

Some motivating rea	•	
matching rooms and courses		
GHC 4401	15-110	
DH 2210	15-112	
GHC 5222	15-122	
WEH 7500	15-150	
DH 2315	15-251	
:	:	

How do you solve a problem like this?
I. Formulate the problem
2. Ask : Is there a trivial algorithm?
3. Ask : Is there a better algorithm?
4. Find and analyze

Remember the CS life lesson

First step: Formulate the problem	
Purpose:	
- Get rid of all the distractions, identify the crux.	
- Get a clean mathematical model that is easier to reason about.	
- Solutions often generalize to other settings.	

Often we write the bipartition explicitly: $\label{eq:G} G = (X,Y,E)$

Bipartite Graphs
Great at modeling relations between two classes of objects.
Examples:
X = machines, $Y = $ jobs
An edge $\{x, y\}$ means x is capable of doing y .
X = professors, Y = courses
An edge $\{x, y\}$ means x can teach y .
X = students, $Y =$ internship jobs
An edge $\{x, y\}$ means x and y are interested in each other.
:

Maximum matching problem
The problem we want to solve is:
Maximum matching problem
Input: A graph $G = (V, E)$. Output: A maximum matching in G .

Bipartite maximum matching problem
Actually, we want to solve the following restriction:
<u>Bipartite</u> maximum matching problem
Input : A <u>bipartite</u> graph $G = (X, Y, E)$. Output : A maximum matching in G .

How do you solve a problem like this?	
I. Formulate the problem	
2. Ask : Is there a trivial algorithm?	
3. Ask : Is there a better algorithm?	
4. Find and analyze	

Bipartite maximum matching problem
Bipartite maximum matching problem
Input : A <i>bipartite</i> graph $G = (X, Y, E)$. Output : A maximum matching in G .
Is there a (trivial) algorithm to solve this problem?

Augmenting paths and maximum matchings
augmenting path \implies can obtain a bigger matching.
In fact, it turns out: no augmenting path \implies maximum matching.
Theorem:

How do you solve a problem like this?
I. Formulate the problem
2. Ask : Is there a trivial algorithm?
3. Ask : Is there a better algorithm?
4. Find and analyze