
Aug 31st, 2017

15-251
Great Ideas in

Theoretical Computer Science
Lecture 2:

Strings and Encodings

Chessboard Puzzle

neighbors in direction
N, S, W, E

If a square has 2 or more
infected neighbors,
it becomes infected.

Question: What is the min number of infected
squares needed initially to infect the whole board?

Initially, some of the squares
are “infected”.

Objects/concepts we want to study and understand

Mathematical model (formal, precise definitions)

Mathematically/rigorously prove facts/theorems

input
data

output
data“computer”

Computation: manipulation of data.

How do we mathematically/formally represent data?

We have already done it for communication purposes.

Written communication:

1 2 3

“apple”

“car”

“happy”

“three” or “3”

English alphabet

⌃ = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

Turkish alphabet

⌃ = {a,b,c,ç,d,e,f,g,ḡ,h,ı,i,j,k,l,m,n,o,ö,p,r,s,ş,t,u,ü,v,y,z}

Binary alphabet

⌃ = {0, 1}

What if we had more symbols?

What if we had less symbols?

symbol/character:

alphabet:

string/word:

Length of a string :s

Back to Written English Example

Objects/concepts of interest String encoding

apple

⌃ = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

car

happy

Does every string correspond to a valid encoding?

Does every object have a corresponding encoding?

Can two objects have the same encoding?

encoding:

Examples

A = N

Does affect “encodability”?⌃

A = Z

Examples

A = N⇥ N

Examples

A = all undirected graphs

1 4 5

2 3 6

G

hGi =

Examples

A = all undirected graphs

1 4 5

2 3 6

0

BBBBBB@

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA

1 2 3 4 5 6
1
2
3
4
5
6

G

hGi =

Examples

A = all Python functions

def isPrime(N):
 if (N < 2):
 return False
 for factor in range(2, N):
 if (N % factor == 0):
 return False
 return True

hisPrimei =
“def isPrime(N):\n if (N < 2):\n return False\n for
factor in range(2, N):\n if (N % factor == 0):\n
return False\n return True”

Examples

Does matter?|⌃|

Going from to :|⌃| = k |⌃0| = 2

Does matter?|⌃|

Binary vs Unary

0
1
2
3
4
5
6
7
8
9
10
11
12

0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100

1
11
111
1111
11111
111111
1111111
11111111
111111111
1111111111
11111111111
111111111111

✏

A = N

Does matter?|⌃|

 has length in binaryn

 has length in unaryn

 has length in base n k

Binary vs Unary

Which sets are encodable?

What about uncountable sets?

Data is represented as finite length strings
over some finite alphabet.

Reasoning about computation requires
reasoning about strings.

Induction
(powerful tool for understanding recursive structures)

Induction Review

Domino Principle

Line up any number of dominos in a row,
knock the first one over and they will all fall.

Domino Principle

Line up an infinite row of dominoes,
one domino for each natural number.
Knock the first one over and they will all fall.

Proof: Proof by contradiction: suppose they don’t all fall.
Let k be the lowest numbered domino that remains standing.
Domino k-1 did fall. But then k-1 knocks over k, and k falls.
So k stands and falls, which is a contradiction.

Induction Review

Mathematical induction:

statements proved instead of dominoes fallen

Infinite sequence of
dominoes

Infinite sequence of
statements: S0, S1, S2, …

Fk = “domino k fell” Fk = “Sk proved”

Establish: 1. F0

2. for all k, F0, F1,…,Fk Fk+1=)

Conclude: Fk is true for all k.

Induction Review

Different ways of packaging inductive reasoning

METHOD OF MIN COUNTER-EXAMPLE

STRONG INDUCTION

INVARIANT INDUCTION

STRUCTURAL INDUCTION

…

Induction on objects with a recursive structure.

..

- arrays/lists
- strings
- graphs

.

Structural Induction

Recursive definition of a string over : ⌃

- the empty sequence is a string. ✏

- if is a string and , then is a string. x a 2 ⌃
ax

Structural Induction

Recursive definition of a rooted binary tree:

- a single node r is a binary tree with root r.

- if T1 and T2 are binary trees with roots r1 and r2,
 then T which has a node r adjacent to r1 and r2

 is a binary tree with root r.

T1
T2

T = r1 r2

r

Every node has 0 or 2 children.

leaves

internal
nodes

Structural Induction

Proposition: Let T be a binary tree.
 Let LT = # leaves in T.
 Let IT = # internal nodes in T.
 Then LT = IT + 1.

Structural Induction

Proof (by structural induction):

Structural Induction

The outline of structural induction:

Base step: check statement true for base case(s) of def’n.

Recursive/induction step:
prove statement holds for new objects created by the
recursive rule, assuming it holds for old objects used in
the recursive rule.

Structural Induction

Why is that valid?

Previous example: could induct on the parameter height.

Structural Induction

Usually another explicit parameter can be used to induct on.

Be careful!
What is wrong with the following argument?

Strong induction on height.

Base case true.

Take an arbitrary binary tree T of height h.

Let T’ be the following tree of height h+1:

T1

T’ =

r

r1 r2
blah blah blah

Therefore statement true
for T’ of height h+1.

Structural Induction

Another example with strings:

Let be recursively defined as follows:L ✓ {0, 1}⇤

- ;✏ 2 L

- if , then .
x, y 2 L 0x1y0 2 L

Prove that for any , . w 2 L #(0, w) = 2 ·#(1, w)

number of 0’s in w

number of 1’s in w

Structural Induction

Proof (by structural induction):

Structural Induction

Back to string encodings

input
data

output
data“computer”

What is computation?

What is an algorithm?

How can we mathematically define them?

First Few Weeks

Can encode/represent any kind of data
(numbers, text, pairs of numbers, graphs, images, etc…)
with a finite length (binary) string.

Seen so far:

Before we define algorithm formally,
we should define computational problem formally.

An algorithm solves a computational problem.

Example description of a computational problem:

Given a natural number N, output True if N is prime,
and output False otherwise.

Example algorithm solving it:

def isPrime(N):
 if (N < 2): return False
 for factor in range(2, N):
 if (N % factor == 0): return False
 return True

input
data

output
dataisPrime

Instance Solution

0 No

1 No

2 Yes

3 Yes

4 No

.

.

.

.

.

.

251 Yes

.

.

.

.

.

.

input
data

output
data+

Instance Solution

0, 0 0

0, 1 1

1, 1 2

2, 2 4

2, 3 5

10, 1 11

100, 99 199

.

.

.

.

.

.

input
data

output
dataSorting

[“vanilla”, “mind”, “Ariel”, “yogurt”, “doesn’t”]
Instance

Solution

[“Ariel”, “doesn’t”, “mind”, “vanilla”, “yogurt”]

A computational problem is a function

.

set of possible input objects (called instances)
set of possible output objects (called solutions)

But in TCS, we don’t deal with arbitrary objects,
 we deal with strings (encodings).

Technicality:
What if does not correspond to an encoding of an instance?w 2 ⌃⇤

f : I ! S

I =

S =

In TCS, there is only one type of data:

string

IMPORTANT DEFINITIONS

IMPORTANT RELATIONSHIP
There is a one-to-one correspondence between
decision problems and languages.

Our focus will be on languages!
(decision problems)

(more on this next lecture)

Integer factorization problem:
Given as input a natural number N, output its prime
factorization.

Decision version:
Given as input natural numbers N and k,
does N have a factor between 1 and k?

computational problem
≈

corresponding decision problem

Are all languages computable/decidable?

How can we prove that a language is not decidable?

How do we measure complexity of algorithms deciding
languages?

P = NP?

How do we classify languages according to resources
needed to decide them?

INTERESTING QUESTIONS WE WILL
EXPLORE ABOUT COMPUTATION

