15-251
Great Ildeas in
Theoretical Computer Science

Lecture 18:
NP and NP-completeness continued

| can't find an efficient algorithm, but neither can all these famous people.

A Quick Review

Exponential running time examples

Theorem Proving Problem

(informal description)

Given a mathematical proposition P and an integer k,
determine if P has a proof of length at most k.

Subset Sum Problem

Given a list of integers, determine if there is a subset
of the integers that sum to 0.

4 (-3(-217]99|5] I

October 26th, 2017

Exponential running time examples

Traveling Salesperson Problem (TSP)

RN

Vs . 2. ™
" L ...!", e ™ \\\
SN o X \
. o \

e
/

/
e

Is there an order in which you can visit the cities
so that ticket cost is < $50000?

Exponential running time examples

Satisfiability Problem (SAT)
Input: A Boolean propositional formula.

eg (x1 AN—mo)V (mxy Axs Axy)V xs

Output: Yes iff there is an assignment to the variables
that makes the formula True.

Circuit Satisfiability Problem (Circuit-SAT)
Input: A Boolean circuit.

Output: Yes iff there is an assignment to the input gates
that makes the circuit output |.

Some other examples

Longest Common Subsequence

Input: A set of sequences, and a number k.
Output: Yes iff there is a subsequence of length at least k
that is common to all the given sequences.

Longest Path

Input: A graph and an integer k.
Output: Yes iff there a path in G of length at least k.

So you come across one of these problems,
what do you do?

Could they be in P?

| can't find an efficient algorithm, but neither can all these famous people.

Is there a deep reason why these problems
all seem to be hard?

Define a complexity class

What would be a reasonable definition for:
“class of problems decidable using Brute-Force Search” ?

What is common about
SAT, Theorem Proving, TSP, Longest Path, etc...?

The complexity class NP
Super Informal:

NP is a set of languages that we come across all the time
and would love to solve in poynomial time.

Semi-Informal:
A language is in NP if:
whenever we have a Yes input/instance,
there is a “simple” proof (solution) for this fact.

1

I. The length of the proof is polynomial in the input size.

2. The proof can be verified/checked in polynomial time.

The complexity class NP

Formally:
[Definition: R
A language A is in NP if
- there is a polynomial-time TM 1/
- a constant k
such that for all z € ¥*:
r €A <~ Juwith |u| < |z|F st. V(z,u)=1.)

If € A,thereis some poly-length proof that leads V' to accept.

If v ¢ A, every“proof” leads V to reject.

NP

7]

But we still don’t know if SAT, TSP, Theorem Proving, ...
are in P or not.

Even if we believe P + NP these problems could still be in P.

Definitions of NP-hard and NP-complete

Definition (hardness):
We say that language A is NP-hard if

forall L€ NP, L<PA

“A is at least as hard as every language in NP.”

NP

P
<r A

ol

Definitions of NP-hard and NP-complete

Definition (completeness):

We say that language A is NPP-complete if
- Ais NP-hard;
- A€ NP.

“A is a representative for hardest languages in NP.”

NP A

< A

a

Definitions of NP-hard and NP-complete
Observation:
Suppose A is NP-complete.
-If NP=P, then A € P.
-If A€P, then NP=P.}

2 possible worlds

Could it be true that one of
SAT, Theorem Proving, TSP, Sudoku, etc.
is NPP-complete?

NP ("oaT

7]

?
<L SAT

Is there any language that is NP-complete??

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):
CIRCUIT-SAT is NP-complete.

So CIRCUIT-SAT is in NP. (easy)
And for every Lin NP, L <% CIRCUIT-SAT.

Karp’s 21 NP-complete problems

1972: “Reducibility Among Combinatorial Problems”

0-1 Integer Programming Partition

Clique Clique Cover

Set Packing Exact Cover

Vertex Cover Hitting Set

Set Covering Knapsack

Feedback Node Set Steiner Tree

Feedback Arc Set 3-Dimensional Matching

Directed Hamiltonian Cycle Job Sequencing

Undirected Hamiltonian Cycle Max Cut

3SAT Chromatic Number
Today

Thousands of problems are known to be NP-complete.

(including the problems mentioned at the beginning of lecture)

COMPUTERS AND INTRACTABILITY

s

1979

How do you show a language is NP-complete?

How did Cook and Levin do it !?

NP

E] <LF CIRCUIT-SAT

How did Karp do it ?!?
IMPORTANT NOTE:

How do you show a language is NP-complete?

NP

E] <L CIRCUIT-SAT

To show L is NP-hard:

Every L in NP
lCook-Levin Theorem

CIRCUIT-SAT

3SAT 3COL

7N\

SUBSET-SUM CLIQUE

b

VERTEX-COVER IS

HAMILTONIAN-CYCLE

)

TSP Red: will show

First:

An important note about reductions

Cook reduction

Cook reductions: poly-time Turing reductions

Y=

Ye
Mp }»or
No

“You can solve A in poly-time

using a blackbox that solves B.”

You can call the blackbox poly(|x|) times.

Karp reduction

INP-hardness is usually defined using Karp reductions.

Karp reduction (polynomial-time many-one reduction):

M 4

f

> transform
input

— flz) —

Mp

Yes
No

Make one call to Mp and directly use its answer as output.

We must have:

Karp reduction

Definition:

Karp reduction

Can define NP-hardness with respect to < .

(what some courses use for simplicity)

Can define NP-hardness with respect to < .

(what experts use)

These lead to different notions of NP-hardness.

Poll |
Which of the following are true?
-if A<P Band B<P C, then A<” C.
-A<P B ifandonlyif B<” A.

-if A<P B and B €NP, then A € NP.

CLIQUE is NP-complete

Want to show:
- CLIQUE is in NP.

- CLIQUE is NP-hard.
3SAT is NP-hard, so show 3SAT <& CLIQUE.

CLIQUE is in NP

CLIQUE
Input: (G,c) where Gis a graph and c s a positive int.
Output: Yes iff G contains a clique of size c.

Fact: CLIQUE is in NP.

CLIQUE is in NP

Proof: We need to show a verifier TM V exists
as specified in the definition of NP.

def V(z,u) :

CLIQUE is in NP
Proof (continued):

Need to show:

Definition of 3SAT Problem
3SAT

Input: A Boolean formula in “conjunctive normal form”
in which every clause has exactly 3 literals.

e.g.:
(x1 V2 Vag) A (—zy VagVas) A(xe V—xs V ag)

N
a clause literal: a variable or its negation

(an OR of literals)

conjunctive normal form: AND of clauses.

(Note: To satisfy the formula, you need to satisfy each clause.)

Output: Yes iff the formula is satisfiable.

Aside: 3SAT isin NP

w=(@1V-xaVa3)A(—z1VayVaes)A(zeV-xsVze)

¥ satisfiable
—
can pick one literal from each clause and set them to True

—
the sequence of literals picked does not contain
both a variable and its negation.

What is a good proof that ¢ € 3SAT ?

- a truth assignment to the variables that satisfies the formula.

- a sequence of literals, one from each clause,
that does not contain both a variable and its negation.

CLIQUE is NP-complete: High level steps
CLIQUE is in NP. v/

We know 3SAT is NP-hard.
So suffices to show 3SAT Sﬁ CLIQUE.

We need to:

3SAT < CLIQUE: Defining the map
|.Defineamap f: X" — 3%

not valid encoding of a 3SAT formula

otherwise we have valid 3SAT formula ¢

(with m clauses).

¥

Construction demonstrated with an example.

— (G, k)

(weset k=m)

€

¥

Gy

(p:
L1

3SAT < CLIQUE: Defining the map

A

_\[],'1

k=3

(r1V—xoVas)A(—xy VayVaes)A(ry Ve V-or)

A

The construction:

- A vertex for each literal
in each clause.

- No edges between
two literals in the same clause.

- No edges between
x; and —x; forany j.

- All other possible edges
present.

- Set k to be # clauses in ¢.

3SAT < CLIQUE: Why it works

If @ is satisfiable, then G, contains an m-clique:

3SAT < CLIQUE: Why it works

If G, contains an m-clique, then ¢ is satisfiable:

3SAT < CLIQUE: Poly-time reduction?

Creation of G, is poly-time:

Every L in NP
lCook-Levin Theorem

CIRCUIT-SAT

3SAT 3COL

7N\

SUBSET-SUM CLIQUE

b

VERTEX-COVER IS

HAMILTONIAN-CYCLE

)

TSP

CIRCUIT-SAT is NP-complete

Recall

Theorem: Let f:{0,1}* — {0,1} be a decision problem
which can be decided in time O(T'(n)).

Then it can be computed by a circuit family of size
O(T(n)*).

With this Theorem, it is actually easy to prove that

CIRCUIT-SAT is NP-hard.

Proof Sketch

