
October 26th, 2017

15-251
Great Ideas in

Theoretical Computer Science
Lecture 18:

NP and NP-completeness continued

A Quick Review

Exponential running time examples

Theorem Proving Problem
(informal description)

Given a mathematical proposition P and an integer k,
determine if P has a proof of length at most k.

-3 -2 7 99 5 14

Subset Sum Problem
Given a list of integers, determine if there is a subset
of the integers that sum to 0.

Exponential running time examples

Is there an order in which you can visit the cities
so that ticket cost is < $50000?

Traveling Salesperson Problem (TSP)

Exponential running time examples

Satisfiability Problem (SAT)

Output: Yes iff there is an assignment to the variables
that makes the formula True.

e.g.
Input: A Boolean propositional formula.

(x1 ^ ¬x2) _ (¬x1 ^ x3 ^ x4) _ x3

Circuit Satisfiability Problem (Circuit-SAT)
Input: A Boolean circuit.

Output: Yes iff there is an assignment to the input gates
that makes the circuit output 1.

Some other examples

Longest Common Subsequence
Input: A set of sequences, and a number k.
Output: Yes iff there is a subsequence of length at least k
 that is common to all the given sequences.

Longest Path
Input: A graph and an integer k.
Output: Yes iff there a path in G of length at least k.

So you come across one of these problems,
what do you do?

Is there a deep reason why these problems
all seem to be hard?

Could they be in P?

Define a complexity class

What would be a reasonable definition for:
 “class of problems decidable using Brute-Force Search” ?

What is common about
SAT, Theorem Proving, TSP, Longest Path, etc…?

The complexity class NP

Semi-Informal:
A language is in NP if:

1. The length of the proof is polynomial in the input size.

2. The proof can be verified/checked in polynomial time.

whenever we have a Yes input/instance,
there is a “simple” proof (solution) for this fact.

Super Informal:
NP is a set of languages that we come across all the time
and would love to solve in poynomial time.

The complexity class NP

Definition:
A language is in NP ifA

Formally:

- a constant k
- there is a polynomial-time TM V

If , there is some poly-length proof that leads to accept.x 2 A V

If , every “proof” leads to reject.x /2 A V

such that for all :x 2 ⌃⇤

x 2 A () 9u with |u| |x|k s.t. V (x, u) = 1.

NP

P

But we still don’t know if SAT, TSP, Theorem Proving, …
are in P or not.

Even if we believe P ≠ NP these problems could still be in P.

Definitions of NP-hard and NP-complete

 for all NP , .

Definition (hardness):
We say that language is NP-hard ifA

L 2 L P
T A

 “ is at least as hard as every language in NP.” A

NP

P
T A

P

Definitions of NP-hard and NP-complete

 “ is a representative for hardest languages in NP.” A

Definition (completeness):
We say that language is NP-complete ifA
 - is NP-hard;A
 - NP. A 2

NP

P
T A

P

A.

NP = P P

Definitions of NP-hard and NP-complete

Observation:
Suppose is NP-complete.A

- If P , then NP = P.A 2
- If NP = P , then P.A 2

() A 2

2 possible worlds

Could it be true that one of
SAT, Theorem Proving, TSP, Sudoku, etc.

is NP-complete?

Is there any language that is NP-complete??

NP

P
T SAT

?

P

SAT.

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

CIRCUIT-SAT is NP-complete.

So CIRCUIT-SAT is in NP. (easy)

And for every L in NP, L CIRCUIT-SAT.P
T

Karp’s 21 NP-complete problems

1972: “Reducibility Among Combinatorial Problems”

0-1 Integer Programming

Clique

Set Packing

Vertex Cover

Set Covering
Feedback Node Set

Feedback Arc Set

Directed Hamiltonian Cycle

Undirected Hamiltonian Cycle

3SAT Chromatic Number

Partition

Clique Cover

Exact Cover

Hitting Set

Knapsack
Steiner Tree

3-Dimensional Matching

Job Sequencing

Max Cut

Today

1979

Thousands of problems are known to be NP-complete.
(including the problems mentioned at the beginning of lecture)

How do you show a language is NP-complete?

How did Cook and Levin do it ?!?

IMPORTANT NOTE:

NP

P
T CIRCUIT-SAT

P

How did Karp do it ?!?

How do you show a language is NP-complete?

To show L is NP-hard:

NP

P
T CIRCUIT-SAT

P

Every L in NP
Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IS

Red: will show

First:
An important note about reductions

Cook reduction

“You can solve A in poly-time
 using a blackbox that solves B.”

x

Yes
or

No

y

MA

MB
Yes
or

No

You can call the blackbox poly(|x|) times.

Cook reductions: poly-time Turing reductions

A BP
T

Karp reduction

NP-hardness is usually defined using Karp reductions.

Make one call to MB and directly use its answer as output.

Karp reduction (polynomial-time many-one reduction):

A BP
m

MA

MB
input

or
Yes
Notransform

f
x

f(x)

We must have:

Karp reduction

Definition:

Karp reduction

Can define NP-hardness with respect to .P
T

P
mCan define NP-hardness with respect to .

These lead to different notions of NP-hardness.

(what experts use)

(what some courses use for simplicity)

Poll 1

Which of the following are true?

- if and , then . A P
m B B P

m C A P
m C

- if and only if . A P
m B B P

m A

- if and NP, then NP. A P
m B B 2 A 2

CLIQUE is NP-complete

Want to show:

- CLIQUE is in NP.

- CLIQUE is NP-hard.

3SAT is NP-hard, so show 3SAT CLIQUE.P
m

CLIQUE is in NP

CLIQUE

Input: where G is a graph and c is a positive int.

Output: Yes iff G contains a clique of size c.

Fact: CLIQUE is in NP.

hG, ci

CLIQUE is in NP
Proof: We need to show a verifier TM exists

as specified in the definition of NP.
V

V (x, u) :def

CLIQUE is in NP
Proof (continued):

Need to show:

Definition of 3SAT Problem

3SAT

Input: A Boolean formula in “conjunctive normal form”
in which every clause has exactly 3 literals.

Output: Yes iff the formula is satisfiable.

a clause
(an OR of literals)

conjunctive normal form: AND of clauses.

(Note: To satisfy the formula, you need to satisfy each clause.)

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)

e.g.:

literal: a variable or its negation

Aside: 3SAT is in NP

What is a good proof that 3SAT ? ' 2
- a truth assignment to the variables that satisfies the formula.

- a sequence of literals, one from each clause,
 that does not contain both a variable and its negation.

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)' =

' satisfiable

()
can pick one literal from each clause and set them to True

()
the sequence of literals picked does not contain
both a variable and its negation.

CLIQUE is NP-complete: High level steps

CLIQUE is in NP.

We need to:

We know 3SAT is NP-hard.
So suffices to show 3SAT CLIQUE.P

m

3SAT ≤ CLIQUE: Defining the map

f : ⌃⇤ ! ⌃⇤

otherwise we have valid 3SAT formula
(with m clauses).

'

Construction demonstrated with an example.

1. Define a map .

not valid encoding of a 3SAT formula ✏7!

' 7! hG, ki (we set)k = m

3SAT ≤ CLIQUE: Defining the map

' = (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x1 _ ¬x1)

- No edges between
two literals in the same clause.

- No edges between
 and for any .
xi ¬xi i

- All other possible edges
present.

k = 3 - Set k to be # clauses in . '

The construction:

x1

¬x2

x3

C1

x1 x1 ¬x1C3

¬x1

x2

x3

C2

C1 C2 C3^ ^

G'

- A vertex for each literal
in each clause.

3SAT ≤ CLIQUE: Why it works

If is satisfiable, then contains an m-clique:' G'

3SAT ≤ CLIQUE: Why it works

If contains an m-clique, then is satisfiable:'G'

3SAT ≤ CLIQUE: Poly-time reduction?

Creation of is poly-time:G'

Every L in NP
Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM

IS

CIRCUIT-SAT is NP-complete

Recall

Theorem: Let be a decision problemf : {0, 1}⇤ ! {0, 1}
which can be decided in time O(T (n)).

Then it can be computed by a circuit family of size
O(T (n)2).

With this Theorem, it is actually easy to prove that

CIRCUIT-SAT is NP-hard.

Proof Sketch

