

A Quick Review

Exponential running time examples

Theorem Proving Problem

(informal description)

Given a mathematical proposition P and an integer k, determine if P has a proof of length at most k.

Subset Sum Problem

Given a list of integers, determine if there is a subset of the integers that sum to 0.

Exponential	running	time	examp	les
-------------	---------	------	-------	-----

Satisfiability Problem (SAT)

<u>Output:</u> Yes iff there is an assignment to the variables that makes the formula True.

Circuit Satisfiability Problem (Circuit-SAT)

Input: A Boolean circuit.

<u>Output:</u> Yes iff there is an assignment to the input gates that makes the circuit output 1.

Some other examples

Longest Common Subsequence

Input: A set of sequences, and a number k. Output: Yes iff there is a subsequence of length at least k that is common to all the given sequences.

Longest Path

<u>Input</u>: A graph and an integer k. <u>Output</u>: Yes iff there a path in G of length at least k.

The complexity class NP Super Informal: NP is a set of languages that we come across all the time and would love to solve in poynomial time. Semi-Informal: A language is in NP if: whenever we have a Yes input/instance, there is a "simple" proof (solution) for this fact. I. The length of the proof is polynomial in the input size. 2. The proof can be verified/checked in polynomial time.

Formally:

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

CIRCUIT-SAT is **NP**-complete.

So CIRCUIT-SAT is in NP. (easy)

 $L \leq^P_T$ CIRCUIT-SAT. And for every L in NP,

Karp's 21 NP-complete problems

Partition

Hitting Set

Knapsack

1972: "Reducibility Among Combinatorial Problems"

0-1 Integer Programming Clique Set Packing Vertex Cover Set Covering Feedback Node Set Feedback Arc Set Directed Hamiltonian Cycle Undirected Hamiltonian Cycle 3SAT

Steiner Tree **3-Dimensional Matching** Job Sequencing Max Cut Chromatic Number

Today

Thousands of problems are known to be **NP**-complete. (including the problems mentioned at the beginning of lecture)

1979

We must have:

	Karp reduction
Definition :	

Karp reduction

Can define NP-hardness with respect to \leq_T^P . (what some courses use for simplicity) Can define NP-hardness with respect to \leq_m^P . (what experts use) These lead to different notions of NP-hardness.

Poll I

Which of the following are true?

- if $A \leq_m^P B$ and $B \leq_m^P C$, then $A \leq_m^P C$.
- $A \leq_m^P B$ if and only if $B \leq_m^P A$.
- if $A \leq_m^P B$ and $B \in \mathbb{NP}$, then $A \in \mathbb{NP}$.

Want to show:

- CLIQUE is in NP.
- CLIQUE is **NP**-hard.

3SAT is **NP**-hard, so show 3SAT \leq_m^P CLIQUE.

CLIQUE is in **NP**

CLIQUE

Input: $\langle G, c \rangle$ where G is a graph and c is a positive int. **Output**: Yes iff G contains a clique of size c.

Fact: CLIQUE is in NP.

CLIQUE is in NP Proof: We need to show a verifier TM V exists as specified in the definition of NP. def V(x, u) :

CLIQUE is in NP
Proof (continued):
Need to show:

Definition of 3SAT Problem

3SAT

Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

e.g.:
$$\underbrace{(x_1 \vee \neg x_2 \vee x_3) \land (\neg x_1 \vee x_4 \vee x_5) \land (x_2 \vee \neg x_5 \vee x_6)}_{\longleftarrow}$$

a clause (an OR of literals) literal: a variable or its negation

conjunctive normal form: AND of clauses.

(Note: To satisfy the formula, you need to satisfy each clause.)

Output: Yes iff the formula is satisfiable.

CLIQUE is NP -complete: High level steps	
CLIQUE is in NP. 🗸	
We know 3SAT is NP -hard. So suffices to show 3SAT \leq_m^P CLIQUE.	
We need to:	

$3SAT \leq CLIQUE$: Why it works	
If φ is satisfiable, then G_{φ} contains an m-clique:	
	ĺ
	ĺ

$3SAT \leq CLIQUE$: Why it works
If G_{φ} contains an m-clique, then φ is satisfiable:

Recall
Theorem: Let $f : \{0,1\}^* \to \{0,1\}$ be a decision problem which can be decided in time $O(T(n))$. Then it can be computed by a circuit family of size $O(T(n)^2)$.
With this Theorem, it is actually easy to prove that CIRCUIT-SAT is NP -hard.

