## Hall's Theorem

## Characterization for perfect matchings

Often we are interested in perfect matchings.


An obstruction:

$$
|X| \neq|Y|
$$

## Characterization for perfect matchings

Often we are interested in perfect matchings.


## An obstruction:

If $|X|>|Y|$, we cannot "cover" all the nodes in $X$.
If $X|>|N(X)|$, we cannot "cover" all the nodes in $X$.

## Characterization for perfect matchings

Often we are interested in perfect matchings.


An obstruction:
For $S \subseteq X$ :
if $|S|>|N(S)|$, we cannot "cover" all the nodes in $S$.

## Characterization for perfect matchings

Is this the only type of obstruction?

## Theorem [Hall's Theorem]:

## Corollary:

Rank: I $2 \begin{array}{llllllllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & J & \text { Q }\end{array}$


Suppose a deck of cards is dealt into 13 piles of 4 cards each.
Claim: there is always a way to select one card from each pile so that you have one card from each rank.

## An application of Hall's Theorem



## So we want to show:

For any $S \subseteq X,|S| \leq|N(S)|$.

## An application of Hall's Theorem



Each $y \in N(S)$ absorbs $\leq 4$ units of this weight.
$\Longrightarrow N(S)$ absorbs $\leq 4|N(S)|$ units. $\quad \Longrightarrow \quad{ }_{4}|S| \leq{ }_{4}|N(S)|$

## Stable matching problem

## 2-Sided Markets

A market with 2 distinct groups of participants each with their own preferences.

## 2-Sided Markets



Other examples:
medical residents - hospitals students - colleges professors - colleges
I. Bob
2. David
3. Alice
4. Charlie

## Aspiration: A Good Centeralized System

## What can go wrong?



Formalizing the problem
An instance of the problem can be represented as a complete bipartite graph + preference list of each node.


$$
|X|=|Y|=n
$$

## Goal:

## Formalizing the problem

What is a stable matching?


## A variant: Roommate problem

## A non-bipartite version

| $(c, b, d)$ | $a \bullet$ | $\bullet c$ |
| :--- | :--- | :--- |
| $(b, a, d)$ |  |  |
| $(a, c, d)$ | $b \bullet$ | $\bullet d$ |

Does this have a stable matching?

## Stable matching: Is there a trivial algorithm?



Trivial algorithm:

## The Gale-Shapley proposal algorithm

While there is a man $\mathbf{m}$ who is not matched:

- Let w be the highest ranked woman in m's list to whom m has not proposed yet.
- If $w$ is unmatched, or $w$ prefers $m$ over her current match:
- Match $\mathbf{m}$ and $\mathbf{w}$.
(The previous match of $w$ is now unmatched.)


## Cool, but does it work correctly?

- Does it always terminate?
- Does it always find a stable matching?
(Does a stable matching always exist?)


## Gale-Shapley algorithm analysis

## Theorem:

The Gale-Shapley proposal algorithm always terminates with a stable matching after at most $n^{2}$ iterations.

A constructive proof that a stable matching always exists.

## 3 things to show:

## Gale-Shapley algorithm analysis

1. Number of iterations is at most $n^{2}$.

## Gale-Shapley algorithm analysis

2. The algorithm terminates with a perfect matching. If we don't have a perfect matching:

A man is not matched
$\Longrightarrow$ All women must be matched
$\Longrightarrow$ All men must be matched.
Contradiction

## Gale-Shapley algorithm analysis

2. The algorithm terminates with a perfect matching.

If we don't have a perfect matching:
A man is not matched
$\Longrightarrow$ All women must be matched
$\Longrightarrow$ All men must be matched.
Contradiction

## Gale-Shapley algorithm analysis

3. The matching has no unstable pairs.
"Improvement" Lemma:
(i) A man can only go down in his preference list.
(ii) A woman can only go up in her preference list.

## Unstable pair:

( $\mathrm{m}, \mathrm{w}$ ) unmatched
but they prefer each other.


## Further questions

## Theorem:

The Gale-Shapley proposal algorithm always terminates with a stable matching after at most $n^{2}$ iterations.

Does the order of how we pick men matter?
Would it lead to different matchings?

Is the algorithm "fair"?
Does this algorithm favor men or women or neither?

## Further questions

$\mathbf{m}$ and $\mathbf{w}$ are valid partners if there is a stable matching in which they are matched.
best( $\mathbf{m}$ ) $=$ highest ranked valid partner of $\mathbf{m}$

## Theorem:

## Further questions

worst(w) = lowest ranked valid partner of $w$

## Theorem:

## Real-world applications

Variants of the Gale-Shapley algorithm is used for:

- matching medical students and hospitals
- matching students to high schools (e.g. in New York)
- matching students to universities (e.g. in Hungary)
- matching users to servers
:

The Gale-Shapley Proposal Algorithm (1962)


Nobel Prize in Economics 2012
"for the theory of stable allocations and the practice of market design."

