|5-25 I
 Great Ideas in Theoretical Computer Science

Lecture I:
Introduction to the course

Instructors

Anil Ada aada

Ariel Procaccia arielpro

Aug 29th, 2017

Teaching Assistants

Corwin de Boor cdeboor

Emilie Guermeur eguermeu

Annie Xu jingjinx

Calvin Beideman (H) cbeidema

Darshan Chakrabarti darshanc

Erik Sargent esargent

Apoorva Bhagwat (H) aabhagwa

Cameron Montag cmontag

Jacqueline Fashimpaur jfashimp

Ariela Immordino aimmordi

Carolyn Cai wenyuec

What is computer science?

What is theoretical computer science?

What is computer science?

Is it a branch of:

- science?
- engineering?
- math?
- philosophy?
- sports?

Motivational Quote of the Course

"Computer Science is no more about computers than astronomy is about telescopes."

Physics

Theoretical physics

- come up with mathematical models Nature's language is mathematics
- derive the logical consequences

Experimental physics

- make observations about the universe
- test mathematical models with experiments

Applications/Engineering

The role of theoretical physics

Real World

Observed
Phenomenon

Test
Consequences
Applications

Abstract World

Mathematical Model

Explore
Consequences

Physics

- science?
- engineering?
- math?
- philosophy?
- sports?

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: description of how the data is manipulated.
Computational problem: the input-output pairs.

Usually

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: description of how the data is manipulated.
Computational problem: the input-output pairs.

Usually

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: description of how the data is manipulated.
Computational problem: the input-output pairs.

Usually

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: description of how the data is manipulated.
Computational problem: the input-output pairs.

Usually

"Computers" in early 20th century

Computer Science

The science that studies computation.
Computation: manipulation of information/data.
Algorithm: description of how the data is manipulated.
Computational problem: the input-output pairs.

Usually

The computational lens

Computational physics
Computational biology
Computational chemistry
Computational neuroscience
Computational economics
Computational finance
Computational linguistics
Computational statistics
Computational social choice

Wikipedia definition

"Computer Science deals with the theoretical foundations of information and computation, together with practical techniques for the implementation and application of the foundations."

- Wikipedia
(old version)

The role of theoretical computer science

Build a mathematical model for computation.

Explore the logical consequences.
Gain insight about computation.
http://youtu.be/pTeZP-XfuKI
https://goo.gl/gGkpMv
http://youtu.be/J4TkHuTmHsg

Look for interesting applications.

CMU undergrad

CMU Prof.

OK, we don't have everybody

The role of theoretical computer science

Real World
 Abstract World

Mathematical

Only done recently Model

Applications

We have been using algorithms for thousands of years.

5127
x 4265
25635
307620
1025400
20508000
21866655

We have been using algorithms for thousands of years.

Euclid's algorithm (~ 300BC):
def $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$:
while (a $!=\mathrm{b}$):
if $(\mathrm{a}>\mathrm{b})$:

$$
a=a-b
$$

else:

$$
\mathrm{b}=\mathrm{b}-\mathrm{a}
$$

return a

Formalizing computation

Algorithm/Computation was only formalized in the 20th century!

Someone had to ask the right question.

David Hilbert, I 900

The Problems of Mathematics

"Who among us would not be happy to lift the veil behind which is hidden the future; to gaze at the coming developments of our science and at the secrets of its development in the centuries to come? What will be the ends toward which the spirit of future generations of mathematicians will tend? What methods, what new facts will the new century reveal in the vast and rich field of mathematical thought?"

2 of Hilbert's Problems

Hilbert's IOth problem (1900)

Is there a finitary procedure to determine if a given multivariate polynomial with integral coefficients has an integral solution?

$$
\text { e.g. } \quad 5 x^{2} y z^{3}+2 x y+y-99 x y z^{4}=0
$$

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity of a given logical expression?

$$
\text { e.g. } \quad \neg \exists x, y, z, n \in \mathbb{N}:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)
$$

(Mechanization of mathematics)

2 of Hilbert's Problems

Fortunately, the answer turned out to be NO.

2 of Hilbert's Problems

Gödel (1934):

Discusses some ideas for mathematical definitions of computation. But not confident what is a good definition.

Church (1936):

Invents lambda calculus.
Claims it should be the definition of an "algorithm".

Gödel, Post (1936):
Arguments that Church's claim is not justified.

Meanwhile... in New Jersey... a certain British grad student, unaware of all these debates...

2 of Hilbert's Problems

Alan Turing (1936, age 22):

Describes a new model for computation, now known as the Turing Machine. ${ }^{\text {TM }}$

Gödel, Kleene, and even Church:

 "Umm. Yeah. He nailed it. Game over. "Algorithm" defined."
Turing (1937):

TMs ミ lambda calculus

Formalization of computation: Turing Machine

Turing Machine:

Church-Turing Thesis

Church-Turing Thesis:

The intuitive notion of "computable" is captured by functions computable by a Turing Machine.

(Physical) Church-Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Real World
 Abstract World
 Church-TuringThesis

Back to Hilbert's Problems

Hilbert's IOth problem (1900)

 Is there an algorithm (a TM) to determine if a given multivariate polynomial with integral coefficients has an integral solution?$$
\text { e.g. } \quad 5 x^{2} y z^{3}+2 x y+y-99 x y z^{4}=0
$$

Entscheidungsproblem (1928)

 Is there an algorithm (a TM) to determine the validity of a given logical expression?$$
\text { e.g. } \quad \neg \exists x, y, z, n \in \mathbb{N}:(n \geq 3) \wedge\left(x^{n}+y^{n}=z^{n}\right)
$$

(Mechanization of mathematics)

Back to Hilbert's Problems

Hilbert's IOth problem (1900)

Matiyasevich-Robinson-Davis-Putnam (1970):

There is no algorithm to solve this problem.
Entscheidungsproblem (1928)

Turing (1936):

There is no algorithm to solve this problem.

Computer science

- science?
- engineering?
- math?
- philosophy?
- sports?

2 Main Questions in TCS

Computability of a problem:
Is there an algorithm to solve it?

Complexity of a problem:
Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

Computational Complexity

Complexity of a problem:
Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

2 camps:

- trying to come up with efficient algorithms (algorithm designers)
- trying to show no efficient algorithm exists (complexity theorists)

Computational Complexity

2 camps:

- trying to come up with efficient algorithms (algorithm designers)
- trying to show no efficient algorithm exists (complexity theorists)

multiplying two integers

factoring integers
detecting communities in social networks
protein structure prediction
simulation of quantum systems computing Nash Equilibria of games

Some other interesting questions

If a problem has a space-efficient solution does it also have a time-efficient solution?

Can every randomized algorithm be derandomized efficiently?

Can we use quantum properties of matter to build faster computers?
\mathbf{P} vs $\mathbf{N P}$

Learning Objectives

Perspective I

Overview of Topics

Part I: Formalizing the notions of problems, algorithms, and computability.

Part 2: Computational complexity: theory and applications.

Part 3: Randomness in CS and some highlights of theoretical CS.

BIG RICHME COURSE

Elite automata
 Tuning machines

Uncountability and Undecidabily

craph theory

 She complexisy Hescience of cupetho achue
P ys NP

Approx mhenalgorithms Probability Socit ghote theory Randomized algorithms

Gane ${ }^{2}$ ac

Ginpography

Basic numhel cheor suanerm oomptration

Perspective I

Goals

- Provide a formal introduction to the foundations of computer science.
- Improve your rigorous, logical and abstract thinking skills.
- Prepare you to be innovators in computer science.
- Push you to strive for clarity of thought and clarity in expression of thought.

Perspective 2

Computer Scientists

Theoretical
Computer

Scientists

Mathematicians

Perspective 2

Perspective 2

Computational Thinkers

Perspective 2

Mathematical
 Thinkers

CMU SCS core belief:
all computer scientists should be here

Perspective 2

Mathematical
 Thinkers

Goal \#1
 of 15-251

Perspective 2

Mathematical

Thinkers

Goal \#2
 of 15-251
 (maybe)

Perspective 3

Mathematics is like... cilantro.

There are 5 kinds of people when it comes to cilantro.

Perspective 3

I. People who do not know what cilantro is.

Perspective 3

I. People who do not know what cilantro is.

Perspective 3

I. People who do not know what cilantro is.

ngò

கொத்தமல்லி

- ধন
C. kişniş

кинза
כוסברה

Perspective 3

2. People who love cilantro.

Perspective 3

3. People who think cilantro is fine.

Goal: have everyone at least in this category by the end of the course.

Perspective 3

4. People who don't like cilantro.

Still gotta try it.
Hope to move you to previous category.
If not, hope you can eat cilantro if necessary.

Perspective 3

5. People with a genetic condition that makes cilantro taste like soap.

Is this true?

Video

