

$\label{eq:static} \begin{array}{l} \mbox{English alphabet} \\ \Sigma = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \} \end{array}$	
Turkish alphabet $\Sigma = \{a,b,c,c,d,e,f,g,\bar{g},h,i,i,j,k,l,m,n,o,\ddot{o},p,r,s,\varsigma,t,u,\ddot{u},v,y,z\}$	
What if we had more symbols? What if we had less symbols?	
$\frac{\text{Binary alphabet}}{\Sigma = \{0, 1\}}$	

Examples

 $A=\mathbb{N}\times\mathbb{N}$

	Does $ \Sigma $ matter?		
$A=\mathbb{N}$	Binary	vs Unary	
0 2 3 4 5 6 7 8 9 10 1 1 2	0 1 10 11 100 101 110 111 1000 1011 1010 1011 1100	<pre></pre>	Ι

	Does $ \Sigma $ matter?	
	Binary vs	Unary
n	has length	in binary
n	has length	in unary
n	has length	in base k

Which sets are encodable?]

What about uncountable sets?	

Induction

(powerful tool for understanding recursive structures)

Induction Review

Domino Principle

Line up any number of dominos in a row, knock the first one over and they will all fall.

Induction Review

Domino Principle

Line up an <u>infinite</u> row of dominoes, one domino for each natural number. Knock the first one over and they will all fall.

Proof: Proof by contradiction: suppose they don't all fall. Let **k** be the *lowest numbered domino* that remains standing. Domino **k-I** did fall. But then **k-I** knocks over **k**, and **k** falls. So **k** stands and falls, which is a contradiction.

Structural Induction

Recursive definition of a **rooted binary tree**:

- a single node **r** is a binary tree with root **r**.
- if T_1 and T_2 are binary trees with roots r_1 and r_2 , then T which has a node r adjacent to r_1 and r_2 is a binary tree with root r.

Every node has 0 or 2 children.

Structural Induction

Proposition: Let **T** be a binary tree.

Let $L_T = \#$ leaves in T. Let $I_T = \#$ internal nodes in T. Then $L_T = I_T + I$.

Structural Induction Proof (by structural induction):

Structural Induction

The outline of structural induction:

Base step: check statement true for base case(s) of def'n.

Recursive/induction step:

prove statement holds for **new objects** created by the recursive rule, assuming it holds for **old objects** used in the recursive rule.

Structural Induction

Why is that valid?

Usually another explicit parameter can be used to induct on.

<u>Previous example</u>: could induct on the parameter **height**.

Structural Induction

Be careful! What is wrong with the following argument?

Strong induction on height.

Base case true.

Take an arbitrary binary tree **T** of height **h**.

Let **T**' be the following tree of height **h**+**l**:

blah blah blah Therefore statement true for **T**' of height **h+1**.

Structural Induction

Another example with strings:

Let $L \subseteq \{0,1\}^*$ be recursively defined as follows: - $\epsilon \in L$:

- if $x, y \in L$, then $0x1y0 \in L$.

Prove that for any $w \in L$, $\#(0, w) = 2 \cdot \#(1, w)$.

number of 0's in w

number of I's in w

IMPORTANT DEFINITIONS	

IMPORTANT RELATIONSHIP There is a one-to-one correspondence between decision problems and languages.	

INTERESTING QUESTIONS WE WILL EXPLORE ABOUT COMPUTATION

Are all languages computable/decidable?

How can we prove that a language is not decidable?

How do we measure complexity of algorithms deciding languages?

How do we classify languages according to resources needed to decide them?

P = NP?