
October 10th, 2017

15-251
Great Ideas in

Theoretical Computer Science
Lecture 13:

Graphs III: Maximum Matchings

Some motivating real-world examples

matching machines and jobs

...

Job 1

Job 2

Job n

...

Some motivating real-world examples

matching professors and courses

15-110

15-112

15-122

15-150

15-251
......

Some motivating real-world examples

matching rooms and courses

15-110

15-112

15-122

15-150

15-251
...

GHC 4401

DH 2210

GHC 5222

WEH 7500

DH 2315
...

Some motivating real-world examples

matching kidney donors and patients

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Remember the CS life lesson

First step: Formulate the problem

Purpose:

- Get rid of all the distractions, identify the crux.

- Get a clean mathematical model that is easier to reason
about.

- Solutions often generalize to other settings.

Bipartite Graphs

X Y

is bipartite if: G = (V,E)

Bipartite Graphs

Given a graph , we could ask, is it bipartite?G = (V,E)

1

2 3

1 2

3 4

1 2

3 4

5

1 2

3 4

5

Poll

Is this graph bipartite?

- Yes

- No

- Beats me

12

3

4

5
6

7

8

9
10

11

12

Important Characterization

Theorem:

An obstruction for being bipartite:

Contains a cycle of odd length.

Is this the only type of obstruction?

Bipartite Graphs

X Y

Often we write the bipartition explicitly:

G = (X,Y,E)

Bipartite Graphs

Great at modeling relations between two classes of objects.

Examples:
 = machines, = jobs

An edge means is capable of doing .

X Y

{x, y}
x y

 = professors, = courses

An edge means can teach .

X Y

{x, y} x y

 = students, = internship jobs

An edge means and are interested in each other.

X Y

{x, y} x y

...

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

A matching :

matching

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

maximum
matching

Maximum matching:

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

maximal
matching

Maximal matching:

Matchings in bipartite graphs

Often, we are interested in finding a matching in a
bipartite graph

X Y

Perfect matching:

perfect
matching

Poll

How many different perfect matchings does the graph have
(in terms of n)?

X Y

a

b

c

d

e

f

g

h

|X| = |Y | = n

Important Note

We can define matchings for non-bipartite graphs as well.

Maximum matching problem

The problem we want to solve is:

Input: A graph .G = (V,E)

Output: A maximum matching in . G

Maximum matching problem

Bipartite maximum matching problem

Actually, we want to solve the following restriction:

Input: A bipartite graph .

Output: A maximum matching in . G

Bipartite maximum matching problem

G = (X,Y,E)

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Bipartite maximum matching problem

Is there a (trivial) algorithm to solve this problem?

Input: A bipartite graph .

Output: A maximum matching in . G

Bipartite maximum matching problem

G = (X,Y,E)

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Bipartite maximum matching problem

What if we picked edges “greedily”?

A good first attempt:

1

2

3

4

5

6

7

8

Bipartite maximum matching problem

maximal matching

but not maximum

Is there a way to get out of this local optimum?

A good first attempt:

1

2

3

4

5

6

7

8

What if we picked edges “greedily”?

Important Definition: Augmenting paths

Let M be some matching.

An alternating path with respect to M is a path in G
such that:

An augmenting path with respect to M is an
alternating path such that:

Important Definition: Augmenting paths

Augmenting path:

4-8-2-5-1-7

4 8 2 5 1 7

4 8 2 5 1 7

augmenting path can obtain a bigger matching.=)

1

2

3

4

5

6

7

8

matching = red edges

Important Definition: Augmenting paths

1

2

3

4

5

6

7

8

2 5 1 7

2 5 1 7

augmenting path can obtain a bigger matching.=)

matching = red edges

Augmenting path:

2-5-1-7

Important Definition: Augmenting paths

1

2

3

4

5

6

7

8

4 8

4 8

augmenting path can obtain a bigger matching.=)

matching = red edges

Augmenting path:

4-8

Augmenting paths and maximum matchings

augmenting path can obtain a bigger matching.=)

no augmenting path maximum matching.
In fact, it turns out:

=)

Theorem:

Augmenting paths and maximum matchings
Proof:
If there is an augmenting path with respect to M,
we saw that M is not maximum.

Want to show:
If M not maximum, there is an augmenting path w.r.t. M.

Let M* be a maximum matching. |M*| > |M|.

1

2

3

4

5

6

7

8

Let S be the set of edges
contained in M* or M
but not both.

S = (M* M) - (M M*)[\

Augmenting paths and maximum matchings
Proof (continued):

1

2

3

4

5

6

7

8

S = (M* M) - (M M*)[\
(will find an augmenting path in S)

Augmenting paths and maximum matchings

1

2

3

4

5

6

7

8

S = (M* M) - (M M*)[\

Proof (continued):

(will find an augmenting path in S)

Augmenting paths and maximum matchings

Theorem:
A matching M is maximum if and only if
there is no augmenting path with respect to M.

Summary of proof:

Algorithm to find maximum matching

Theorem:
A matching M is maximum if and only if
there is no augmenting path with respect to M.

Algorithm to find max matching:

Finding augmenting paths in bipartite graphs

1

2

3

4

5

6

7

8

X Y

Finding augmenting paths in bipartite graphs

1

2

3

4

5

6

7

8

X Y

Algorithm:

Running time:

How do you solve a problem like this?

1. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

