CASE STUDY

Monte Carlo Algorithm for Min Cut

Gambles with correctness. Doesn’t gamble with run-time.

Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph $G = (V, E)$, color the vertices red and blue so that the number of edges with two colors (e = {u, v}) is maximized.
Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph $G = (V, E)$, find a non-empty subset $S \subset V$ such that number of edges from S to $V - S$ is maximized.

Size of the cut = # edges from S to $V - S$.

Max Cut Problem is **NP-hard**!

Randomized Approximation for Max Cut

Min Cut Problem (my favorite problem):
Given a connected graph $G = (V, E)$, find a non-empty subset $S \subset V$ such that number of edges from S to $V - S$ is minimized.

Size of the cut = # edges from S to $V - S$.

(how many possible “cuts” are there!)
Randomized Algorithm for Min Cut
(contraction algorithm)

Select an edge randomly:
\{b,d\} selected
Contract that edge.

Size of min-cut: 2

Select an edge randomly:
\{a,d\} selected
Contract that edge.

Size of min-cut: 2
Contraction algorithm for min cut

Example run 1

Select an edge randomly:
\{c, a\} selected
Contract that edge. (delete self loops)

Size of min-cut: 2

Example run 1

When two vertices remain, you have your cut:
\(S = \{a, b, c, d\} \quad V\setminus S = \{e\} \quad \text{size: 2} \)

Contraction algorithm for min cut

\[
G = G_0 \overset{\text{contract}}{\rightarrow} G_1 \overset{\text{contract}}{\rightarrow} G_2 \overset{\text{contract}}{\rightarrow} \cdots \overset{\text{contract}}{\rightarrow} G_{n-2} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\text{\(n \) vertices} \quad \text{\(n \) vertices} \quad \text{\(n \) vertices} \quad \text{\(n \) vertices}
\]

\(n - 2 \) iterations
Contraction algorithm for min cut

Observation:
For any i: A cut in G_i of size k corresponds exactly to a cut in G of size k.

Theorem:
Let $G = (V, E)$ be a graph with n vertices. The probability that the contraction algorithm will output a min-cut is $\geq 1/n^2$.

Should we be impressed?
- The algorithm runs in polynomial time.
- There are exponentially many cuts. ($\approx 2^n$)
- There is a way to boost the probability of success to $1 - \frac{1}{e^n}$ (and still remain in polynomial time)

Proof of Theorem
Let k be the size of a minimum cut.
Which of the following are true (can select more than one):

For $G = G_0$, $k \leq \min_v \deg_G(v)$ ($\forall v, \ k \leq \deg_G(v)$)

For $G = G_0$, $k \geq \min_v \deg_G(v)$

For every G_i, $k \leq \min_v \deg_{G_i}(v)$ ($\forall v, \ k \leq \deg_{G_i}(v)$)

For every G_i, $k \geq \min_v \deg_{G_i}(v)$

Proof of theorem

Fix some minimum cut.

$|F| = k$

$|V| = n$

$|E| = m$

Will show $\Pr[\text{algorithm outputs } F'] \geq 1/n^2$

(Note) $\Pr[\text{success}] \geq \Pr[\text{algorithm outputs } F']$
Proof of theorem

Theorem:
Let $G = (V, E)$ be a graph with n vertices. The probability that the contraction algorithm will output a min-cut is $\geq 1/n^2$.

Should we be impressed?
- The algorithm runs in polynomial time.
- There are exponentially many cuts, ($\approx 2^n$)
- There is a way to boost the probability of success to $1 - \frac{1}{e^n}$ (and still remain in polynomial time)
Boosting Phase
(and the world's greatest approximation!)

Boosting phase

Run the algorithm \(t \) times using fresh random bits.

\[
\begin{array}{cccccc}
G & G & G & \cdots & G \\
\text{Contraction Algorithm} & \text{Contraction Algorithm} & \text{Contraction Algorithm} & \cdots & \text{Contraction Algorithm} \\
F_1 & F_2 & F_3 & \cdots & F_t \\
\end{array}
\]

Output the minimum among \(F_i \)’s.

larger \(t \) \(\implies \) better success probability

What is the relation between \(t \) and success probability?

Let \(A_i = \) “in the \(i \)’th repetition, we \textbf{don’t} find a min cut.”

\[
\Pr[\text{error}] = \Pr[\text{don’t find a min cut}]
\]

\[
= \Pr[A_1 \cap A_2 \cap \cdots \cap A_t]
\]

\[
= \Pr[A_1] \Pr[A_2] \cdots \Pr[A_t]
\]

\[
= \Pr[A_1]^t \leq \left(1 - \frac{1}{n^2} \right)^t
\]
Boosting phase

Pr[error] ≤ \left(1 - \frac{1}{n^2}\right)^t

World's most useful inequality: \forall x \in \mathbb{R} : 1 + x ≤ e^x

Let \quad x = -1/n^2

Pr[error] ≤ (1 + x)^t ≤ (e^x)^t = e^{xt} = e^{-t/n^2}

\quad t = n^3 \implies \quad \text{Pr}[error] ≤ e^{-n^3/n^2} = 1/e^n \implies \quad \text{Pr}[success] ≥ 1 - \frac{1}{e^n}

Conclusion for min cut

We have a polynomial-time algorithm that solves the min cut problem with probability \quad 1 - 1/e^n.

\text{Theoretically, not equal to 1. Practically, equal to 1.}
Important Note

Boosting is not specific to Min-cut algorithm.

We can boost the success probability of Monte Carlo algorithms via repeated trials.

Final remarks

Randomness adds an interesting dimension to computation.

Randomized algorithms can be faster and more elegant than their deterministic counterparts.

There are some interesting problems for which:
- there is a poly-time randomized algorithm,
- we can’t find a poly-time deterministic algorithm.