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THE PAC MODEL

Input space X

D distribution over X: unknown but fixed

Learner receives a set S of m instances
X1, -, X,,, Independently sampled according
to D

Function class F of functions f: X — {4, —}

Assume target function f; € F

s

I'raining examples Z = {(xi, fi (xl))}
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EXAMPLE: FACES

e X = ]kaf
e Fach x € X is a matrix of

colors, one per pixel

e fi(x) = + iff x is a picture
of a face

* Training examples: Each is
a picture labeled “face” or
“not face”
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EXAMPLE: RECTANGLE LEARNING

¢ X = R?
I = axes-aligned rectangles
* f(x) = +iff x is contained in f
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THE PAC MODEL

* The error of function f is

err(f) = Pr[fs(x) # f(x)]

* (Given accuracy parameter
e > 0, would like to find
function f with err(f) < e

* (Given confidence parameter
6 > 0, would like to achieve -
Prlerr(f) <e]|=1-6
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THE PAC MODEL

* A learning algorithm L is a function from training
examples to F such that: for every €,8 > 0 there
exists m™(€,0) such that for every m = m™ and
every D, if m examples Z are drawn from D and
L(Z) = f then

Prlerr(f) <e]=1-96

* F is learnable if there is a learning algorithm for F

m*(g,0) is
independent of D!
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VC DIMENSION

* We would like to obtain a general
connection between learnability and

combinatorial properties of the function
class

* Let S ={x,,...,x,}
¢ TR (S) = {(FCr), o, fim)): f € F)
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________________________________________________________________________________________________________________________

________________________________________________________________________________________________________________________

HF(S) — {(_' . _)' (_' +, _)1 (_; . +)' (+' T _):
(++,-),(—+ +),(+ —+),(+ + +)}
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VC DIMENSION

e X — real line

 F = intervals; points inside interval are
labeled by +, outside by —

* Poll 1: what is |I[1;(S)| for § =

O
O

@
DWW N =
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VC DIMENSION

* Poll 2: what is |I1z(S)| for S =

O
O
O
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VC DIMENSION

» S is shattered by F if [T1;(S)| = 215

 The VC dimension of F is the cardinality
of the largest set that is shattered by F

How do we
prove upper and
lower bounds?
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EXAMPLE: RECTANGLES

* There is an example of four

——————————————————————————————

points that can be shattered O |
* For any choice of five points, O O
one is “internal” O E
e A rectangle cannot label outer _____________ .
points by 1 and inner point e o °
by 0 o :

e VC dimension is 4
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VC DIMENSION

* Poll 3: X = real line, F = intervals, what
is VC-dim(F)?
L1 3. 3
2. 2 4. None of the above

* Poll 4: X = real line, F = unions of
intervals, what is VC-dim(F)?
. 2 3. 4
2. 3 1. Nomne of the above
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EXAMPLE: LINEAR SEPARATORS

« X =R4
* A linear separator is f(x) =sgn(a-x+b) _ e
e Theorem: The VC dimension of linear
separators is d + 1
* Proof (lower bound): o
- e =(0,..,01,0,...,0) is the i-th unit vector O
- S={0tufe:i=1,..,d}
o Given y%,...,y% € {—1,1}, set ®
a=(y..,.y),b=y%/2 = O ®
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SAMPLE COMPLEXITY

* If for any k there is a sample of size k that can
be shattered by F, we say that VC-dim(F)= oo

e Theorem: A function class F with VC-dim(F)=
oo is not PAC learnable

e Theorem: Let F with VC-dim(F)= d. Let L be

an algorithm that produces an f € F that is
consistent with the given samples S. Then L is a
learning algorithm for F with sample complexity

“(¢,0) =0 1l 1+dl 1
m-(e€,0) = Eog6 EogE
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