|5-252
 More Great Ideas in Theoretical Computer Science Lecture 3:
 Power of Algorithms

September 15th, 2017

Poll

```
def isPrime(n):
    if (n< 2):
    return False
    for factor in range(2,n):
    if (n % factor == 0):
        return False
    return True
```

What is the running time as a function of input length?

- logarithmic
- linear
- log-linear
- quadratic
- exponential
- beats me

Poll Answer

$$
\begin{aligned}
& \text { def isPrime }(n): \\
& \text { if }(n<2): \\
& \text { return False } \\
& \begin{array}{l}
\text { for factor in range }(2, n): \\
\text { if (} n \% \text { factor }==0): \\
\text { return False } \\
\text { return True }
\end{array}
\end{aligned}
$$

\# iterations: $\approx n$

$$
n=2^{\log _{2} n}=2^{\operatorname{len}(n)}
$$

Algorithms with number inputs

Algorithms on numbers involve BIG numbers.

36|8502788666|3I|0698659328|52|497II045574302I|69260358536775932020762686|0| 7237846234873269807IO2970I 2887435602 I 48 I 964232857782295671675021393065473695 3943653222082II694I5878307696498263I05897I7739I8I525033220266350650989268038 3I9483927388|505432422077I79|2I83888828II996|48408052302I96889866637200606252 650I3I0964926475205090003984I76I220587III6456794655904497I683604424076996342 718304654479802II682970|3490774|4009047634829067I82274396|203698|42307099664 3455I334I46376I6824423860I0788974IO58I3I27I3062262I420863600822465I5I096IOI8 97890068I506766490I5942469667309276208447327I40045990I3904409378I4I724958467 7228950143608277369974692883I956843I436I862929679227I6752485I3I6077587207648 784505836723I603I730798I747I4I75I905I35702967I99|I529635804I2838I8484I733782

This is actually still small. Imagine having millions of digits.

Algorithms with number inputs

$B=569303002052399999347964290462|9| 1725098567020556258102766251487234031094429$
$B \approx 5.7 \times 10^{75} \quad(5.7$ quattorvigintillion)

Definition: $\operatorname{len}(B)=\#$ bits to write B

$$
n \approx \log _{2} B
$$

For $B=5693030020523999993479642904621911725098567020556258102766251487234031094429$

$$
\operatorname{len}(B)=251
$$

Integer Addition

```
def sum(A,B):
        for i from 1 to B do:
        A+= 1
    return A
```

What is the running-time of this algorithm?

Integer Addition

36I8502788666|3II0698659328I52I497II04 A
$+65743021169260358536775932020762686101 \quad B$ IOI92804905592I669606641864835977657205

\# steps to produce C is $O(n)$

Integer Multiplication

$$
\begin{array}{rr}
36|8502788666| 3||0698659328| 52| 497 \mid I 04 & A \\
5932020762686|0| & B
\end{array}
$$

$X X$
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2|465033672205046394665|358202698404452609868|37425504
\# steps: $O(\operatorname{len}(A) \cdot \operatorname{len}(B))=O\left(n^{2}\right)$

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks: How can we do better ?

What algorithm does Python use?

Integer Multiplication

$$
\begin{aligned}
& \text { a b } \\
& \mathrm{x}=5678 \quad x=a \cdot 10^{n / 2}+b \\
& y=324 \\
& y=c \cdot 10^{n / 2}+d \\
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

Use recursion!

Integer Multiplication

$$
\begin{aligned}
& \text { a b } \\
& \begin{array}{ll}
\mathrm{x}=5678 & x=a \cdot 10^{n / 2}+b \\
\mathrm{y}=1234 & y=c \cdot 10^{n / 2}+d
\end{array} \\
& \text { c d } \\
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

- Recursively compute $a c, a d, b c$, and $b d$.
- Do the multiplications by 10^{n} and $10^{n / 2}$
- Do the additions.

$$
T(n)=4 T(n / 2)+O(n)
$$

Integer Multiplication

Level

0

\# distinct nodes at level $\mathrm{j}: \quad 4^{j}$
work done per node at level $\mathrm{j}: \quad c\left(n / 2^{j}\right)$
$c n 2^{j}$
per level \# levels: $\log _{2} n$

Integer Multiplication

$$
\begin{aligned}
x \cdot y & =\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

Hmm, we don't really care about $a d$ and $b c$.
We just care about their sum.
Maybe we can get away with 3 recursive calls.

Integer Multiplication

$$
\begin{aligned}
x \cdot y & =\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d \\
(a+b)(c & +d)=a c+a d+b c)+b d
\end{aligned}
$$

- Recursively compute $a c, b d,(a+b)(c+d)$.
-Then $a d+b c=(a+b)(c+d)-a c-b d$.

$$
T(n) \leq 3 T(n / 2)+O(n) \quad \text { Is this better?? }
$$

Integer Multiplication

Level

0

\# distinct nodes at level $\mathrm{j}: \quad 3^{j}$
work done per node at level $\mathrm{j}: \quad c\left(n / 2^{j}\right)$
$\operatorname{cn}\left(3^{j} / 2^{j}\right)$ per level \# levels: $\log _{2} n$

$$
\text { Total cost: } \quad \sum_{j=0}^{\log _{2} n} c n\left(3^{j} / 2^{j}\right)
$$

Integer Multiplication

Level
 0

$$
\log _{2} n
$$

Total cost:

Karatsuba Algorithm

$$
\begin{aligned}
\sum_{j=0} c n\left(3^{j} / 2^{j}\right) & \leq C n\left(3^{\log _{2} n} / 2^{\log _{2} n}\right) \\
& =C 3^{\log _{2} n} \\
& =C n^{\log _{2} 3} \in O\left(n^{\log _{2} 3}\right)
\end{aligned}
$$

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?
A good algorithm designer always thinks:

How can we do better ?

Cut the integer into 3 parts of length $\mathrm{n} / 3$ each.
Replace 9 multiplications with only 5 .

$$
\begin{aligned}
& T(n) \leq 5 T(n / 3)+O(n) \\
& T(n) \in O\left(n^{\log _{3} 5}\right)
\end{aligned}
$$

Can do $T(n) \in O\left(n^{1+\epsilon}\right)$ for any $\epsilon>0$.

Integer Multiplication

Fastest known: $\quad n(\log n) 2^{O\left(\log ^{*} n\right)}$
Martin Fürer
(2007)

Matrix Multiplication

Input: $2 \mathrm{n} \times \mathrm{n}$ matrices X and Y .
Output: The product of X and Y.
(Assume entries are objects we can multiply and add.)

Matrix Multiplication

$\left.$| a | b |
| :--- | :--- |
| c | d |\times| e | f |
| :--- | :--- |
| g | h | \right\rvert\,$=$| $a e+b g$ | $a f+b h$ |
| :--- | :--- |
| $c e+d g$ | $c f+d h$ |

Matrix Multiplication

$Z[i, j]=(i$ 'th row of $X) \cdot(j$ 'th column of $Y)$

$$
=\sum_{k=1}^{n} \mathrm{X}[\mathrm{i}, \mathrm{k}] \mathrm{Y}[\mathrm{k}, \mathrm{j}]
$$

Algorithm I:
$\Theta\left(n^{3}\right)$

Matrix Multiplication

$$
\left.X=\begin{array}{|ccc|}
\hline A & \vdots & B \\
\ldots \ldots \ldots & \vdots & \cdots \\
C & \vdots & D
\end{array} \quad Y=\begin{array}{|c:ccc}
E & \vdots & F \\
\ldots \ldots & \cdots & \cdots \\
G & \vdots & H
\end{array} \right\rvert\,
$$

$$
Z=\left\lvert\, \begin{array}{cc}
A E+B G & A F+B H \\
\cdots \cdots \cdots \cdots \cdots \\
C E+D G: C F+D H
\end{array}\right.
$$

Algorithm 2: recursively compute 8 products + do the additions.

Matrix Multiplication: Strassen's Algorithm

$$
Z=\left|\begin{array}{|c|c|}
\hline A E+B G: A F+B H \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
C E+D G & \cdots F+D H
\end{array}\right|
$$

Can reduce the number of products to 7 .

QI = (A+D) $(E+G)$
Q2 $=(C+D) E$
Q3 $=\mathrm{A}(\mathrm{F}-\mathrm{H})$
Q4 $=\mathrm{D}(\mathrm{G}-\mathrm{E})$
Q5 $=(A+B) H$
Q6 $=(\mathrm{C}-\mathrm{A})(\mathrm{E}+\mathrm{F})$
Q7 $=(B-D)(G+H)$
$A E+B G=Q 1+Q 4-Q 5+Q 7$
$\mathrm{AF}+\mathrm{BH}=\mathrm{Q} 3+\mathrm{Q} 5$
$C E+D G=Q 2+Q 4$
$C F+D H=Q 1+Q 3-Q 2+Q 6$

Matrix Multiplication: Strassen's Algorithm
Running Time: $T(n)=7 \cdot T(n / 2)+O\left(n^{2}\right)$

$$
\begin{aligned}
\Longrightarrow \quad T(n) & =O\left(n^{\log _{2} 7}\right) \\
& =O\left(n^{2.81}\right)
\end{aligned}
$$

Matrix Multiplication: Strassen's Algorithm

Strassen's Algorithm (1969)

Together with Schönhage (in 1971) did n-bit integer multiplication in time $O(n \log n \log \log n)$

Arnold Schönhage

The race for the world record

Improvements since 1969

1978: $O\left(n^{2.796}\right)$ by Pan
1979: $O\left(n^{2.78}\right)$ by Bini, Capovani, Romani, Lotti
1981: $O\left(n^{2.522}\right)$ by Schönhage
1981: $O\left(n^{2.517}\right) \quad$ by Romani
1981: $O\left(n^{2.496}\right)$ by Coppersmith,Winograd
1986: $O\left(n^{2.479}\right)$ by Strassen
1990: $O\left(n^{2.376}\right) \quad$ by Coppersmith, Winograd
No improvement for 20 years!

The race for the world record

No improvement for 20 years!

2010: $O\left(n^{2.374}\right)$ by Andrew Stothers (PhD thesis)

201 I: $O\left(n^{2.373}\right)$ by Virginia Vassilevska Williams

(CMU PhD, 2008)

The race for the world record

20II: $O\left(n^{2.373}\right)$ by Virginia Vassilevska Williams

Current world record:

2014: $O\left(n^{2.372}\right)$ by François Le Gall

Enormous Open Problem

Is there an $O\left(n^{2}\right)$ time algorithm for matrix multiplication ???

