

Some motivating real-world examples
matching professors and courses

15-1 10
$15-112$
15-122
15-150
|5-25|
:

Some motivating real-world examples	
matching rooms and courses	
GHC 440I	$15-110$
DH 2210	$15-112$
GHC 5222	$15-122$
WEH 7500	$15-150$
DH 2315	$15-251$
\vdots	\vdots

How do you solve a problem like this?
I. Formulate the problem
2. Ask: Is there a trivial algorithm?
3. Ask: Is there a better algorithm?
4. Find and analyze

Remember the CS life lesson

First step: Formulate the problem

Purpose:

- Get rid of all the distractions, identify the crux.
- Get a clean mathematical model that is easier to reason about.
- Solutions often generalize to other settings.

Bipartite Graphs

$G=(V, E)$ is bipartite if:

Bipartite Graphs

Given a graph $G=(V, E)$, we could ask, is it bipartite?

Important Characterization

An obstruction for being bipartite:
Contains a cycle of odd length.

Is this the only type of obstruction?

Theorem:

Bipartite Graphs

Often we write the bipartition explicitly:

$$
G=(X, Y, E)
$$

Bipartite Graphs

Great at modeling relations between two classes of objects.

Examples:

$X=$ machines, $Y=$ jobs
An edge $\{x, y\}$ means x is capable of doing y.
$X=$ professors, $Y=$ courses
An edge $\{x, y\}$ means x can teach y.
$X=$ students, $Y=$ internship jobs
An edge $\{x, y\}$ means x and y are interested in each other.
:

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
matching

A matching :

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

Maximum matching:

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
maximal matching

Maximal matching:

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
perfect matching

Perfect matching:

How many different perfect matchings does the graph have (in terms of n)?

$$
|X|=|Y|=n
$$

Important Note

We can define matchings for non-bipartite graphs as well.

Maximum matching problem

The problem we want to solve is:

Maximum matching problem

Input: A graph $G=(V, E)$.
Output: A maximum matching in G.

Bipartite maximum matching problem

Actually, we want to solve the following restriction:

Bipartite maximum matching problem

Input: A bipartite graph $G=(X, Y, E)$.
Output: A maximum matching in G.

How do you solve a problem like this?
I. Formulate the problem
2. Ask: Is there a trivial algorithm?
3. Ask: Is there a better algorithm?
4. Find and analyze

Bipartite maximum matching problem

Bipartite maximum matching problem
Input: A bipartite graph $G=(X, Y, E)$.
Output: A maximum matching in G.

Is there a (trivial) algorithm to solve this problem?

How do you solve a problem like this?

I. Formulate the problem
2. Ask: Is there a trivial algorithm?
3. Ask: Is there a better algorithm?
4. Find and analyze

Bipartite maximum matching problem
A good first attempt:
What if we picked edges "greedily"?

Bipartite maximum matching problem

A good first attempt:
What if we picked edges "greedily"?

Is there a way to get out of this local optimum?

Important Definition: Augmenting paths

Let M be some matching.
An alternating path with respect to \mathbf{M} is a path in \mathbf{G} such that:

An augmenting path with respect to M is an alternating path such that:

Important Definition: Augmenting paths

Important Definition: Augmenting paths
 matching $=$ red edges

Augmenting path:
2-5-I-7

augmenting path \Longrightarrow can obtain a bigger matching.

Important Definition: Augmenting paths

matching $=$ red edges
Augmenting path:
4-8

augmenting path \Longrightarrow can obtain a bigger matching.

Augmenting paths and maximum matchings
augmenting path \Longrightarrow can obtain a bigger matching.

In fact, it turns out:

no augmenting path \Longrightarrow maximum matching.

Theorem:

Augmenting paths and maximum matchings

Proof:

If there is an augmenting path with respect to \mathbf{M}, we saw that M is not maximum.

Want to show:

If M not maximum, there is an augmenting path w.r.t. M.
Let M^{*} be a maximum matching. $|M *|>|M|$.

Let \mathbf{S} be the set of edges contained in \mathbf{M}^{*} or \mathbf{M} but not both.
$\mathbf{S}=(\mathbf{M} * \cup \mathbf{M})-(\mathbf{M} \cap \mathbf{M} \boldsymbol{*})$

Augmenting paths and maximum matchings

Proof (continued):

$$
\mathbf{S}=(\mathbf{M} * \cup \mathbf{M})-(\mathbf{M} \cap \mathbf{M} *)
$$

(will find an augmenting path in \mathbf{S})

Augmenting paths and maximum matchings

Proof (continued):

$\mathbf{S}=(\mathbf{M} * \cup \mathbf{M})-(\mathbf{M} \cap \mathbf{M} *)$
(will find an augmenting path in \mathbf{S})

Augmenting paths and maximum matchings

Theorem:

A matching \mathbf{M} is maximum if and only if there is no augmenting path with respect to \mathbf{M}.

Summary of proof:

Algorithm to find maximum matching
Theorem:
A matching M is maximum if and only if there is no augmenting path with respect to \mathbf{M}.

Algorithm to find max matching:

Finding augmenting paths in bipartite graphs

Finding augmenting paths in bipartite graphs

Algorithm:

Running time:

How do you solve a problem like this?
I. Formulate the problem
2. Ask: Is there a trivial algorithm?
3. Ask: Is there a better algorithm?
4. Find and analyze

