9/26/2017

Great Ideas in

Theoretical CS

Lecture 9:
Time Complexity

Anil Ada

Ariel Procaccia (this time)

THE BIG O

ADDING TWO n-BIT NUMBERS

15251 Fall 2017: Lecture 9 Carnegie Mellon University 3

9/26/2017

ADDING TWO n-BIT NUMBERS

* % %
*

15251 Fall 2017: Lecture 9 Carnegie Mellon University 4

ADDING TWO n-BIT NUMBERS

*9q *
+ * k% *x % X% * % *x *|*
* k% *x % X% * % *x *|*
v
*x *

15251 Fall 2017: Lecture 9 Carnegie Mellon University 5

ADDING TWO n-BIT NUMBERS

4%k | *x * *x * * *x * %
+ *|* *x * *x * % *x *
| *x * *x * % *x *
v
* % *x % X% * % *x % *x * %

Grade school addition

15251 Fall 2017: Lecture 9 Carnegie Mellon University 6

9/26/2017

TIME COMPLEXITY

* T(n) =amount of time grade school addition
takes to add two n-bit numbers

* What do we mean by “time”?

e Given algorithm will take different amounts of
time on the same input depending on hardware,
compiler, ...

How do I define “time” in a
way that transcends
implementation details?

15251 Fall 2017: Lecture 9 Carnegie Mellon University 7

A CREAT IDEA

* On any reasonable computer, adding 3 bits and
writing down the 2 bit answer can be done in
constant time

* For a computer M, let ¢ be the time it takes to
perform T]on M

* The total time to add two n-bit numbers using
grade school addition on M is ¢ - n

e On M’', the time to perf()rm‘D could be ¢’

e The total time on M' is ¢'n

15251 Fall 2017: Lecture 9 Carnegie Mellon University g

A GREAT IDEA

* The fact that we get a
line is invariant under
different
implementations

* Different machines
result in different
slopes, but the running
time grows linearly

#bits n

15251 Fall 2017: Lecture 9 Carnegie Mellon University 9

9/26/2017

A GREAT IDEA

* Conclusion: Grade school addition is a
linear time algorithm

This process of abstracting
away details and determining
the rate of resource usage in
terms of the problem size n is
one of the fundamental ideas
in computer science

15251 Fall 2017: Lecture 9

MULTIPLYING TWO n-BIT NUMBERS

* k kk k k k%
X * k k k Kk ok k%
* k kk k ok k%
* Kk kkk Kk k%
* kkkkkkx
le * k kk Kk k k%
* k kkk Kk k%
* kkkk Kk kx
* k kk k ok k%
* k kkk ok k%

*hkkkhkkhkkhkhhhkhkkkkhkhkhx

15251 Fall 2017: Lecture 9 Carnegie Mellon University 11

LINEAR VS. QUADRATIC

* Total time to multiply: cn?

* Addition is lincar time, multiplication is
quadratic time

e Regardless of the constants, the quadratic curve
will eventually dominate the linear curve

Carnegie Mellon University 12

9/26/2017

NURSERY SCHOOL ADDITION

* To add two n-bit numbers a and b, start at a
and increment (by 1) b times

* What is T(n)?

* If b =00-0, NSA takes almost no time

e Poll 1: If b =11---1, NSA takes time
1 c(logn)?

2 cnlogn

s cn?

4 cn2"

15251 Fall 2017: Lecture 9 Carnegie Mellon University 13

WORST CASE TIME

Worst-case running time
T (n) of algorithm A =
the maximum over all

feasible inputs x of size n

of the running time of A

15251 Fall 2017: Lecture 9 Carnegie Mellon University 14

MORE FORMALLY: O

* For a function f:N - N,
f(n) = 0(n) if there
exists a constant ¢ such
that for all sufficiently
large n, f(n) < cn

<

¢ Informally: There is a
line that can be drawn
that stays above f from Value of n
some point on

15251 Fall 2017: Lecture 9 Carnegie Mellon University 15

9/26/2017

MORE FORMALLY: ()

* For a function f:N - N,
f(n) = Q(n) if there
exists a constant ¢ such
that for all sufficiently
large n, f(n) = cn

Informally: There is a
line that can be drawn
that stays below f from Value of n
some point on

15251 Fall 2017: Lecture 9 Carnegie Mellon University 16

MORE FORMALLY: ©®

e For a function
fiN->N, f(n) =0(n)
if f(n) = 0(n) and
f(m) =Qm)
Informally: f can be
sandwiched between
two lines from some
point on

Value of n

15251 Fall 2017: Lecture 9 Carnegie Mellon University 17

MORE FORMALLY AND GENERALLY

e f(n) = O(g(n)) if there exists a constant ¢
such that for all sufficiently large n,
f(n) <c-gn)

e f(n) = Q(g(n)) if there exists a constant ¢
such that for all sufficiently large n,
f(m) zc-g(n)

- f@) = 8(n) if f() = 0(g(w)) and
f) =0a(gm)

15251 Fall 2017: Lecture 9 Carnegic Mellon University 18

EXERCISES
n* +3n+22 =0(n*)?
n* +3n+ 22 = Q(n*logn)?
Poll 2: Which of the following statements
is true:

7z Inn = 0(og,n)
2 Inn = Qlog, n)
3. Both

1. Neither

15251 Fall 2017: Lecture 9 Carnegie Mellon University 19

EXERCISES
* Poll 3: log(n!) =?
1 G)(n)
2 O(nlogn)
. 0(n?)
. 02"

* Poll 4: Which of the following statements is true:
. f=0(g)andg=0(h) = f=0(h)
2 f=0Mh)and g=0(h) > f=0(9)
3. Both
.. Neither

15251 Fall 2017: Lecture 9 Carnegie Mellon University 20

NAMES FOR GROWTH RATES

e Linear time: T(n) = 0(n)
* Quadratic time: T(n) = 0(n?)
* Polynomial time: there exists k € N such
that T(n) = 0(n*)
o Example: 13n28 + 11n17 + 2

Polynomial time —
computationally cfficient

15251 Fall 2017: Lecture 9 Carnegie Mellon University 21

9/26/2017

NAMES OF CROWTH RATES

* Exponential time: there exists k € N such
that T(n) = 0(k™)
o Example: T(n) =n2™ = 0(3")
* Logarithmic time: T(n) = 0(logn)
o A logarithmic-time algorithm can’t read all
of its input
o The running time of binary search is
logarithmic

15251 Fall 2017: Lecture 9 Carnegie Mellon University 22

LIMITS OF THE POSSIBLE

J Age of the universe
271
1ot] 73
/ One year
2
n One hour
108 /
One second
W
T T
10 108

Log-log plot with 1 step = lus

Carnegie Mellon University 23

TWO SIMILAR PROBLEMS

* BULERIAN-CYCLE:
o Instance: A connected graph
o Input size: Number of vertices
o Question: Is there a tour visiting each
edge exactly once?

* Algorithm: The answer is “yes” if and
only if cach vertex has cven degree;
complexity 0(n?)

* Theorem (Euler): The algorithm
correctly solves EULERIAN-CYCLE

15251 Fall 2017: Lecture 9 Carnegic Mellon University 24

9/26/2017

APPLICATION: DRACON AGE

This is nothing but the
EULERIAN-PATH problem!

15251 Fall 2017: Lecture 9 Carnegie Mellon University 25

TWO SIMILAR PROBLEMS
¢ HAMILTONIAN-CYCLE:

o Instance: A connected graph

o Input size: Number of vertices

o Question: Is there a tour visiting
each vertex exactly once?

* Complexity:

o DBrute force algorithm: n!

o 1970: 2™

o 2010: 1.657™

15251 Fall 2017: Lecture 9 Carnegie Mellon University 26

POLYNOMIAL TIME

The huge gap in running
time between polynomial
time and exponential
time usually corresponds
to a huge gap in our
understanding of the
problem

15251 Fall 2017: Lecture 9 Carnegie Mellon University 27

9/26/2017

9/26/2017

REPRESENTATION

* The way a problem is represented can
have a huge impact on its complexity
* KNAPSACK:
o Instance: m items 1,...,m with valucs
Vq, .., Uy and weights wy, ..., Wy, capacity B,
valuc V

o Input size: We'll talk about this later

o Question: Is there a subset of items S such
that Y;csW; < B and Yieqv; 2V

15251 Fall 2017: Lecture 9 Carnegie Mellon University 28

REPRESENTATION
e Dynamic programming algorithm for
KNAPSACK:
o m X B matrix A
o A(Lj) =max{A(i—1,/), A0 —1,j —w;) + v;}

Item value weight

Capacity
allowed

Carnegie Mellon University 29

REPRESENTATION

* Running time of the dynamic
programming algorithm: @(mB)

* Binary representation for KNAPSACK:

o Input size: n = 2m - max{log B,log V'}
o Exponential running time!

* Unary representation for KNAPSACK:
o lnput size: n = 2m - max{B,V}

o Linear running time!

15251 Fall 2017: Lecture 9 Carnegie Mellon University 30

10

9/26/2017

COOL GROWTH RATES: 2STACK
« 2STACK(0) =1

« 2STACK(n) = 2STACK(n — 1) 222
* Examples: 2

. 2STACK(1) = 2 2

» 2STACK(2) = 4 2

. 2STACK(3) = 16 2

o 2STACK(4) = 65536

o 2STACK(5) = yikes! 2

15251 Fall 2017: Lecture 9 Carnegie Mellon University 31

COOL GROWTH RATES: LOG*

* log*(n) = #times you have to apply the
log function to n to make it <1

* Examples:

o 2STACK(1) =2 log*(2) =1
o 2STACK(2) = 4 log*(4) = 2
. 2STACK(3) = 16 log*(16) = 3

. 2STACK(4) = 65536 log*(65536) = 4
o 2STACK(5) =yikes! log*(yikes!) =5

15251 Fall 2017: Lecture 9 Carnegie Mellon University 32

COOL GROWTH RATES: LOG*

* There’s no way log* is actually useful,
right?
Multiplication takes O(nlogn 21°8" ™)

Optimal Social Choice Functions: A Utilitarian View

cm

(2015)

OR SHEFFET, Ca

THEOREM 3.3. There exists a randomized social choice function f such that for
every & € (8,,)" dist(f.d) = O(y/m - log" in)

Carnegie Mellon University 33

11

9/26/2017

SUMMARY

* Terminology:

o Big O notation

o Names for growth rates

* Principles:
o Why polynomial time?
o Representation matters

15251 Fall 2017: Lecture 9 Carnegie Mellon University 34

12

