

Randomness is an essential tool in modeling and analyzing nature.

It also plays a key role in computer science.

Population: 300m Random sample size: 2000

Theorem:

Randomized Algorithms

Dimer Problem:
Given a region, in how many different ways can you tile it with $2 \times I$ rectangles (dominoes)?
e.g.

$\longrightarrow 1024$ tilings

Captures thermodynamic properties of matter.

- Fast randomized algs can approximately count.
- No fast deterministic alg known.

Distributed Computing

Nash Equilibria in Games

The Chicken Game

Theorem (Nash):

Cryptography

Error-Correcting Codes

Alice

Bob

Each symbol can be corrupted with a certain probability. How can Alice still get the message across?

Want to check if the contents of two databases are exactly the same.

How many bits need to be communicated?

Interactive Proofs

poly-time skeptical

Prover

omniscient untrustworthy

Can I convince you that I have proved $\mathbf{P} \neq \mathbb{N} P$ without revealing any information about the proof?

Quantum Computing

Probability Theory: The CS Approach

The Big Picture

The Non-CS Approach

$\underset{\substack{\text { (random) } \\ \text { Real World } \\ \text { experiment/process }}}{ }$ Mathematical Model
probability space

The Big Picture
Real World \longrightarrow Mathematical Model

Flip a coin.

$\Omega=$ "sample space"
$=$ set of all possible outcomes
$\operatorname{Pr}: \Omega \rightarrow[0,1]$ prob. distribution

$$
\sum_{\ell \in \Omega} \operatorname{Pr}[\ell]=1
$$

The Big Picture
Real World \longrightarrow Mathematical Model

The Big Picture
Real World \longrightarrow Mathematical Model

Flip a coin. If it is Heads, throw a 3-sided die. If it is Tails, throw a 4-sided die.

The Big Picture

The CS Approach

Real World \longrightarrow Code \longrightarrow| Probability Tree |
| :--- |
| II |
| Mathematical Model |

The Big Picture

RealWorld \longrightarrow Code \longrightarrow Probability Tree

Flip a coin.
If it is Heads, throw a 3 -sided die. If it is Tails, throw a 4 -sided die.
flip <- Bernoulli(1/2)
if flip = 1 : \# i.e. Heads die < - RandInt(3)
else:
die $<-$ RandInt(4)

Probability Tree

What is a Random Variable?

A random variable is a variable in some randomized code (more accurately, the variable's value at the end of the execution) of type 'real number'.

Example:

$\mathrm{S}<-\operatorname{RandInt}(6)+\operatorname{RandInt}(6)$
if $S=12: \quad \mathrm{I}<-1$
else: $\quad \mathrm{I}<-0$
Random variables:

What is a Random Variable?

Markov's Inequality

A non-negative random variable \boldsymbol{X} is rarely much bigger than its expectation $\mathbf{E}[\boldsymbol{X}]$.

Theorem:

New Topic:
Randomized Algorithms

Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:
(i) the input can be chosen randomly average-case analysis
(ii) the algorithm can make random choices randomized algorithm

Which one will we focus on?

Randomness and algorithms

What is a randomized algorithm?

A randomized algorithm is an algorithm that is allowed to "flip a coin" (i.e., has access to random bits).

In 15-251:

A randomized algorithm is an algorithm that is allowed to call:

- Randlnt(n) (we'll assume these take $O(1)$ time)
- Bernoulli(p)

Deterministic vs Randomized

$\left.$| Deterministic | Randomized |
| :---: | :---: |
| $\operatorname{def} \mathrm{A}(\mathrm{x}):$
 $\mathrm{y}=1$
 if $(\mathrm{y}=0):$
 while $(\mathrm{x}>0):$
 $\mathrm{x}=\mathrm{x}-1$
 return $\mathrm{x}+\mathrm{y}$ | |\quad| def $\mathrm{A}(\mathrm{x}):$ |
| :---: |
| $\mathrm{y}=\operatorname{Bernoulli}(0.5)$ |
| if $(\mathrm{y}==0):$ |
| while $(\mathrm{x}>0):$ |
| $\mathrm{x}=\mathrm{x}-1$ |
| return $\mathrm{x}+\mathrm{y}$ | \right\rvert\,

For any fixed input (e.g. $x=3$):

- the output
- the running time
- the output
- the running time

A deterministic algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}, \quad A(x)=f(x)$.
- running time: $\forall x \in \Sigma^{*}$, \# steps $A(x)$ takes is $\leq T(|x|)$.

Note: we require worst-case guarantees for correctness and run-time.

Deterministic vs Randomized

A Try

A randomized algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}, A(x)=f(x)$.
- running time: $\forall x \in \Sigma^{*}, \#$ steps $A(x)$ takes is $\leq T(|x|)$.
these are random

Deterministic vs Randomized

A Try

A randomized algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}, \operatorname{Pr}[A(x)=f(x)]=1$.
- running time: $\forall x \in \Sigma^{*}, \operatorname{Pr}[\#$ steps $A(x)$ takes is $\leq T(|x|)]=1$

Is this interesting? No.

A randomized algorithm should gamble with either correctness or run-time.

Example

Input: An array B with $\mathrm{n} / 4$ l's and $3 \mathrm{n} / 4 \mathrm{O}$'s.
Output: An index that contains a I.

Deterministic	Randomized
Type I (Monte Carlo)	Type 2 (Las Vegas)

Example

Input: An array B with $n / 4$ l's and $3 n / 4$ O's.
Output: An index that contains a I.

	Correctness	Run-time
Deterministic		
Monte Carlo		
Las Vegas		

Formal Definitions

Formal Definition: Deterministic

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem.

We say that deterministic algorithm A
computes f in time $T(n)$ if:

$$
\forall x \in \Sigma^{*}
$$

$A(x)=f(x)$

$$
\forall x \in \Sigma^{*}
$$

\# steps $A(x)$ takes is $\leq T(|x|)$.

Picture:

Deterministic:

Each input x induces a deterministic path.

Formal Definition: Monte Carlo

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem.

We say that randomized algorithm A is a $T(n)$-time Monte Carlo algorithm for f with ϵ error probability if:

$$
\forall x \in \Sigma^{*}
$$

$\forall x \in \Sigma^{*}$,
Picture:

Formal Definition: Las Vegas

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a computational problem.

We say that randomized algorithm A is a $T(n)$-time Las Vegas algorithm for f if:

$$
\begin{aligned}
& \forall x \in \Sigma^{*}, \\
& \forall x \in \Sigma^{*},
\end{aligned}
$$

Examples

3 IMPORTANT PROBLEMS

Integer Factorization

Input: integer N
Ouput: a prime factor of N

isPrime

Input: integer N
Ouput: True if N is prime.

Generating a random n-bit prime

Input: integer n
Ouput: a random n-bit prime

Most crypto systems start like:

- pick two random n-bit primes P and Q .
- let $N=P Q . \quad(N$ is some kind of a "key")
- (more steps...)

We should be able to do efficiently the following:

- check if a given number is prime.
- generate a random prime.

We should not be able to do efficiently the following:

- given N , find P and Q . (the system is broken if we can do this!!!)

isPrime

def isPrime (N):
if $(\mathrm{N}<2)$: return False
maxFactor $=$ round $\left(\mathrm{N}^{* *} 0.5\right)$
for factor in range (2 , maxFactor +1):
if ($\mathrm{N} \%$ factor $=0$): return False
return True

Problems:

isPrime

Amazing result from 2002:

There is a poly-time algorithm for isPrime.

Agrawal, Kayal, Saxena

However, best known implementation is $\sim O\left(n^{6}\right)$ time.
Not feasible when $n=2048$.

isPrime

So that's not what we use in practice.
Everyone uses the Miller-Rabin algorithm (1975).

The running time is $\sim O\left(n^{2}\right)$.
Why is the previous result a breakthrough?

Generating a random prime

repeat:

let N be a random n-bit number if isPrime(N): return N

Prime Number Theorem (informal):

About I / n fraction of n -bit numbers are prime.
\Longrightarrow expected run-time of the above algorithm:
No poly-time deterministic algorithm is known to generate an n-bit prime!!!

