15-251
Great Ideas in
Theoretical Computer Science

Lecture 15:
Boolean Circuits

October 17th, 2017

Where we are, where we are going

Sep 26 Sep27 Sep 28 Sep29
Time complexity hw4 w.s. Cake cutting
Oct3 Oct4 Octs Oct6
Graphs 1 hw5 w.s. Graphs 2
Oct 10 QOct 11 Oct 12 Oct 13
Graphs 3 Midterm 1 Graphs 4

Oct 18 Oct 19 Oct20
Boolean circuits hwé w.s. NP1 MID-SEM. BREAK
[Oci2a Oci25 Oct26 Oct27
NP2 hw7 w.s. NP3

What is P ?

The theoretical divide between efficient and inefficient:
L € P —> efficiently solvable.

L ¢ P = not efficiently solvable.

What is efficient in theory and in practice ?

In practice:
O(n)
O(nlogn)
O(n?)
O(n?)
O(n®)
O(n'?)
O(n'"%)

What is efficient in theory and in practice ?

In theory:
Polynomial time

Otherwise

What is efficient in theory and in practice ?

Poly-time is not meant to mean “efficient in practice”.
Poly-time: extraordinarily better than brute force search.

Poly-time: mathematical insight into problem’s structure.

Robust to notion of what is an
elementary step, what model we use,
reasonable encoding of input, implementation details.

Nice closure property: Plug in a poly-time alg. into
another poly-time alg. —> poly-time

What is efficient in theory and in practice ?

Brute-Force Algorithm: Exponential time

what we care
about most
in 15-251

usually the “magic”
happens here

v

Algorithmic Breakthrough: Polynomial time

what we care
about more
in 15-451

v

Blood, sweat, and tears: Linear time

What is efficient in theory and in practice ?

Summary: Poly-time vs not poly-time
is a quadlitative difference, not a quantitative one.

What is NP ?
EXP

DECIDABLE LANGUAGES

EXP NP:
NP A class/set between
P and EXP.

(set of languages
we would love
to solve efficiently)

What is NP ?

NP
P<NP

asks whether these two sets are equal.

How would you show P = NP?

How would you show P # NP?

Boolean circuits are related to the P vs NP question
in multiple ways.

Boolean Circuits

Some preliminary questions

What is a Boolean circuit?

- It is a computational model for computing
decision problems (or computational problems).

We already have TMs. Why Boolean circuits?
- The definition is simpler.
- Easier to understand, usually easier to reason about.

- Boolean circuits can efficiently simulate TMs.
(efficient decider TM ——> efficient/small circuits.)

- Circuits are good models to study parallel computation.

- Real computers are built with digital circuits.

Dividing a problem according to length of input
¥ =1{0,1}

L C{o,1}" f:{0,1}* = {0,1}

{0,1}™ = all strings of length n
Ln={wel:lw=n} | f:{0,1}" = {0,1}
for x € {0,1}",

L=LyULiULyU--- =002

Dividing a problem according to length of input

ATM is a finite object (finite number of states)
but can handle any input length.

computes L

Imagine a model where we allow the TM to change
with input length.

[TMIJ [TMz] [-m3]

Lo L, L, Ls e

Dividing a problem according to length of input
So one machine does not compute L.
You use a family of machines:

(Mo, My, Ms,...)

(Imagine having a different Python function for each input length.)

Is this a reasonable/realistic model of computation?!?

Boolean circuits work this way.

Need a separate circuit for each input length.
(but we still love them)

Boolean Circuit Definition

Picture of a circuit

Picture of a circuit

Poll 1: What does this circuit compute ?

(sometimes circuits are drawn upside down)

@ ® @ @

How does a circuit decide a language?

How do we measure the complexity of a circuit?

How can a circuit compute a language?

Given f:{0,1}" — {0,1}, write

F=0 07 where f":{0,1}" = {0,1}

Construct a circuit for each input length.

o) L) L)

i ! f? f?

A circuit family (T'is a collection of circuits (Cy, C1, Cs, . ..

where each), takes n input variables.

How can a circuit compute a language?

Circuit size and complexity

Definition (size of a circuit):

(Definition (size of a circuit family):

(&

(Definition (circuit complexity):

-

Poll 2

Let f:{0,1}* — {0,1} be the parity decision problem.

flx)=z1+... 42z, mod?2 (where n = |z|)

fx)=z1® - D,

What is the circuit complexity of this function?

The Big Picture Regarding Boolean Circuits

The big picture

Computability with respect to circuits

Theorem 1:

A universal exponential upper bound for all decision problems.

(We know this is not true in the TM model.)

The big picture

Limits of efficient computability
with respect to circuits

Theorem 2 (Shannon’s Theorem):

The big picture

Circuits can efficiently “simulate” TMs

Theorem 3:

poly-time TM == poly-size circuits

Consequence of Theorem 3

poly-time TM == poly-size circuits

no poly-size circuits == no poly-time TM

To show P # NP:

Find h in NP whose circuit complexity
is more than any nk.

NP
h

Consequence of Theorem 3

So we can just work with circuits instead

This is awesome in 2 ways:

I Circuits: clean and simple definition of computation.
[]

“Just” a composition of (AND), (OR), gates.

. . . Mz, 2, ..., Tn)
2. Restrict the circuit.
Make it less powerful.
depth .
e.g. (i) restrict depth
(ii) restrict types of gates T1 Ts Tz -+ Tn
Poll 3

How many different functions f: {0,1}" — {0,1}
are there!

-n

- 2n

- n2

- o

- 92"

- none of the above

- beats me

Proof of Theorem 2

Theorem 2: Some functions are hard

Theorem: There exists a decision problem such that
any circuit family computing it must have size at least
2" /5n.

Theorem 2: Some functions are hard

Proof ntin :

Theorem 2: Some functions are hard

Proof (continued):

Theorem 2: Some functions are hard

That was due to Claude Shannon (1949).

Father of Information Theory.

Claude Shannon
(1916 -2001)

A non-constructive argument.

In fact, it is easy to show that almost all functions
require exponential size circuits.

Concluding Remarks

Boolean circuits: another model of computation.

(arguably simpler definition, easier to reason about)

no poly-size circuits = no poly-time TM

(can attack P vs NP problem with circuits)

CIRCUIT-SAT decision problem:

Given as input the description of a circuit,
output True if the circuit is “satisfiable”.

Whether CIRCUIT-SAT is in P or not
is intimately related to the P vs NP question!

