

Gambles with **correctness**. Doesn't gamble with **run-time**.

Cut Problems

Max Cut Problem (Ryan O'Donnell's favorite problem): Given a connected graph G = (V, E), color the vertices **red** and **blue** so that the number of edges with two colors (e = {**u**,**v**}) is maximized.

Cut Problems

Cut Problems Randomized Approximation for Max Cut

Cut Problems

Contraction algorithm for min cut

Observation:

For any i: A cut in G_i of size k corresponds exactly to a cut in G of size k.

Contraction algorithm for min cut

Theorem:

Let $G=(V,E)\,$ be a graph with n vertices. The probability that the contraction algorithm will output a min-cut is $\,\geq 1/n^2$.

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. ($\approx 2^n$)

- There is a way to boost the probability of success to

 $1 - \frac{1}{e^n}$ (and still remain in polynomial time)

Proof of Theorem

Pre-proof Poll

Let k be the size of a minimum cut. Which of the following are true (can select more than one): For $G = G_0$, $k \leq \min_v \deg_G(v)$ $(\forall v, k \leq \deg_G(v))$ For $G = G_0$, $k \geq \min_v \deg_G(v)$ For every G_i , $k \leq \min_v \deg_{G_i}(v)$ $(\forall v, k \leq \deg_{G_i}(v))$ For every G_i , $k \geq \min_v \deg_{G_i}(v)$

Poll answer	

Proof of theorem	

Proof of theorem	

Proof of theorem	

Proof of theorem	1

Contraction algorithm for min cut

Theorem:

Let $G=(V,E)\,$ be a graph with n vertices. The probability that the contraction algorithm will output a min-cut is $\,\geq 1/n^2$.

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. ($\approx 2^n$)

- There is a way to boost the probability of success to

 $1 - \frac{1}{e^n}$ (and still remain in polynomial time)

Boosting phase

What is the relation between t and success probability?

What is the relation between t and success probability?

Let A_i = "in the i'th repetition, we **don't** find a min cut."

 $\Pr[\text{error}] = \Pr[\text{don't find a min cut}]$

$$= \Pr[A_1 \cap A_2 \cap \dots \cap A_t]$$

$$\stackrel{\text{events}}{=} \Pr[A_1] \Pr[A_2] \cdots \Pr[A_t]$$

$$= \Pr[A_1]^t \leq \left(1 - \frac{1}{n^2}\right)^t$$

Boosting phase

$$\Pr[\text{error}] \le \left(1 - \frac{1}{n^2}\right)^t$$
World's most useful inequalit

-4

-3

-2

World's most useful inequality: $\forall x \in \mathbb{R} : 1 + x \leq e^x$ $f(x)=e^x$ yg(x)=1+xyaa

1

1

2

3

4

Boosting phase		
$\Pr[\text{error}] \le \left(1 - \frac{1}{n^2}\right)^t$		
World's most useful inequality: $\forall x \in \mathbb{R}: 1 + x \leq e^x$		
Let $x = -1/n^2$		
$\Pr[\text{error}] \le (1+x)^t \le (e^x)^t = e^{xt} = e^{-t/n^2}$		
$t = n^3 \implies \Pr[\text{error}] \le e^{-n^3/n^2} = 1/e^n \implies$		
$\Pr[\text{success}] \ge 1 - \frac{1}{e^n}$		

Important Note

Boosting is not specific to Min-cut algorithm.

We can boost the success probability of Monte Carlo algorithms via repeated trials.

Final remarks Randomness adds an interesting dimension to computation. Randomized algorithms can be faster and more elegant than their deterministic counterparts. There are some interesting problems for which: • there is a poly-time randomized algorithm, • we can't find a poly-time deterministic algorithm.