
15-251
Great Ideas in

Theoretical Computer Science
Lecture 24:

Randomized Algorithms 2

November 16th, 2017

min-cut

Monte Carlo Algorithm for Min Cut

CASE STUDY

Gambles with correctness.
Doesn’t gamble with run-time.

Cut Problems

S V � S

red blue

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph ,
color the vertices red and blue so that the number of
edges with two colors (e = {u,v}) is maximized.

G = (V,E)

Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph ,
find a non-empty subset such that
number of edges from to is maximized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut = # edges from to .S V � S

Max Cut Problem is NP-hard!

Cut Problems

Randomized Approximation for Max Cut

Cut Problems

Min Cut Problem (my favorite problem):
Given a connected graph ,
find a non-empty subset such that
number of edges from to is minimized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut = # edges from to .S V � S

(how many possible “cuts” are there?)

Randomized Algorithm for Min Cut
(contraction algorithm)

Contraction algorithm for min cut

a

c

b

e

d

Select an edge randomly:

{b,d} selected

Contract that edge.

Size of min-cut: 2

Example run 1
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

{a, d} selected

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

{c, a} selected

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
a

c

b

e

d

a

c

b
e

d

Contraction algorithm for min cut

When two vertices remain, you have your cut:

S = {a, b, c, d} V\S = {e} size: 2

Size of min-cut: 2

Example run 1
a

c

b

e

d

S
V \S

Contraction algorithm for min cut

G = G0 �! G1 �! G2 �! · · · �! Gn�2

verticesn vertices2

contract contract contract contract

n� 2 iterations

Contraction algorithm for min cut

a

c

b
e

d

Gi a

c

b

e

d

G

For any : A cut in of size corresponds exactly to Gi k

a cut in of size .kG

i

Observation:

Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~)2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let be a graph with n vertices.
The probability that the contraction algorithm will
output a min-cut is .

Theorem:
G = (V,E)

� 1/n2

Proof of Theorem

Pre-proof Poll

Let be the size of a minimum cut.k

Which of the following are true (can select more than one):

For every ,Gi k  min
v

degGi
(v)

For ,G = G0 k  min
v

degG(v)

For ,G = G0 k � min
v

degG(v)

For every ,Gi k � min
v

degGi
(v)

(8v, k  degG(v))

(8v, k  degGi
(v))

Poll answer

Proof of theorem

|F| = k
|V| = n
|E| = m

Pr[algorithm outputs F] � 1/n2Will show

(Note)Pr[success] � Pr[algorithm outputs F]

Fix some minimum cut. S V � S

F

Proof of theorem

Proof of theorem

Proof of theorem

Proof of theorem

Proof of theorem

Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~)2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let be a graph with n vertices.
The probability that the contraction algorithm will
output a min-cut is .

Theorem:
G = (V,E)

� 1/n2

Boosting Phase
(and the world’s greatest approximation!)

Boosting phase

Run the algorithm t times using fresh random bits.

G G G G

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

…

…

…F1 F2 FtF3

Output the minimum among ’s.Fi

larger better success probabilityt =)

What is the relation between and success probability?t

Boosting phase

Let = “in the i’th repetition, we don’t find a min cut.”Ai

= Pr[A1] Pr[A2] · · ·Pr[At]

= Pr[A1]
t 

✓
1� 1

n2

◆t

Pr[error]

= Pr[A1 \A2 \ · · · \At]
ind.

events

= Pr[don’t find a min cut]

What is the relation between and success probability?t

Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

World’s most useful inequality: 8x 2 R : 1 + x  e

x

Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

x = �1/n2Let

t = n3
=) Pr[error]  e�n3/n2

= 1/en

 (ex)t = ext = e�t/n2

Pr[success] � 1� 1

en

=)

Pr[error]  (1 + x)

t

World’s most useful inequality: 8x 2 R : 1 + x  e

x

Conclusion for min cut

We have a polynomial-time algorithm that solves
the min cut problem with probability .1� 1/en

Theoretically, not equal to 1.
Practically, equal to 1.

We can boost the success probability of
Monte Carlo algorithms via repeated trials.

Important Note

Boosting is not specific to Min-cut algorithm.

Final remarks

Another (morally) million dollar question:

Randomized algorithms can be faster and more elegant
than their deterministic counterparts.

There are some interesting problems for which:
 - there is a poly-time randomized algorithm,
 - we can’t find a poly-time deterministic algorithm.

Randomness adds an interesting dimension to
computation.

