|5-25 I
 Great Ideas in
 Theoretical Computer Science

Lecture 2:

Strings and Encodings

Aug 31st, 2017

neighbors in direction $\mathbf{N}, \mathbf{S}, \mathbf{W}, \mathbf{E}$

Initially, some of the squares are"infected".

If a square has 2 or more infected neighbors, it becomes infected.

Question: What is the min number of infected squares needed initially to infect the whole board?

Objects/concepts we want to study and understand

Mathematical model (formal, precise definitions)

Mathematically/rigorously prove facts/theorems

Computation: manipulation of data.

How do we mathematically/formally represent data?

We have already done it for communication purposes.
Written communication:

English alphabet

$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Turkish alphabet
$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \overline{\mathrm{g}}, \mathrm{h}, \mathrm{l}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{e}, \mathrm{p}, \mathrm{r}, \mathrm{s}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{u}, \mathrm{v}, \mathrm{y}, \mathrm{z}\}$

What if we had more symbols?
What if we had less symbols?

Binary alphabet
$\Sigma=\{0,1\}$

alphabet:

symbol/character:
string/word:

Length of a string s :

Back to Written English Example

$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Objects/concepts of interest

-

String encoding
apple
car
happy

Does every object have a corresponding encoding?
Can two objects have the same encoding?
Does every string correspond to a valid encoding?
encoding:

Examples

$A=\mathbb{N}$

Does Σ affect "encodability"?

Examples

$A=\mathbb{Z}$

Examples

$$
A=\mathbb{N} \times \mathbb{N}
$$

Examples

$A=$ all undirected graphs

$\langle G\rangle=$

Examples

$\langle G\rangle=$

Examples

```
A= all Python functions
def isPrime(N):
    if (N < 2):
        return False
    for factor in range(2,N):
        if (N % factor == 0):
            return False
    return True
```

\langle isPrime $\rangle=$
"def isPrime(N): $\backslash \mathrm{n} \quad$ if $(\mathrm{N}<2): \backslash \mathrm{n} \quad$ return False $\backslash \mathrm{n} \quad$ for
factor in range $(2, \mathrm{~N}): \backslash \mathrm{n} \quad$ if $(\mathrm{N} \%$ factor $==0): \backslash \mathrm{n}$
return False $\backslash \mathrm{n}$ return True"

Does $|\Sigma|$ matter?

Going from $|\Sigma|=k$ to $\left|\Sigma^{\prime}\right|=2$:

	Does $\|\Sigma\|$ matter?	
$A=\mathbb{N}$	Binary	vs
Unary		
0	0	ϵ
1	1	1
2	10	111
3	11	111
4	100	1111
5	101	11111
6	110	111111
7	111	1111111
8	1000	111111111
9	1001	11111111
10	1010	1111111111
11	1011	11111111111
12	1100	11111111111

Does $|\Sigma|$ matter?
Binary vs Unary

n	has length	in binary
n	has length	in unary
n	has length	in base k

Which sets are encodable?

What about uncountable sets?

Data is represented as finite length strings over some finite alphabet.

Reasoning about computation requires reasoning about strings.

Induction

(powerful tool for understanding recursive structures)

Induction Review

Domino Principle

Line up any number of dominos in a row, knock the first one over and they will all fall.

Induction Review

Domino Principle

Line up an infinite row of dominoes, one domino for each natural number. Knock the first one over and they will all fall.

Proof: Proof by contradiction: suppose they don't all fall.
Let \mathbf{k} be the lowest numbered domino that remains standing. Domino \mathbf{k} - I did fall. But then \mathbf{k} - I knocks over \mathbf{k}, and \mathbf{k} falls. So \mathbf{k} stands and falls, which is a contradiction.

Induction Review

Mathematical induction:
statements proved instead of dominoes fallen

Infinite sequence of Infinite sequence of
dominoes statements: $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots$
$\mathrm{F}_{\mathrm{k}}=$ "domino k fell"
$\mathrm{F}_{\mathrm{k}}=$ " S_{k} proved"

Establish: I. F_{0}
2. for all $k, F_{0}, F_{1}, \ldots, F_{k} \Longrightarrow F_{k+1}$

Conclude: F_{k} is true for all k .

Different ways of packaging inductive reasoning

STRONG INDUCTION

METHOD OF MIN COUNTER-EXAMPLE
INVARIANT INDUCTION
STRUCTURAL INDUCTION
...

Structural Induction

Induction on objects with a recursive structure.

- arrays/lists
- strings
- graphs
!

Structural Induction

Recursive definition of a string over Σ :

- the empty sequence ϵ is a string.
- if x is a string and $a \in \Sigma$, then $a x$ is a string.

Structural Induction

Recursive definition of a rooted binary tree:

- a single node r is a binary tree with root r.
- if T_{1} and T_{2} are binary trees with roots r_{1} and r_{2}, then T which has a node r adjacent to r_{1} and r_{2} is a binary tree with root r .

Every node has 0 or 2 children.

Proposition: Let T be a binary tree.
Let $\mathrm{L}_{\mathbf{T}}=$ \# leaves in \mathbf{T}.
Let $\|_{\mathrm{T}}=$ \# internal nodes in \mathbf{T}.
Then $L_{T}=I_{T}+I$.

Structural Induction

Proof (by structural induction):

Structural Induction

The outline of structural induction:

Base step: check statement true for base case(s) of def'n.
Recursive/induction step:
prove statement holds for new objects created by the recursive rule, assuming it holds for old objects used in the recursive rule.

Structural Induction

Why is that valid?

Usually another explicit parameter can be used to induct on.

Previous example: could induct on the parameter height.

Structural Induction

Be careful!
What is wrong with the following argument?
Strong induction on height.
Base case true.
Take an arbitrary binary tree T of height h.
Let T ' be the following tree of height $\mathrm{h}+\mathrm{I}$:

blah blah blah
Therefore statement true for T^{\prime} of height $\mathrm{h}+\mathrm{I}$.

Structural Induction

Another example with strings:

Let $L \subseteq\{0,1\}^{*}$ be recursively defined as follows:

- $\epsilon \in L$;
- if $x, y \in L$, then $0 x 1 y 0 \in L$.

Prove that for any $w \in L, \quad \#(0, w)=2 \cdot \#(1, w)$.

Proof (by structural induction):

Back to string encodings

First Few Weeks

What is computation?
What is an algorithm?
How can we mathematically define them?

Seen so far:

Can encode/represent any kind of data
(numbers, text, pairs of numbers, graphs, images, etc...) with a finite length (binary) string.

Before we define algorithm formally, we should define computational problem formally.

An algorithm solves a computational problem.

Example description of a computational problem:
Given a natural number \mathbb{N}, output True if \mathbb{N} is prime, and output False otherwise.

Example algorithm solving it:
def isPrime(N):
if ($\mathrm{N}<2$): return False for factor in range $(2, \mathrm{~N})$:
if ($\mathrm{N} \%$ factor $==0$): return False return True

input data\rightarrow	isPrime
$\substack{\text { Instance }}$	Solution
0	No
1	No
2	Yes
3	Yes
4	No
\vdots	\vdots
251	Yes
\vdots	\vdots

Instance Solution
0, $0 \quad 0$
$0,1 \quad 1$
1, $1 \quad 2$
2, $2 \quad 4$
2, $3 \quad 5$
$10,1 \quad 11$ 100, $99 \quad 199$

Instance
["vanilla", "mind","Ariel","yogurt", "doesn't"]

Solution
["Ariel","doesn't", "mind",'"vanilla", "yogurt"]

A computational problem is a function

$$
f: I \rightarrow S .
$$

$I=$ set of possible input objects (called instances)
$S=$ set of possible output objects (called solutions)
But in TCS, we don't deal with arbitrary objects, we deal with strings (encodings).

Technicality:

What if $w \in \Sigma^{*}$ does not correspond to an encoding of an instance?

In TCS, there is only one type of data:
string

IMPORTANT DEFINITIONS

IMPORTANT RELATIONSHIP

There is a one-to-one correspondence between decision problems and languages.

Our focus will be on languages!

(decision problems)

computational problem
\approx
corresponding decision problem

Integer factorization problem:

Given as input a natural number \mathbf{N}, output its prime factorization.

Decision version:

Given as input natural numbers \mathbb{N} and \mathbf{k}, does \mathbb{N} have a factor between \| and \mathbb{k} ?

INTERESTING QUESTIONS WE WILL EXPLORE ABOUT COMPUTATION

Are all languages computable/decidable?
How can we prove that a language is not decidable?

How do we measure complexity of algorithms deciding languages?

How do we classify languages according to resources needed to decide them?
$P=N P$?

