

Hall's Theorem	

Gale-Shapley algorithm analysis
1. Number of iterations is at most n^2 .

Further questions

Theorem:

The Gale-Shapley proposal algorithm always terminates with a stable matching after at most n^2 iterations.

Does the order of how we pick men matter? Would it lead to different matchings?

Is the algorithm "fair"? Does this algorithm favor men or women or neither?

Further questions

 \mathbf{m} and \mathbf{w} are *valid partners* if there is a stable matching in which they are matched.

best(m) = highest ranked valid partner of m

Theorem:

Real-world applications

Variants of the Gale-Shapley algorithm is used for:

- matching medical students and hospitals
- matching students to high schools (e.g. in New York)
- matching students to universities (e.g. in Hungary)
- matching users to servers
 - :

