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min-cut

Monte Carlo Algorithm for Min Cut

CASE STUDY

Gambles with correctness. 
Doesn’t gamble with run-time.

Cut Problems

S V � S

red blue

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph                    , 
color the vertices red and blue so that the number of
edges with two colors (e = {u,v}) is maximized.

G = (V,E)



Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph                    , 
find a non-empty subset            such that
number of edges from       to             is maximized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut  =  # edges from       to            .S V � S

Max Cut Problem is NP-hard!

Cut Problems

Randomized Approximation for Max Cut

Cut Problems

Min Cut Problem (my favorite problem):
Given a connected graph                    , 
find a non-empty subset            such that
number of edges from       to             is minimized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut  =  # edges from       to            .S V � S

(how many possible “cuts” are there?)



Randomized Algorithm for Min Cut
(contraction algorithm)

Contraction algorithm for min cut
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Select an edge randomly:

{b,d} selected

Contract that edge.

Size of min-cut: 2
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Contraction algorithm for min cut

{a, d} selected

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
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Contraction algorithm for min cut

{c, a} selected

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
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Contraction algorithm for min cut

When two vertices remain, you have your cut:

S = {a, b, c, d} V\S = {e} size:  2

Size of min-cut: 2

Example run 1
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Contraction algorithm for min cut

G = G0 �! G1 �! G2 �! · · · �! Gn�2

verticesn vertices2

contract contract contract contract

n� 2 iterations



Contraction algorithm for min cut
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For any   :   A cut in       of size     corresponds exactly to  Gi k

a cut in       of size    .kG

i

Observation:

Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2

Proof of Theorem



Pre-proof Poll

Let     be the size of a minimum cut.k

Which of the following are true (can select more than one):

For every       ,Gi k  min
v

degGi
(v)

For               ,G = G0 k  min
v

degG(v)

For               ,G = G0 k � min
v

degG(v)

For every       ,Gi k � min
v

degGi
(v)

(8v, k  degG(v))

(8v, k  degGi
(v))

Poll answer

Proof of theorem

|F| = k
|V| = n
|E| = m

Pr[algorithm outputs F ] � 1/n2Will show

(Note                                                              )Pr[success] � Pr[algorithm outputs F ]

Fix some minimum cut. S V � S

F



Proof of theorem

Proof of theorem

Proof of theorem



Proof of theorem

Proof of theorem

Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2



Boosting Phase
(and the world’s greatest approximation!)

Boosting phase

Run the algorithm t times using fresh random bits.

G G G G

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

…

…

…F1 F2 FtF3

Output the minimum among      ’s.Fi

larger                 better success probabilityt =)

What is the relation between    and success probability?t

Boosting phase

Let       =  “in the i’th repetition, we don’t find a min cut.”Ai

= Pr[A1] Pr[A2] · · ·Pr[At]

= Pr[A1]
t 

✓
1� 1

n2

◆t

Pr[error]

= Pr[A1 \A2 \ · · · \At]
ind.

events

= Pr[don’t find a min cut]

What is the relation between    and success probability?t



Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

World’s most useful inequality: 8x 2 R : 1 + x  e

x

Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

x = �1/n2Let

t = n3
=) Pr[error]  e�n3/n2

= 1/en

 (ex)t = ext = e�t/n2

Pr[success] � 1� 1

en

=)

Pr[error]  (1 + x)

t

World’s most useful inequality: 8x 2 R : 1 + x  e

x

Conclusion for min cut

We have a polynomial-time algorithm that solves 
the min cut problem with probability               .1� 1/en

Theoretically, not equal to 1.
Practically, equal to 1.



We can boost the success probability of 
Monte Carlo algorithms via repeated trials.

Important Note

Boosting is not specific to Min-cut algorithm.

Final remarks

Another (morally) million dollar question:

Randomized algorithms can be faster and more elegant 
than their deterministic counterparts.

There are some interesting problems for which: 
   - there is a poly-time randomized algorithm,
   - we can’t find a poly-time deterministic algorithm.

Randomness adds an interesting dimension to 
computation.


