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Don’t stress, 
Kurt, it’s easy! 



Proving the famous 
“Gödel Incompleteness Theorems” 

is easy if you use computer science. 

It’s a Great Application of Theoretical 
Computer Science to mathematics. 



Euclid’s Elements (ca. 300 BCE), 
on plane geometry. 

Canonized the idea of giving 
a rigorous, axiomatic deduction  

for all theorems. 

Formalization of proofs 



1. To draw a straight line from any point to any point. 

2. To produce a finite straight line continuously in a straight line. 

3. To describe a circle with any center and radius. 

4. That all right angles are equal to one another. 

5. If a straight line falling on two straight lines make the interior  

    angles on the same side less than two right angles, the two  

    straight lines, if produced indefinitely, meet on that side on  

    which are the angles less than the two right angles. 

Euclid’s 5 axioms of plane geometry: 

Formalization of proofs 

His proofs were not 100% formal, either. 
At least he was trying! 



Formalization of proofs 

19th century:  True rigor developed. 

Culminated in the understanding that 
all math proofs can be completely formalized  

using the language of First Order Logic 
   and an associated Deductive Calculus. 



First Order Logic 

•  Includes basic Boolean connectives ∧, ∨, ¬, → 
•  Variables like x stand for objects, not true/false 
•  Also has ∀ (for all), ∃ (there exists), = (equals) 
•  You get to invent your own vocabulary,  

meaning function names (like Father), relation  
names (like IsCooler), and constant names (like a). 

•  You always have in mind a real-world / math-world  
interpretation of the vocabulary. 

FOL:         ∀x (¬(x=a)→IsCooler(Father(a),Father(x))) 

A formal language for logical modeling. 

English:   “Alex has the coolest father.” 



First Order Logic 

Deductive Calculus:   
 

     A textbook set of fixed rules that lets you  
     deduce new FOL statements from older ones. 

+ Deductive Calculus 

•  If you have S and S→T, you can deduce T 
•  If you have IsCool(a), can deduce ∃x IsCool(x) 
•  If you have S, and S does not contain the  

variable name x, you can deduce ∀x S 
•  Plus 9 more rules like this (or more or fewer,  

depending on whose textbook you look in) 
 
 
 

     A textbook set of fixed rules that lets you  
     deduce new FOL statements from older ones. 



Important Note: 
 

Deductive Calculus is  
100% syntactic string manipulation.   

You can write a 50-line computer program 
that checks if a sequence of deductions is valid. 

 

First Order Logic 
+ Deductive Calculus 



1.  Take some area of math you want to reason about. 
 

2.  Invent an appropriate vocabulary  
   (function, relation, and constant names). 

3.  Specify some axioms which are true under  
the interpretation you have in mind. 

4.  Go to town, deducing theorems from the 
axioms using Deductive Calculus. 

Using FOL to formalize parts of math 



Example 1:  Arithmetic for 6-year-olds 

Mojżesz Presburger 
1929 



Example 1:  Arithmetic for 6-year-olds 

More precisely:      A theory of ℕ and +. 

Constant names:   0 and 1 
Function name:      Plus(·,·) 

Axioms:   
   #1:   ∀x ¬(0 = Plus(x,1)) 
   #2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y) 
   #3:   ∀x Plus(x,0) = x 
   #4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1) 
   #5:   for any sentence S with free variable x,  

     ( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y) 



Example 1:  Arithmetic for 6-year-olds 

More precisely:      A theory of ℕ and +. 

Constant names:   0 and 1 
Function name:      Plus(·,·) 

Axioms:   
   #1:   ∀x ¬(0 = Plus(x,1)) 
   #2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y) 
   #3:   ∀x Plus(x,0) = x 
   #4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1) 
   #5:   for any sentence S with free variable x,  

     ( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y) 

This is actually an infinite 
“axiom schema”.  That’s OK! 



Example 1:  Arithmetic for 6-year-olds 

Fact:  Starting from these 5 axioms (/schema), 
   and using only the purely syntactic rules 
   of Deductive Calculus, you can… 

 

•  Prove addition is associative! 
∀x ∀y ∀z Plus(Plus(x,y),z) = Plus(x,Plus(y,z)) 
 

•  Prove addition is commutative! 
∀x ∀y Plus(x,y) = Plus(y,x) 
 

•  Prove every number is even or odd! 
∀x (∃y Plus(y,y) = x ∨ Plus(Plus(y,y),1) = x) 



Example 1:  Arithmetic for 6-year-olds 

You can also build up new concepts that 
       are not part of the formal vocabulary: 
 
 

“x is even”…   ∃y Plus(y,y) = x 
 
“x < y”…    ∃z (¬(z=0) ∧ Plus(x,z) = y) 



Example 2: Plane geometry done right 

Alfred Tarski 
1959 



Example 2: Plane geometry done right 

Relation names:   IsBetween(x,y,z) 
        IsSameLength(x1,x2,y1,y2) 

Axioms:   

   #1:  ∀x1 ∀x2  IsSameLength(x1,x2,x2,x1) 

   #2:  ∀x ∀y ∀z   IsSameLength(x,y,z,z)→(x=y) 

   #3:  ∀x ∀y  IsBetween(x,y,x)→(y=x) 

   #4:  (“Segment Extension”)  
               ∀x1,x2,y1,y2 ∃z IsBetween(x1,x2,z)∧IsSameLength(x2,z,y1,y2) 

   #5−21:  I won’t bother to write them. 



Example 2: Plane geometry done right 

“m is the midpoint of ab”… 
    IsBetween(a,m,b) ∧ IsSameLength(a,m,m,b) 
 
“ab is parallel to cd”… 
      (¬∃z IsBetween(a,b,z) ∧ IsBetween(c,d,z)) 
  ∧ (¬∃z IsBetween(z,a,b) ∧ IsBetween(z,c,d)) 
 
“x is on the circle that has center o  
    and radius the same length as ab”… 
     IsSameLength(x,o,a,b) 



Fact:  Starting from Tarski’s 21 axioms, using only 
   the purely syntactic rules of Deductive  
   Calculus, you can prove many many things. 

 

E.g.:   “In any triangle abc, the line joining the 
    midpoint of ab and the midpoint of bc 

           is parallel to bc.” 

 
In fact:  Every theorem about plane  

      geometry in Euclid’s book Elements  
      can be so deduced! 

Example 2: Plane geometry done right 



More examples 

Giuseppe Peano 
1889 

Gave a very successful list of 
7 axioms/schema for 

arithmetic of ℕ, 
including multiplication. 

Ernst Zermelo++ 
~1910’s 

Gave a very successful list of 
9 axioms/schema for set theory. 

Came to be known as “ZFC”. 



Say you are trying to axiomatize 
your favorite branch of math. 

 
Some goals you should shoot for: 

1.  Computable axioms 
2.  Consistency 
3.  Soundness 
4.  Completeness 



Computable axioms 
It’s nice if you have a finite number of axioms. 

But often you need infinite families of axioms, 
like the Induction axiom schema in arithmetic: 

“Computable axioms” means: 
L = { strings A : A is an axiom} is decidable. 

An axiom system without this property is ridiculous! 

 
for any sentence S with free variable x, have axiom 

 
 

( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y) 
 



Consistency 

Let A1, …, Am be some axioms. 
 

Suppose that using Deductive Calculus,  
we can deduce from them some sentence S 
and we can also deduce the sentence ¬S. 

 
Then the axiom system is called inconsistent. 

 
And you really screwed up! 



Consistency 

In fact, if your axiom system is inconsistent, 
then every statement is provable. 

Theorem:  Blahblahblah. 

  AFSOC ¬Blahblahblah. 
  [Derive S from the axioms.] 
  [Derive ¬S from the axioms.] 
  Thus we have a contradiction. 
  Therefore Blahblahblah holds. 

Proof:  



Consistency 

Frege, 1893:   
   Proposes axioms for set theory. 
 

   Spends 10 years writing two 
   thick books about the system. 

Russell, 1903:  “Your axioms  
  allow me to define D = {x : x∉x}.   
Now if D∈D  then D∉D.   
And  if D∉D then D∈D. 
  Inconsistency, boom!” 



Consistency 

Frege, 1893:   
   Proposes axioms for set theory. 
 

   Spends 10 years writing two 
   thick books about the system. 

Russell, 1903:  “Your axioms  
  allow me to define D = {x : x∉x}.   
Now if D∈D  then D∉D.   
And  if D∉D then D∈D. 
  Inconsistency, boom!” 



Soundness 

Let A1, …, Am be some axioms that model 
some branch of math you have in mind. 

 

If every S that you can deduce is actually true 
(within the branch of math you have in mind) 

then the system is called sound. 
 

Note 1:  Sound ⇒ Consistent    
 

Note 2: Consistency is a totally syntactic concept. 
    But soundness relies on your ability  

to judge mathematical truth. 



Presburger’s arithmetic for 6-year-olds 

More precisely:      A theory of ℕ and +. 

Constant names:   0 and 1 
Function name:      Plus(·,·) 

Axioms:   
   #1:   ∀x ¬(0 = Plus(x,1)) 
   #2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y) 
   #3:   ∀x Plus(x,0) = x 
   #4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1) 
   #5:   for any sentence S with free variable x,  

     ( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y) 



Presburger’s arithmetic for 6-year-olds 

More precisely:      A theory of ℕ and +. 

Constant names:   0 and 1 
Function name:      Plus(·,·) 

Axioms:   
   #1:   ∃x 0 = Plus(x,1) 
   #2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y) 
   #3:   ∀x Plus(x,0) = x 
   #4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1) 
   #5:   for any sentence S with free variable x,  

     ( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y) 

Poll 



Presburger’s arithmetic for 6-year-olds 

More precisely:      A theory of ℕ and +. 

Constant names:   0 and 1 
Function name:      Plus(·,·) 

Axioms:   
   #1:   ∃x 0 = Plus(x,1) 
   #2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y) 
   #3:   ∀x Plus(x,0) = x 
   #4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1) 
   #5:   for any sentence S with free variable x,  

     ( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y) 

 
Still consistent:  

it’s validly modeling 
integers mod 2! 

 



Completeness 

Let A1, …, Am be some axioms. 
 

If, for every sentence S, 
either S or ¬S is deducible from the axioms, 

we say the system is complete. 
 

If you have a branch of math in mind 
that you’re modeling, then… 

Complete ⇔ Every true statement 
can be deduced from the axioms 



Completeness 

Completeness, like consistency, is a 
completely syntactic property. 

Completeness:     
 For any S, at least one of  
 “S” or “¬S” can be deduced. 

Consistency:     
 For any S, at most one of  
 “S” or “¬S” can be deduced. 



Completeness 

When you’re messing around trying to 
axiomatize your favorite branch of math, 

it’s quite common to suffer from 
“incompleteness”. 

It’s, like, you didn’t put in “enough” axioms. 



Example: Tarski’s plane geometry 

Relation names:   IsBetween(x,y,z) 
        IsSameLength(x1,x2,y1,y2) 

Axioms:   

   #1:  ∀x1 ∀x2  IsSameLength(x1,x2,x2,x1) 

   #2:  ∀x ∀y ∀z   IsSameLength(x,y,z,z)→(x=y) 

   #3:  ∀x ∀y  IsBetween(x,y,x)→(y=x) 

   #4:  (“Segment Extension”)  
               ∀x1,x2,y1,y2 ∃z IsBetween(x1,x2,z)∧IsSameLength(x2,z,y1,y2) 

   #5−21:  I won’t bother to write them. 



Example: Tarski’s plane geometry 

One of the 21 axioms says,  
 “If wxyz is a quadrilateral, then the  
  diagonals wy and xz must intersect.” 

w 
x 

y 

z 

Historically, people tried hard 
to prove this statement 
using only the other axioms. 

But, in fact, you can’t! 
(We can prove that!) 

So fine, you add it as an axiom. 



Say you are trying to axiomatize 
your favorite branch of math. 

 
Some goals you should shoot for: 

1.  Computable axioms 
2.  Consistency 
3.  Soundness 
4.  Completeness 



Presburger’s arithmetic for 6-year-olds 

More precisely:      A theory of ℕ and +. 

Constant names:   0 and 1 
Function name:      Plus(·,·) 

Axioms:   
   #1:   ∀x ¬(0 = Plus(x,1)) 
   #2:   ∀x ∀y (Plus(x,1) = Plus(y,1)) → (x=y) 
   #3:   ∀x Plus(x,0) = x 
   #4:   ∀x ∀y Plus(x,Plus(y,1)) = Plus(Plus(x,y),1) 
   #5:   for any sentence S with free variable x,  

     ( S(0)∧(∀x S(x)→S(Plus(x,1))) ) → ∀y S(y) 

It has computable axioms. 
It’s consistent. 

Indeed, it’s sound. 
 

And…   
Presburger proved it’s complete. 

 
Hooray!  We have perfectly 

axiomatized arithmetic for 6-year-olds! 



Example: Tarski’s plane geometry 

Relation names:   IsBetween(x,y,z) 
        IsSameLength(x1,x2,y1,y2) 

Axioms:   

   #1:  ∀x1 ∀x2  IsSameLength(x1,x2,x2,x1) 

   #2:  ∀x ∀y ∀z   IsSameLength(x,y,z,z)→(x=y) 

   #3:  ∀x ∀y  IsBetween(x,y,x)→(y=x) 

   #4:  (“Segment Extension”)  
               ∀x1,x2,y1,y2 ∃z IsBetween(x1,x2,z)∧IsSameLength(x2,z,y1,y2) 

   #5−21:  I won’t bother to write them. 

It has computable axioms. 
It’s consistent. 

Indeed, it’s sound. 
 

And…   
Tarski proved it’s complete. 

 
Hooray!  We have perfectly 

axiomatized basic Euclidean geometry! 



A dream from the early 20th century 



Axiomatizing all the things 

After playing around, people realized you 
could seemingly do 100% of math 

using just the notions from set theory. 
 

(Define natural numbers in terms of sets, ordered pairs in terms of sets,  
functions in terms of sets, sequences in terms of sets,  

real numbers, graphs, strings, automata, everything in terms of sets…) 

 
 They fixed the 9 “ZFC” axioms/schema for  

set theory and proceeded to go to town. 



Bertrand Russell Alfred Whitehead 

Principia Mathematica, ca. 1912 

Purely by combining set theory axioms 
with Deductive Calculus, they developed tons 

of number theory and some real analysis. 



Axiomatizing all the things? 

It was a huge pain (think, 500-page books…) 
but it was going great. 

 
By the end of the 1920’s, mathematicians 

were all pretty satisfied. 
 

Empirical conclusion:  Seemed you could formally 
prove anything in math you wanted, 

just from ZFC and syntactic Deductive Calculus. 
 

By the way, all theorems in 15-251 can be so proved. 



Hey, can I cut in for 
a second and remind people about 

my theorem? 

Fine. 



The Halting Problem is Undecidable 

Turing’s Theorem: 

Let HALTS ⊆ {0,1}* be the language 
{ ⟨M,x⟩ : M is a TM which halts on input x }. 

Then HALTS is undecidable. 

It’s not: “we don’t know how to solve it efficiently”. 

It’s not: “we don’t know if it’s a solvable problem”. 

We know that it is unsolvable by any algorithm. 



Proof 

Here is the description of another TM called D, 
which uses MHALTS as a subroutine: 

Given as input ⟨M⟩, the encoding of a TM M: 
   D executes MHALTS( ⟨M, ⟨M⟩⟩ ). 
   If this call accepts, D enters an infinite loop. 
   If this call rejects,   D halts        (say, it accepts). 

D: 

Assume MHALTS is a decider TM which decides HALTS. 

By definition, D( ⟨D⟩ ) loops if it halts and halts if it loops. 
                Contradiction.   



Suppose you just really cannot believe we 
proved that HALTS is undecidable. 

Sample input: 

M = “for k = 4, 6, 8, 10, 12, 14, … 
              check if k is the sum of 2 primes; if not, HALT” 
 

x = ϵ  (empty string) 

How would you try to write a program H which, 
on input ⟨M,x⟩, decides if M(x) eventually halts? 



Sample input: 

How would you try to write a program H which, 
on input ⟨M,x⟩, decides if M(x) eventually halts? 

Dunno.  Best idea I can think of is:   
Let H simulate M(x).  If M(x) halts 
after 1,000,000,000 steps, output 

“it halts”.  If M(x) still hasn’t halted after 
1,000,000,000 steps, um… 

M = “for k = 4, 6, 8, 10, 12, 14, … 
              check if k is the sum of 2 primes; if not, HALT” 
 

x = ϵ  (empty string) 



I have a crazy and sort 
of awesome idea for how 

to write H. 

Kurt, you 
mathematicians 

always make things 
too complicated.   

 

Let me explain it. Fine. 



How would you try to write a program H which, 
on input ⟨M,x⟩, decides if M(x) eventually halts? 

Idea for H: 

“ for k = 1, 2, 3, … 
      for all strings P of length k,  
    •  Check if P is a valid ZFC+FOL Deductive Calculus 

     proof of the statement ‘M(x) eventually halts’ 
              If so, let H halt and output “yes, M(x) halts” 

 •  Check if P is a valid ZFC+FOL Deductive Calculus 
     proof of the statement ‘M(x) eventually loops’ 

              If so, let H halt and output “no, M(x) loops”    ” 



Idea for H: 

By my theorem:  this TM H, like 
all algorithms, does not decide 

the Halting Problem. 

“ for k = 1, 2, 3, … 
      for all strings P of length k,  
    •  Check if P is a valid ZFC+FOL Deductive Calculus 

     proof of the statement ‘M(x) eventually halts’ 
              If so, let H halt and output “yes, M(x) halts” 

 •  Check if P is a valid ZFC+FOL Deductive Calculus 
     proof of the statement ‘M(x) eventually loops’ 

              If so, let H halt and output “no, M(x) loops”    ” 



Conclusion: 
 

There is some TM M and some string x such that 
ZFC+FOL Deductive Calculus cannot prove either of 

‘M(x) eventually halts’ or ‘M(x) eventually loops’. 

But M(x) either halts or it loops! 
One of these two statements is true! 

∴ There is a true mathematical statement 
that cannot be proved (in ZFC+FOL Deductive Calculus). 



This is basically 
Gödel’s First Incompleteness Theorem. 



“ for k = 1, 2, 3, … 
      for all strings P of length k,  
    •  Check if P is a valid ZFC+FOL Deductive Calculus 

     proof of the statement ‘M(x) eventually halts’ 
              If so, let H halt and output “yes, M(x) halts” 

 •  Check if P is a valid ZFC+FOL Deductive Calculus 
     proof of the statement ‘M(x) eventually loops’ 

              If so, let H halt and output “no, M(x) halts”    ” 

Conclusion: 
 

There is some TM M and some string x such that 
ZFC+FOL Deductive Calculus cannot prove either of 

‘M(x) eventually halts’ or ‘M(x) eventually loops’. 



Actually, this is not a 100% correct conclusion, 
because there’s another possibility: 

ZFC+FOL Deductive Calculus might have a proof 
that ‘M(x) eventually halts’ even though it loops, 
or ‘M(x) eventually loops’ even though it halts. 

Conclusion: 
 

There is some TM M and some string x such that 
ZFC+FOL Deductive Calculus cannot prove either of 

‘M(x) eventually halts’ or ‘M(x) eventually loops’. 



Actually, this is not a 100% correct conclusion, 
because there’s another possibility: 

ZFC+FOL Deductive Calculus might have a proof 
that ‘M(x) eventually halts’ even though it loops, 
or ‘M(x) eventually loops’ even though it halts. 

I.e., ZFC might be unsound:  
it might prove some false statements. 

This would kind of upend all of mathematics. 
Essentially everyone believes ZFC is sound. 

But theoretically, it’s a possibility. 



What we’ve actually proven so far: 

ZFC + FOL Deductive Calculus cannot be both 
 complete 

and  sound. 

 Complete: 
   for every sentence S, either S or ¬S is provable. 
 

 Sound: 
   for every S, if S is provable then S is true. 



Question:  
 What did this proof use about ZFC? 

Answer:        Not too much.  
 • You can define TM’s and TM computation in it. 
 • Its axioms/axiom schemas are computable. 

What we’ve actually proven so far: 

ZFC + FOL Deductive Calculus cannot be both 
 complete 

and  sound. 



   Any axiomatic system which is 
        “sufficiently expressive” (can define TM’s) 
               and has computable axioms 

 cannot be both complete and sound. 

Gödel’s First Incompleteness Theorem: 

Side remark:      
    Even Peano Arithmetic is “sufficiently expressive”.   
     You can define TM’s and TM computation in it, 

 though it is a severe pain in the neck. 



A smart-aleck’s attempt to circumvent 
   Gödel’s First Incompleteness Theorem: 

“Let’s assume ZFC is sound.  Gödel’s Theorem 
  says that there’s some true statement S  
  which can’t be proved in ZFC.  Let’s just 
  upgrade ZFC by adding S as an axiom!” 

Doesn’t help: 

ZFC+S is a sufficiently expressive system 
with computable axioms.  So by Gödel’s 
Theorem, there’s still some other S/ 
which is true but can’t be proved. 



A smart-aleck’s attempt to circumvent 
   Gödel’s First Incompleteness Theorem: 

“Maybe add in S/ as another axiom?” 

Still doesn’t help: 

Apply Gödel’s Theorem to ZFC+S+S/, 
get yet another true statement S// which 
is true but cannot be proved. 

“Maybe add in all true statements as axioms?” 

Okay fine, but now the set of axioms is not 
computable.  So it’s a ridiculous system. 



   Any axiomatic system which is 
        “sufficiently expressive” (can define TM’s) 
               and has computable axioms 

 cannot be both complete and sound. 

Gödel’s First Incompleteness Theorem: 

Sound: 
   for every S, 
   if S is provable 
   then S is true. 
 

Whoahhhh, dude. 
   

How can you say a 
statement S is true if 
you can’t prove it? 



Response 1 

Don’t get all confused. If I asked you 40 mins ago,  
 

   “Hey, is it true that 1 is the only number  
    which appears in Pascal’s Triangle more 
    than ten times?”, 
 

you wouldn’t be, like,  
   “Whoahhhh dude, what does true mean?” 
 

Regular ol’ mathematics doesn’t suddenly become 
invalid just because you happen to 
be studying logic. 

Don’t get all confused. 



Response 2 

Just so that nobody gets confused, 
I’ll prove an even stronger version 

which doesn’t mention “truth”. 



  Any axiomatic system which is 
        “sufficiently expressive” (can define TM’s) 
              and has computable axioms 
  cannot be both complete and consistent. 

Gödel’s 1st:  full version 
(with strengthening by J. Barkley Rosser) 

 Complete: 
   for every sentence S, either S or ¬S is provable. 
 

 Consistent: 
   for every S, you can’t prove both S and ¬S. 



Not only will we prove this, 
there will be a bonus plot twist at the end! 

For simplicity, we fix the mathematical 
proof system to be ZFC. 



Outline of previous proof: 
 

1. Assume ZFC sound. 
2.  Reason about a certain TM. 

3. Deduce that ZFC is incomplete. 

Outline of upcoming stronger proof: 
 

1. Assume ZFC consistent. 
2.  Reason about a certain TM. 

3. Deduce that ZFC is incomplete. 



We’re going to need a lemma. 

Some statements are so simple that, 
assuming they’re true, 

they definitely do have a proof in ZFC. 

Example:  “There are 25 primes less than 100.” 

This definitely has a proof: 
the brute-force, brain-dead enumeration proof! 



Our Brain-Dead Lemma:   
 

 If a particular TM has a particular t-step execution trace,  
         then there is a proof of this fact (in ZFC). 
 

Why?                  Can always write (in ZFC) proofs that look like: 
 
 

“Initially M in the starting state/head/tape configuration. 

  After 1 step, M is in state/head/tape configuration blah. 

After 2 steps, M is in state/head/tape configuration blah. 

After 3 steps, M is in state/head/tape configuration blah. 

… After t steps, M is in state/head/tape configuration blah. 

QED.”   

In particular, if M(x) halts, there is a proof of ‘M(x) halts’. 



Outline of upcoming proof of the 
“truth”-free stronger version of Gödel’s 1st: 

 
 

1. Assume ZFC consistent. 
2.  Reason about a certain TM. 

3. Deduce that ZFC is incomplete. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 
 
 

  for all strings P of length 1, 2, 3, … 
      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 
      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 

What can ZFC prove about D(⟨D⟩)?   What can ZFC prove about D(⟨D⟩)?  By consistency, 
     at most one of  ‘D(⟨D⟩) halts’ or ‘D(⟨D⟩) loops’. 

   Perhaps ZFC can prove ‘D(⟨D⟩) loops’? 
   Then D on input ⟨D⟩ will find this proof, and thus halt. 
   But if D(⟨D⟩) halts then ZFC can prove ‘D(⟨D⟩) halts’ 
   (by Brain-Dead Lemma).  This contradicts consistency. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 
 
 

What can ZFC prove about D(⟨D⟩)?   What can ZFC prove about D(⟨D⟩)?  By consistency, 
     at most one of  ‘D(⟨D⟩) halts’ or ‘D(⟨D⟩) loops’. 

   Perhaps ZFC can prove ‘D(⟨D⟩) halts’? 
   Then D(⟨D⟩) will run for some t steps, find this proof, and then  
   enter the ‘go right forever’ state. But by Brain-Dead Lemma,  
   there’s a proof of this fact (the t+1 step execution trace).  
   Thus ZFC can prove ‘D(⟨D⟩) loops’, contradicting consistency. 

  for all strings P of length 1, 2, 3, … 
      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 
      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 
 
 

Great!  We just showed ZFC cannot prove either 
‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete. 

Incidentally… does D(⟨D⟩) actually halt or loop? 

It loops. It does not find a proof of either statement. 

  for all strings P of length 1, 2, 3, … 
      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 
      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 
 
 

Great!  We just showed ZFC cannot prove either 
‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete. 

It loops. It does not find a proof of either statement. 

Wait a minute. 

  for all strings P of length 1, 2, 3, … 
      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 
      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 
 
 

Great!  We just showed ZFC cannot prove either 
‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete. 

Wait a minute. We just showed that D(⟨D⟩) loops. 

If we formalize the last 3 slides in ZFC, 
we get a proof of ‘D(⟨D⟩) loops’. 

  for all strings P of length 1, 2, 3, … 
      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 
      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Did we just find a 
contradiction in mathematics? 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 
 
 

Great!  We just showed ZFC cannot prove either 
‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete. 

Wait a minute. We just showed that D(⟨D⟩) loops. 

If we formalize the last 3 slides in ZFC, 
we get a proof of ‘D(⟨D⟩) loops’. 

  for all strings P of length 1, 2, 3, … 
      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 
      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 
 
 

Great!  We just showed ZFC cannot prove either 
‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete. 

Wait a minute. We just showed that D(⟨D⟩) loops. 

If we formalize the last 3 slides in ZFC, 
we get a proof of ‘ZFC consistent → D(⟨D⟩) loops’. 

  for all strings P of length 1, 2, 3, … 
      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 
      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 
 
 

Great!  We just showed ZFC cannot prove either 
‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete. 

If we formalize the last 3 slides in ZFC, 
we get a proof of ‘ZFC consistent → D(⟨D⟩) loops’. 

The only way to avoid a contradiction: 
ZFC cannot prove ‘ZFC consistent’  

  for all strings P of length 1, 2, 3, … 
      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 
      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Assume ZFC   (or any “sufficiently expressive” axiomatic system) 
  is consistent.  Then not only is it incomplete, 
  here’s a true statement it cannot prove: 
“ZFC is consistent”. 

Gödel’s Second Incompleteness Theorem 
(proved independently by von Neumann) 


