 16.	dle more deider movicon ut bran Be	is if T is		
w	-do 22 N - 2 infe joitur quadratus erit	is - sect from it to sold on it is	F	-	
1-0					

```
\frac{\text{FERMAT}()}{t \leftarrow 3} while true for all n \in \{3, \dots, t\} and x, y, z \in \{1, \dots, t\} if x^n + y^n = z^n then return (x, y, z, n) end for t \leftarrow t + 1 end while
```

Question: Does this program halt?

Theorem:
The Halting Problem is undecidable!

Carnegie Mellon University

PROOF (BY PSEUDOCODE)

- Suppose that there exists a procedure ${\sf HALT}(program, input)$
- Consider the program:

Turing(program)
if HALT(program, program) then
loop forever
else
 return true

- What is the output of Halt(Turing, Turing)?
 - If Halt(Turing, Turing) then Turing(Turing) doesn't halt
 If not Halt(Turing, Turing) then Turing(Turing) halts

15251 Fall 2017: Lecture 8

PROOF (MORE FORMAL)

- HALT = $\{\langle M, x \rangle : M \text{ is a TM that halts on } x\}$
- Suppose the TM M_{HALT} decides HALT
- \bullet Consider the following TM M_{TURING}

Treat the input as $\langle M \rangle$ for a TM M Run M_{HALT} with input $\langle M, M \rangle$ If it accepts, go into an infinite loop If it rejects, accept (i.e., halt)

15251 Fall 2017: Lecture 8

Carnegie Mellon University 10

PROOF (MORE FORMAL)

- HALT = $\{\langle M, x \rangle : M \text{ is a TM that halts on } x\}$
- • Suppose the TM M_{HALT} decides <code>HALT</code>
- Consider the following TM M_{TURING}

PROOF (MORE FORMAL)

What happens when $\langle M_{TURING} \rangle$ is given as input to M_{TURING} ?

15251 Fall 2017: Lecture 8

DIAGONALIZATION REDUX

This is nothing but a diagonalization argument!

REDUCTIONS

• We want to define $A \leq B$ to mean that B is at least as hard as A

- That is:
 - $_{\circ}$ B decidable $\Longrightarrow A$ decidable
 - $_{\circ}$ A undecidable $\Longrightarrow B$ undecidable

REDUCTIONS

• Terminology: Let A and B be two languages, we say that A reduces to B, and write $A \leq B$, if it is possible to decide A using a TM that decides B as a subroutine

To show that problem B is undecidable, we just need to show that $HALT \leq B$

EXAMPLE: ACCEPTS

- ACCEPTS = {\langle M, x \rangle : M is a TM that accepts x}
- This means:
 - 。 $\langle M, x \rangle \in \mathsf{ACCEPTS} \Longrightarrow x$ leads to an accept state in M
 - ∘ $\langle M, x \rangle \notin ACCEPTS \Rightarrow x$ leads to a reject state or M does not halt
- Theorem: ACCEPTS is undecidable

PROOF (BY ILLUSTRATION)

15251 Fall 2017: Lecture 8

Carnegie Mellon University 19

PROOF (MORE FORMAL)

- We will show that $\texttt{HALT} \leq \texttt{ACCEPTS}$
- Let $M_{ACCEPTS}$ be a TM that decides $\mathsf{ACCEPTS}$
- Here is a TM that decides $\ensuremath{\mathsf{HALT}}$:
 - o On input $\langle M, x \rangle$ run $M_{ACCEPTS}(\langle M, x \rangle)$
 - ${\circ}\quad \text{ If it accepts, accept}\\$
 - $_{\circ}$ Reverse the accept and reverse states of M, call it M'
 - $\quad \text{--} \operatorname{Run}\, M_{ACCEPTS}(\langle M', x\rangle)$
 - $_{\circ}$ $\,$ $\,$ If it accepts, accept, and reject otherwise
- Argue that:
 - . If $\langle M,x\rangle\in\mathsf{HALT}$ then the machine accepts it
 - ∘ If $\langle M, x \rangle \notin$ HALT then the machine rejects it ■

15251 Fall 2017: Lecture 8

Carnegie Mellon University 20

EXAMPLE: EMPTY

- EMPTY = {\langle M \rangle : M is a TM that accepts nothing}
- Theorem: EMPTY is undecidable

PROOF

- We will show that $ACCEPTS \le EMPTY$
- Given $\langle M, x \rangle$, construct a TM M_x that, given y, runs M(x) and returns its output
- The machine $M_{ACCEPTS}$ constructs M_x , runs $M_{EMPTY}((M_x))$, and flips its output
- Two cases:
 - 。 M accepts $x \Longrightarrow L(M_x) = \Sigma^* \Longrightarrow M_{EMPTY}$ rejects $\langle M_x \rangle$

15251 Fall 2017: Lecture 8

Carnegie Mellon University 22

POST'S CORRESPONDENCE PROBLEM

Input

A finite collection of "dominoes" with strings written on each half

Output

Accept if copies of the dominoes can be arranged so that the strings match

Undecidable! Proved in 1946 by Post

| 15251 Fall 2017: Lecture 8

WANG TILES

Input

A finite collection of "Wang tiles" (squares) with colored edges

Output

Accept if the infinite plane can be tiled using tiles with matching sides

Undecidable! Proved in 1966 by Berger

15251 Fall 2017: Lecture 8

Carnegie Mellon University 25

BIG UNDECIDABLE PROBLEMS

- Entscheidungsproblem:
 - Pronunciation: https://youtu.be/RG2uPLG5K48
 - 。 Can a first-order-logic formula be derived from given axioms?
 - . Example: $\neg \exists x, y, z, n \in \mathbb{N}$: $(n \ge 3) \land (x^n + y^n = z^n)$
 - Formulated by Hilbert in 1928, proved undecidable by Turing in 1936 (and, independently, by Church)
- Hilbert's 10th Problem (Diophantine equations):
 - \circ $\,$ Does a given multivariate polynomial with integer coefficients have an integer root?
 - Example: $3x^2 2xy y^2z 7 = 0$ (x = 1, y = 2, z = -2)
 - $_{\circ}$ $\,$ One of 23 open problems on Hilbert's famous 1900 list
 - Proved undecidable by Matiyasevich in 1970

15251 Fall 2017: Lecture 8

Carnegie Mellon University 2

DECIDABLE OR UNDECIDABLE?

- Poll 2: Which of the following problems is decidable?
 - 1. EQ = $\{\langle M, M' \rangle : M, M' \text{ TMs}, L(M) = L(M')\}$
 - 2. GRAVITON = \emptyset if gravitons exist, $\{1\}$ otherwise
 - 3. Both
 - 4. Neither

15251 Fall 2017: Lecture 8

Interesting vs. Decidable	
Interesting Decidable All problems	
So what next?	
15251 Fall 2017: Lecture 8 Carnegie Mellon University 28	
Summary	
 Terminology and concepts: HALT, ACCEPTS, EMPTY 	
。 Reductions between computational problems	
 Theorems: Most problems are undecidable 	
• Theorems: • Most problems are undecidable	

Carnegie Mellon University 29

15251 Fall 2017: Lecture 8