| 5-25 |
 Great Ideas in Theoretical Computer Science

Lecture 15:
Boolean Circuits

October 17th, 2017

Where we are, where we are going

Sep 11	Sep 12 Turing machines 1	Sep 13 hw2 w.s.	Sep 14 Turing machines 2	Sep 15
Sep 18	Sep 19 Uncountability	Sep 20 hw3 w.s.	Sep21 Undecidability	Sep 22
Sep 25	Sep 26 Time complexity	Sep 27 hw4 w.s.	Sep 28 Cake cutting	Sep 29
Oct2	Oct 3 Graphs 1	Oct 4 hw5 w.s.	Oct 5 Graphs 2	Oct 6
Oct 9	Oct 10 Graphs 3	Oct 11 Midterm 1	Oct 12 Graphs 4	Oct 13
Oct 16	Oct 17 Boolean circuits	Oct 18 hw6 w.s.	$\begin{aligned} & \text { Oct } 19 \\ & \text { NP } 19^{2} \end{aligned}$	Oct 20 MID-SEM. BREAK
Oct 23	$\begin{array}{\|l\|} \hline \text { Oct } 24 \\ N P_{2} \end{array}$	Oct 25 hw7 w.s.	$\begin{aligned} & \mathrm{Oct} 26 \\ & N^{2} 3 \end{aligned}$	Oct 27

What is P ?

P

The theoretical divide between efficient and inefficient:
$L \in \mathrm{P} \longrightarrow$ efficiently solvable.
$L \notin \mathrm{P} \longrightarrow$ not efficiently solvable.

What is efficient in theory and in practice ?

In practice:

$O(n)$
$O(n \log n)$
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$
$O\left(n^{5}\right)$
$O\left(n^{10}\right)$
$O\left(n^{100}\right)$

What is efficient in theory and in practice ?

In theory:

Polynomial time
Otherwise

What is efficient in theory and in practice ?

- Poly-time is not meant to mean "efficient in practice".
- Poly-time: extraordinarily better than brute force search.
- Poly-time: mathematical insight into problem's structure.
- Robust to notion of what is an elementary step, what model we use, reasonable encoding of input, implementation details.
- Nice closure property: Plug in a poly-time alg. into another poly-time alg. \rightarrow poly-time

What is efficient in theory and in practice?

Brute-Force Algorithm: Exponential time
what we care about most in 15-25।
usually the "magic"
happens here

Algorithmic Breakthrough: Polynomial time
what we care
about more
in 15-45 I
Blood, sweat, and tears: Linear time

What is efficient in theory and in practice ?

Summary: Poly-time vs not poly-time is a qualitative difference, not a quantitative one.

What is NP ?
 EXP

DECIDABLE LANGUAGES

NP: | A class/set between |
| :--- |
| P and EXP. |
| (set of languages |
| we would love |
| to solve efficiently) |

What is NP?

$P \stackrel{?}{=} N P$
asks whether these two sets are equal.

How would you show $P=N P$?

How would you show $P \neq N P$?

Boolean circuits are related to the P vs NP question in multiple ways.

Boolean Circuits

What is a Boolean circuit?

- It is a computational model for computing decision problems (or computational problems).

We already have TMs. Why Boolean circuits?

-The definition is simpler.

- Easier to understand, usually easier to reason about.
- Boolean circuits can efficiently simulate TMs.
(efficient decider TM \Longrightarrow efficient/small circuits.)
- Circuits are good models to study parallel computation.
- Real computers are built with digital circuits.

Dividing a problem according to length of input

$\Sigma=\{0,1\}$	
$L \subseteq\{0,1\}^{*}$	$f:\{0,1\}^{*} \rightarrow\{0,1\}$
$L_{n}=\{w \in L:\|w\|=n\}$	$\begin{aligned} & \{0,1\}^{n}=\text { all strings of length } n \\ & f^{n}:\{0,1\}^{n} \rightarrow\{0,1\} \\ & \text { for } x \in\{0,1\}^{n}, \\ & \quad f^{n}(x)=f(x) \end{aligned}$
$L=L_{0} \cup L_{1} \cup L_{2} \cup \cdots$	$f=\left(f^{0}, f^{1}, f^{2}, \ldots\right)$

Dividing a problem according to length of input

ATM is a finite object (finite number of states) but can handle any input length.

Imagine a model where we allow the TM to change with input length.

Dividing a problem according to length of input

So one machine does not compute L.
You use a family of machines:

$$
\left(M_{0}, M_{1}, M_{2}, \ldots\right)
$$

(Imagine having a different Python function for each input length.)

Is this a reasonable/realistic model of computation?!?

Boolean circuits work this way.
Need a separate circuit for each input length.
(but we still love them)

Boolean Circuit Definition

Picture of a circuit

Picture of a circuit

Poll I: What does this circuit compute ?

(sometimes circuits are drawn upside down)

How does a circuit decide a language?

How do we measure the complexity of a circuit?

How can a circuit compute a language?
Given $f:\{0,1\}^{*} \rightarrow\{0,1\}$, write

$$
f=\left(f^{0}, f^{1}, f^{2}, \ldots\right) \text { where } f^{n}:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Construct a circuit for each input length.

A circuit family C is a collection of circuits $\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ where each C_{n} takes n input variables.

How can a circuit compute a language?
\square Circuit size and complexity

Definition (size of a circuit):

Definition (size of a circuit family):

Definition (circuit complexity):

Poll 2

Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be the parity decision problem.

$$
\begin{aligned}
& f(x)=x_{1}+\ldots+x_{n} \quad \bmod 2 \quad(\text { where } n=|x|) \\
& f(x)=x_{1} \oplus \cdots \oplus x_{n}
\end{aligned}
$$

What is the circuit complexity of this function?

Poll 2

The Big Picture Regarding Boolean Circuits

Computability with respect to circuits

Theorem I:

A universal exponential upper bound for all decision problems.
(We know this is not true in the TM model.)

The big picture

Limits of efficient computability with respect to circuits

Theorem 2 (Shannon's Theorem):

The big picture

Circuits can efficiently "simulate" TMs

Theorem 3:

$$
\text { poly-time TM } \Longrightarrow \text { poly-size circuits }
$$

Consequence of Theorem 3

poly-time TM \Longrightarrow poly-size circuits no poly-size circuits \Longrightarrow no poly-time TM

To show $\mathrm{P} \neq \mathrm{NP}$:
Find h in NP whose circuit complexity is more than any n^{k}.

Consequence of Theorem 3

So we can just work with circuits instead
This is awesome in 2 ways:

1. Circuits: clean and simple definition of computation.
"Just" a composition of AND, OR, NOT gates.
2. Restrict the circuit.

Make it less powerful.
e.g. (i) restrict depth
(ii) restrict types of gates

Poll 3

How many different functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ are there?

- n
- $2 n$
- n^{2}
- 2^{n}
- $2^{2^{n}}$
- none of the above
- beats me

Proof of Theorem 2

Theorem 2: Some functions are hard

Theorem: There exists a decision problem such that any circuit family computing it must have size at least $2^{n} / 5 n$.

Proof:

Theorem 2: Some functions are hard

Proof (continued):

Theorem 2: Some functions are hard

Proof (continued):

Theorem 2: Some functions are hard

That was due to Claude Shannon (1949).
Father of Information Theory.

(1916-200I)

A non-constructive argument.
In fact, it is easy to show that almost all functions require exponential size circuits.

Concluding Remarks

Boolean circuits: another model of computation.
(arguably simpler definition, easier to reason about)
no poly-size circuits \Longrightarrow no poly-time $T M$
(can attack P vs NP problem with circuits)

CIRCUIT-SAT decision problem:
Given as input the description of a circuit, output True if the circuit is "satisfiable".
Whether CIRCUIT-SAT is in P or not is intimately related to the P vs NP question!

