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What are the limitations to what computers can learn!?

Do certain mathematical theorems have short proofs?

Can quantum mechanics be exploited to speed up computation!?

Is every problem whose solution is efficiently verifiable also
efficiently solvable? ie. P = NP?
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Communication complexity



Cool Things About Communication Complexity

Many useful applications:

machine learning, proof complexity, quantum computation,
pbseudorandom generators, data structures, game theory,...

The setting is simple and neat.

Beautiful mathematics

combinatorics, algebra, analysis, information theory, ...



Motivating Example |: Checking Equality

I~

O1001010IT10IOI 010010100110101

<«——— 1 bits —> <«——— 10, bits ——>

How many bits need to be communicated?
Naively: n Actually: n

What if we allow 0.00000000001% probability of error?
Naively: Q(n) Actually: O(logn)



Motivating Example 2: Auctions
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Defining the model a bit more formally



2 Player Model of Communication Complexity

F:{0,1}" x {0,1}" — {0, 1}

known to
both players

Goal: Compute F(QZ, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

(We assume players have unlimited computational power individually.)



Poll |

z,y € {0,1}"  PAR(x,y) = parity of the sum of all the bits.
(i.e. it’s | if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate?
Choose the tightest bound.

0(1)

logn)
log® n)




Poll | Answer

z,y € {0,1}"  PAR(x,y) = parity of the sum of all the bits.
(i.e. it’s | if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate?
Choose the tightest bound.

Once Bob knows the parity of x, he can compute
PAR(x,y).

- Alice sends PAR(x) to Bob. | bit
- Bob computes PAR(z,y) and sends it to Alice. | bit

2 bits in total
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2 Player Model of Communication Complexity

Goal: Compute F(CE, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A protocol P is the “strategy” players use to communicate.

It determines what bits the players send in each round.

P(x,y) denotes the output of P.



2 Player Model of Communication Complexity

Goal: Compute F(SE, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A (deterministic) protocol P computes [ if

V(z,y) € {0,1}" x {0,1}"  P(z,y) = F(z,y)

l \

Analogous to: algorithm decision
(TM) problem

Ve e ¥* A(x) = F(x)



2 Player Model of Communication Complexity

Goal: Compute F(SE, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A randomized protocol P computes [’ with € error if

Via,y) € {0,1)" x (0,13 PrlP(z,y) # F(z.)] < e




2 Player Model of Communication Complexity

Goal: Compute F(SE, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

cost(P) = ]Enazs;c # bits P communicates for (x,y)
.y

if P is randomized, you take max
over the random choices it makes.

Deterministic communication complexity
D(F') = min cost of a (deterministic) protocol computing F..

Randomized communication complexity

R (F") = min cost of a randomized protocol computing F'
with € error.



2 Player Model of Communication Complexity

Goal: Compute F(CE, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

cost(P) = max_# bits P communicates for (x,y)

(

We usually fix € to some constant.

Deterministic c( eg € = 1 / 3
D(F) = mi

We can always boost the success
Randgwr probability if we want.

with € error.



What is considered hard or easy!?

F:{0,1}" x {0,1}" — {0,1}



Example

Equality: EQ(x,y) = { 0 otherwise.

D(EQ) =n+ 1. RY3(EQ) = O(logn).



Poll 2

MAJ(z,y) = | iff majority of all the bits in = and y
are set to |.

Whatis D(M AJ)? Choose the tightest bound.




Poll 2 Answer

MAJ(z,y) = | iff majority of all the bits in = and y
are set to |.

Whatis D(M AJ)? Choose the tightest bound.

The result can be computed from

Z Ti T+ Z Yi

ie{1,2,...,n} ie{1,2,...,n}

- Alice sends ) . %; to Bob. ~ log n bits

- Bob computes M AJ(x,y) and sends it to Alice. | bit
O(logn) in total



Another example: Disjointness function

Can view the input string as a subset of {I,2,3,...,n}
S, ={2,4,5}

x =|(o]1]o]i]i1]o]o]oO
| 23456 7 8

1 S:NnS, =0

0 otherwise

Disjointness: DI1SJ(S;,S,) = {

RY3(DISJ) = Q(n). hard!



The plan

|. Efficient randomized communication protocol for
checking equality.

2. An application of communication complexity.

3. A few words on proving lower bounds.



Efficient randomized communication protocol
for checking equality



The Power of Randomization

RY3(EQ) = O(logn).

The Protocol:

Alice’s Input: apaiaz...a,—1 € {0,1}"
Bob’s Input:  bgb1bs...b,,—1 €10,1}"

Alice picks a prime p € [n?,2n?| and a random t € Z,, .

Alice builds polynomial

Alz) = ag + a1z + agz® + - + ap_12™" 1 € Z,|x]

Alice sends Bob: p, t, A(t) — O(logn) bits



The Power of Randomization

RY3(EQ) = O(logn).
The Protocol:

Alice picks a prime p € [n?,2n?| and a random t € Z,, .
Alice builds polynomial

Alz) = ag + a1z + agz® + - + ap_12™" 1 € Z,|x]
Alice sends Bob: p, t, A(t) — O(logn) bits

Bob builds polynomial B(x) € Z,,|z]

Output: If A(t) = B(t), output 1. Otherwise, output 0.



The Power of Randomization

RY3(EQ) = O(logn).

Analysis:

Want to show: For all inputs (a, b), probability of erroris < e.

For all (a,b) with a = b :
Prlerror| = P;r[A(t) + B(t)] =0

For all (a,b) with a # b :
Prlerror| = f;r[A(t) = B(t)| = fzr[(A — B)(t) = 0]

¢
n—1 n—1
<

< <= <

= Pr|t is a root of A — B] <
@egree(A —B)<n —D

1
n




An application of communication
complexity



Applications of Communication Complexity

- circuit complexity - pseudorandom generators

- time/space tradeoffs for - pseudorandomness

Turing Machines - branching programs

- VLSI chips - data streaming algorithms

- machine learning - quantum computation

- game theory - lower bounds for polytopes

_ data structures representing NP-complete
problems

- proof complexity

communication
complexity
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How Communication Complexity Comes In

Setting: Solve some task while minimizing some resource.

e.g. find a fast algorithm, design a small circuit,
find a short proof of a theorem, ...

Goal: Prove lower bounds on the resource needed.

Sometimes we can show:
efficient solution to our problem il

efficient communication protocol for a certain function.

i.e. no efficient protocol for the function el

no efficient solution to our problem.



Lower bounds for data streaming algorithms



Data Streaming Algorithms

Streaming
Algorithm

g —

Seln

v

S1 | S92

m
n)=4{1,2,...,n}

n




Data Streaming Algorithms

Streaming
Algorithm

v

S1 | 52

S € [n]"

n= (1.2, .n)




Data Streaming Algorithms

Streaming
Algorithm

v

S1 | 52

Seln

n= (1.2, .n)

n




Data Streaming Algorithms

Streaming
Algorithm

v

S = [S51] 82 e | Sn
M
n)=1{1,2,...,n}

S e n|"

Fix some function f: [n|" — Z.

e.g. f(S) = # most frequent symbol in S

Goal: On input S, compute (or approximate) f(5)
while minimizing space usage.



Lower Bounds via Communication Complexity
f(S) = # most frequent symbol in S

Space efficient streaming algorithm computing | =——>
communication efficient protocol computing D15 J.

1 S:NnS, =0

0 otherwise

Disjointness: DI1SJ(S;,S,) = {



Lower Bounds via Communication Complexity
f(S) = # most frequent symbol in S

Space efficient streaming algorithm computing /| —>
communication efficient protocol computing D15 J.

S =1{2,4,5} S, =11,5,7,8}
x=|of1]ofi]i]o]o]o y=1{1]oJolofifo]I]
| 2345678 | 2345678

Protocol: Alice runs streaming algorithm on 5, .
She sends the state and memory contents to Bob.

Bob continues to run the algorithm on .5, .
If f(S;-95,) =2,Bob outputs 0, otherwise .

Correctness \/ Cost \/



A few words on showing lower bounds



Mp =

The function matrix

F:{0,1}" x {0,1}" — {0,1}

Y

ol1olol1iotolirrr1o0i010010101000
ololololollol0l00I0101001O01T11100
ololoooolololiiolrolololorrirtololl
ooololl1ololliiololorioolololoiol
oololololololololollolooololololl
ololrfrrororriroroolorioltorori11olroo
olololl10l0l0I0IOI000IO10001O11OI
olololololrtiorotortoriofrtorriolol
[11010101011010IO10IOIOIOITT11100
[1101110101010101O010IOIOIOIOOIIT]
|10101101010101000101010101000101
Ol11100001111100000000011101O1111
Ol10l0I110IOITTT11001010010101000
oololololololoolololololirr11o000

101010101000001110101011101011000

Mp|x,y| = F(z,y)

2" by 2"
matrix



Equality: FEQ(x,y) :{ 0

n=3
Mgrg =

000
001
010
Oll
100
101
|10
|11

The function matrix

000 00l OlI0 Ol

Y
100 101

1 it x =y,
otherwise.
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2" by 2"
matrix



The function matrix

How do you prove lowe

Y

r bounds on comm. complexity!?

[(Partltlon number(covering numberj
N

Discrepancy

UITUUIUVIVIVUIVUI

\ 1010001010101 |
’ h Rank
X Sign Rank Mp [377 y] — F(az, y)
\ (
N\  Norm
&pproximate Norm
0000 LIQIOT 1 |

001010f Information Theory | 10000
101010

01000
1 1000

You study this matrix!



Take-Home Message

Communication complexity studies natural distributed tasks.

Communication complexity (lower bounds) has many
interesting applications.

Lower bounds can be proved using a variety of tools:
combinatorial, algebraic, analytic, information theoretic,...



