|5-25 I

 Great Ideas in

 Great Ideas in Theoretical Computer Science

Lecture 26:
 Modular Arithmetic

November 28th, 2017

This Week

Modular arithmetic

$+$

Cryptography

(in particular, "public-key" cryptography)

Main goal of this lecture

Goal:

Understanding modular arithmetic: theory + algorithms Why:
I. When we do addition or multiplication, the universe is infinite (e.g. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.)
Sometimes we prefer to restrict ourselves to a finite universe (e.g. the modular universe).
2. Some hard-to-do arithmetic operations in \mathbb{Z} or \mathbb{Q} are easy in the modular universe.
3. Some easy-to-do arithmetic operations in \mathbb{Z} or \mathbb{Q} seem to be hard in the modular universe.
And this is great for cryptography applications!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:

I. addition

2. subtraction
3. multiplication
4. division
5. exponentiation
6. taking roots
7. logarithm

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Integers

Algorithms on numbers involve BIG numbers.

36|8502788666|3I|0698659328|52|497II045574302I|69260358536775932020762686|0| 7237846234873269807IO2970I2887435602I48I96423285778229567I67502I393065473695 3943653222082II694I5878307696498263I05897I7739I8I525033220266350650989268038 3I9483927388I505432422077I79I2I83888828I 996|48408052302I96889866637200606252 650I3I0964926475205090003984I76I220587III6456794655904497I683604424076996342 718304654479802II682970|3490774|4009047634829067I82274396|203698|42307099664 3455I334I46376I6824423860I0788974IO58I3I27I3062262I420863600822465I5I096IOI8 97890068I50676649015942469667309276208447327I4004599013904409378I4I724958467 7228950143608277369974692883I956843I436I862929679227I6752485I3I6077587207648 784505836723I603I730798I747I4I75I905I35702967I99|I529635804I2838I8484I733782

Integers

$B=569303002052399999347964290462|9| 1725098567020556258102766251487234031094429$

$$
B \approx 5.7 \times 10^{75} \quad(5.7 \text { quattorvigintillion })
$$

B is roughly the number of atoms in the universe

Definition: $\operatorname{len}(B)=\#$ bits to write B

$$
\approx \log _{2} B
$$

For $B=569303002052399999347964290462|9| 172509856702055625810276625 \mid 487234031094429$

$$
\operatorname{len}(B)=251
$$

(for crypto purposes, this is way too small!)

Integers: Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing string-manipulation.

The number of steps is measured with respect to the length of the input numbers.

I. Addition in integers

| | 36\|8502788666|3110698659328|52|497|104 |
| :---: | :---: |
| | 65743021169260358536775932020762686101 |
| | 101928049055921669606641864835977657205 |

Grade school addition is linear time:

$$
\begin{aligned}
& \text { if } \operatorname{len}(A), \operatorname{len}(B) \leq n \\
& \text { number of steps to produce } C \text { is } O(n)
\end{aligned}
$$

2. Subtraction in integers

I $0192804905592166960664 \mid 864835977657205 ~$$3618502788666\|3110698659328\| 52 \mid 4971104 ~$	
	65743021169260358536775932020762686101

Grade school subtraction is linear time:

$$
\begin{aligned}
& \text { if } \operatorname{len}(A), \operatorname{len}(B) \leq n \\
& \text { number of steps to produce } C \text { is } O(n)
\end{aligned}
$$

3. Multiplication in integers

$$
\begin{array}{rr}
36|8502788666| 3||0698659328| 52| 497 \mid I 04 & A \\
5932020762686|0| & B
\end{array}
$$

$X X$
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2।465033672205046394665I358202698404452609868I37425504
\# steps: $O(\operatorname{len}(A) \cdot \operatorname{len}(B))$
$=O\left(n^{2}\right)$ if $\operatorname{len}(A), \operatorname{len}(B) \leq n$

4. Division in integers

$6099949635084593037586 Q$
$B 5 9 3 2 0 2 0 7 6 2 6 8 6 1 0 1 \longdiv { 3 6 1 8 5 0 2 7 8 8 6 6 6 1 3 1 1 0 6 9 8 6 5 9 3 2 8 1 5 2 1 4 9 7 1 1 0 4 } A$
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
$$
A=Q \cdot B+R
$$
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
$$
R=A \bmod B
$$ XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

5. Exponentiation in integers

Given as input B, compute 2^{B}.

If

$B=569303002052399999347964290462|9| 1725098567020556258102766251487234031094429$
$\operatorname{len}(B)=251$
but $\operatorname{len}\left(2^{B}\right) \sim 5.7$ quattorvigintillion
(output length exceeds number of particles in the universe)

exponential in input length

6. Taking roots in integers

Given as input A, E, compute $A^{1 / E}$.

Solution: binary search.

7. Taking logarithms in integers

Given as input A, B, compute $\log _{B} A$.
i.e., find X such that $B^{X}=A$.

Solution:

$$
\text { Try } X=1,2,3, \ldots
$$

Stop when $B^{X} \geq A$.

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
I. addition

2. subtraction
3. multiplication
4. division
5. exponentiation
6. taking roots
7. logarithm

Modular Operations: Basic Definitions and Properties

Modular universe: How to view the elements

Hopefully everyone already knows:
Any integer can be reduced mod N.
$A \bmod N=$ remainder when you divide A by N

Example

$$
N=5
$$

$\begin{array}{lllll:lllll:llll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots \\ & \downarrow & & 1 & \downarrow & \downarrow \\ & \downarrow & \bmod 5 \\ 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & \cdots\end{array}$

Modular universe: How to view the elements

We write $\quad A \equiv B \bmod N \quad$ or $\quad A \equiv{ }_{N} B$ when $A \bmod N=B \bmod N$.
(In this case, we say A is congruent to B modulo N.)

Examples

$$
\begin{aligned}
5 & \equiv_{5} 100 \\
13 & \equiv_{7} 27
\end{aligned}
$$

Exercise

$$
A \equiv_{N} B \Longleftrightarrow N \text { divides } A-B
$$

Modular universe: How to view the elements

2 Points of View

View I

The universe is \mathbb{Z}.
Every element has a "mod N" representation.

View 2

The universe is the finite set $\mathbb{Z}_{N}=\{0,1,2, \ldots, N-1\}$.

Modular universe: Addition

Can define a "plus" operation in \mathbb{Z}_{N} :

Modular universe: Addition

Addition table for \mathbb{Z}_{5}

				3	
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0		2	3

0 is called the (additive) identity: $0{ }_{\mathrm{N}} \mathrm{A}=\mathrm{A} \dagger_{N} \mathbf{0}=\mathrm{A}$ for any A

Modular universe: Addition

In \mathbb{Z}

3019573

912382236

3019573
$+$

912382236

Modular universe: Addition

In \mathbb{Z}

A

B

3

I
$A+B$

4

YES!

Modular universe: Addition

In \mathbb{Z}

A

B
 $\ln \mathbb{Z}_{N}$
$A \bmod N$
$B \bmod N$

$$
A+B \quad \xrightarrow{?}(A \bmod N)+_{N}(B \bmod N)
$$

Is $(A+B) \bmod N=(A \bmod N)+_{N}(B \bmod N) ?$
YES!

Modular universe: Subtraction

How about subtraction in \mathbb{Z}_{N} ?

What does $A-B$ mean?
It is actually addition in disguise: $A+(-B)$
Then what does $-B$ mean in \mathbb{Z}_{N} ?

Definition:

Given $B \in \mathbb{Z}_{N}$, its additive inverse, denoted by $-B$, is the element in \mathbb{Z}_{N} such that $B+_{N}-B=0$.

$$
A-_{N} B=A+{ }_{N}-B
$$

Modular universe: Subtraction

Addition table for \mathbb{Z}_{5}

	0			3		
0	0	1	2	3	4	$-0=0$
1	1	2	3	4	0	$-1=4$
2	2	3	4	0	1	$-2=3$
3	3	4	0	1	2	$-3=2$
4	4	0	1	2	3	$-4=1$

Modular universe: Subtraction

$$
\mathbb{Z}_{5}
$$

Note:

For every $A \in \mathbb{Z}_{N}$, $-A$ exists.
Why? $-A=N-A$
This implies:
A row contains distinct elements.
i.e. every row is a permutation of \mathbb{Z}_{N}.
$\begin{array}{cccc}\text { Fix row } A: & A+{ }_{N} B=A+{ }_{N} B^{\prime} \Longrightarrow & B=B^{\prime} \\ & \downarrow \\ & \text { row col row col } & \downarrow & \\ & & \\ & \text { same col }\end{array}$

Modular universe: Multiplication

Can define a "multiplication" operation in \mathbb{Z}_{N} :

Modular universe: Multiplication

Multiplication table for \mathbb{Z}_{5}

0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
	0	4	3	2	1

I is called the (multiplicative) identity: $\left\|{ }_{N} A=A{ }_{N}\right\|=A$ for any A

Modular universe: Multiplication

In \mathbb{Z}

$A \quad \cdots \cdots \cdots \rightarrow \quad A \bmod N$

B
........ $\ln \mathbb{Z}_{N}$

$$
A \cdot B \quad \cdots \cdots \cdots \quad(A \bmod N) \cdot{ }_{N}(B \bmod N)
$$

Is $(A \cdot B) \bmod N=(A \bmod N) \cdot{ }_{N}(B \bmod N)$

Modular universe: Division

How about division in \mathbb{Z}_{N} ?

What does A / B mean?
It is actually multiplication in disguise: $A \cdot \frac{1}{B}=A \cdot B^{-1}$
Then what does B^{-1} mean in \mathbb{Z}_{N} ?

Definition:

Given $B \in \mathbb{Z}_{N}$, its multiplicative inverse, denoted by B^{-1}, is the element in \mathbb{Z}_{N} such that $B \cdot{ }_{N} B^{-1}=1$.

$$
A /{ }_{N} B=A \cdot{ }_{N} B^{-1}
$$

Modular universe: Division

Multiplication table for \mathbb{Z}_{5}

		I	2	3	4	$0^{-1}=$ undefined
0	0	0	0	0	0	
1	0	1	2	3	4	$1^{-1}=1$
2	0	2	4	1	3	$2^{-1}=3$
3	0	3	-	4	2	$3^{-1}=2$
4	0	4	3	2	1	$4^{-1}=4$

Modular universe: Division

Multiplication table for \mathbb{Z}_{6}

0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0		2
5	0	5	4	3	2	

$0^{-1}=$ undefined
$1^{-1}=1$
$2^{-1}=$ undefined
$3^{-1}=$ undefined
$4^{-1}=$ undefined
$5^{-1}=5$
WTF?

Modular universe: Division

Multiplication table for \mathbb{Z}_{7}

0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	

Every number except 0 has a multiplicative inverse.

Modular universe: Division

Multiplication table for \mathbb{Z}_{8}

$\mathbf{0} \mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7
$\mathbf{2}$	0	2	4	6	0	2	4	6
$\mathbf{3}$	0	3	6	1	4	7	2	5
$\mathbf{4}$	0	4	0	4	0	4	0	4
$\mathbf{5}$	0	5	2	7	4	1	6	3
$\mathbf{6}$	0	6	4	2	0	6	4	2
$\mathbf{7}$	0	7	6	5	4	3	2	1

$\{1,3,5,7\}$ have inverses. Others don't.

Modular universe: Division

Fact: $A^{-1} \in \mathbb{Z}_{N}$ exists if and only if $\operatorname{gcd}(A, N)=1$.
$\operatorname{gcd}(a, b)=$ greatest common divisor of a and b.
Examples:

$$
\begin{aligned}
& \operatorname{gcd}(12,18)=6 \\
& \operatorname{gcd}(13,9)=1 \\
& \operatorname{gcd}(1, a)=1 \quad \forall a \\
& \operatorname{gcd}(0, a)=a \quad \forall a
\end{aligned}
$$

If $\operatorname{gcd}(a, b)=1$, we say a and b are relatively prime.

Modular universe: Division

Fact: $A^{-1} \in \mathbb{Z}_{N}$ exists if and only if $\operatorname{gcd}(A, N)=1$.
Definition: $\mathbb{Z}_{N}^{*}=\left\{A \in \mathbb{Z}_{N}: \operatorname{gcd}(A, N)=1\right\}$.

Definition: $\varphi(N)=\left|\mathbb{Z}_{N}^{*}\right|$

Note that \mathbb{Z}_{N}^{*} is "closed" under multiplication,
i.e., $\quad A, B \in \mathbb{Z}_{N}^{*} \Longrightarrow A \cdot{ }_{N} B \in \mathbb{Z}_{N}^{*}$
(Why?)

Modular universe: Division

$$
\mathbb{Z}_{5}^{*}
$$

$$
\varphi(5)=4
$$

Modular universe: Division

$$
\mathbb{Z}_{5}^{*}
$$

$$
\varphi(5)=4
$$

Modular universe: Division

$$
\mathbb{Z}_{5}^{*}
$$

N \| 234				
I	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	

For P prime, $\varphi(P)=P-1$.

Modular universe: Division

Modular universe: Division

$$
\varphi(8)=4
$$

Modular universe: Division

\mathbb{Z}_{15}^{*}								
${ }^{\bullet} \mathrm{N}$								
1	1	2	4	7	8	11	113	314
2	2	4	8	14	4	7	11	113
4	4	8	1	13	12	14	7	711
7	7	14	13	4	11	2	1	1
8	8	1	2	11	4	13		4
	11	1	14	2	13	3	8	8
13	13	11	7	1	14	8	4	4
				8	7	4	2	2

$\varphi(15)=8$

Modular universe: Division

\mathbb{Z}_{15}^{*}								
${ }^{-} \mathrm{I}$							111314	
1	1	2	4	7	8	11	113	114
2	2	4	8	14	1	7	711	13
4	4	8	1	13	2	14	4	11
7	7	14	13	4	11	2	21	8
8	8	1	2	11	4		314	4
11	11	7	14	2	13	1	8	4
		11	7	1	14	8	84	2
			11	8	7	4	42	1

Exercise: For P, Q distinct primes, $\varphi(P Q)=(P-1)(Q-1)$.

Modular universe: Division

\mathbb{Z}_{8}^{*}

$\varphi(8)=4$

For every $A \in \mathbb{Z}_{N}^{*}, \quad A^{-1}$ exists.
This implies:
A row contains distinct elements. i.e. every row is a permutation of \mathbb{Z}_{N}^{*}.

$$
A \cdot{ }_{N} B=A \cdot{ }_{N} B^{\prime} \quad \Longrightarrow \quad B=B^{\prime}
$$

Summary so far

\mathbb{Z}_{N}
behaves nicely
with respect to addition / subtraction

\mathbb{Z}_{N}^{*}
behaves nicely with respect to multiplication / division

Modular universe: Exponentiation

Exponentiation in \mathbb{Z}_{N}

Notation:

For $A \in \mathbb{Z}_{N}, \quad E \in \mathbb{N}$,

$$
A^{E}=\underbrace{A \cdot{ }_{N} A{ }_{N} \cdots{ }_{N} A}_{E \text { times }}
$$

Modular universe: Exponentiation

Exponentiation in \mathbb{Z}_{N}^{*}

(Same as before)

Notation:

For $A \in \mathbb{Z}_{N}^{*}, \quad E \in \mathbb{N}$,

$$
A^{E}=\underbrace{A \cdot{ }_{N} A \cdot{ }_{N} \cdots{ }_{N} A}_{E \text { times }}
$$

There is more though...

Modular universe: Exponentiation

Exponentiation in \mathbb{Z}_{N}^{*}

2 and 3 are called generators.

Modular universe: Exponentiation

Exponentiation in \mathbb{Z}_{N}^{*}

\mathbb{Z}_{8}^{*}					1	1^{2}	1^{3}	1^{4}	1^{5}	1^{6}	1^{7}	$1{ }^{8}$
${ }^{\bullet} \begin{array}{lllll} \\ N & 3 & 5 & 7\end{array}$					I	1	1	I	1	1	1	1
1	1	3	5	7	3	3^{2}	3^{3}	3^{4}	3^{5}	3^{6}	3^{7}	3^{8}
3	3	1	7	5	3	\|	3	I	3	I	3	1
5	5	7	1	3								
7	7	5	3	1			5^{3} 5	5 -	5 5	5^{6}	5 5	5^{8}
$\varphi(8)=4$					7	7^{2}	7^{3}	7^{4}	7^{5}	7^{6}	7^{7}	7^{8}
					7	1	7	1	7	I	7	I

Modular universe: Exponentiation

Euler's Theorem:

For any $A \in \mathbb{Z}_{N}^{*}, \quad A^{\varphi(N)}=1$.
Equivalently, for $A \in \mathbb{Z}, N \in \mathbb{N}$ with $\operatorname{gcd}(A, N)=1$,

$$
A^{\varphi(N)} \equiv 1 \bmod N
$$

When \mathbf{N} is a prime, this is known as:

Fermat's Little Theorem:

Let P be a prime. For any $A \in \mathbb{Z}_{P}^{*}, \quad A^{P-1}=1$.

Poll

What is $213^{248} \bmod 7$?

- 0
- I
- 2
- 3
- 4
- 5
- 6
- Beats me.

Poll Answer

Euler's Theorem:

For any $A \in \mathbb{Z}_{N}^{*}, \quad A^{\varphi(N)}=1$.

$A^{0} A^{1} A^{2}$	$A^{\varphi(N)} A^{\varphi(N)+1}$	$A^{2 \varphi(N)} A^{2 \varphi(N)+1}$				
\|		$\\|$ \|		\\|		
1	$A^{0} \quad A^{1}$	$A^{0} \quad A^{1}$				

In other words, the exponent can be reduced $\bmod \varphi(N)$.

$$
\begin{aligned}
213^{248} & \equiv_{7} 3^{248} \\
3^{248} & \equiv_{7} 3^{2}
\end{aligned}
$$

$$
=2
$$

Poll Answer

IMPORTANT!!!

When exponentiating elements $A \in \mathbb{Z}_{N}^{*}$

can think of the exponent living in the universe $\mathbb{Z}_{\varphi(N)}$.

Modular Operations: Computational Complexity

Complexity of Addition

Input: $A, B \in \mathbb{Z}_{N}$
Output: $A+{ }_{N} B$

Compute $(A+B) \bmod N$.

Poly-time

Complexity of Subtraction

Input: $A, B \in \mathbb{Z}_{N}$
Output: $A{ }_{N} B$

Compute $(A+(N-B)) \bmod N$.

Poly-time

Complexity of Multiplication

Input: $A, B \in \mathbb{Z}_{N}$
Output: $A \cdot{ }_{N} B$

Compute $(A \cdot B) \bmod N$.

Poly-time

Complexity of Division

Input: $A, B \in \mathbb{Z}_{N}$
Output: $A /{ }_{N} B$ (if the answer exists)

Now things get interesting.

$$
A /{ }_{N} B=A \cdot{ }_{N} B^{-1}
$$

Questions:

I. Does B^{-1} exist?
2. If it does, how do you compute it?

Complexity of Division

Recall: B^{-1} exists iff $\operatorname{gcd}(B, N)=1$.

So to determine if B has an inverse, we need to compute $\operatorname{gcd}(B, N)$.

Euclid's Algorithm finds gcd in polynomial time.
One of the first algorithms ever. $\sim 300 \mathrm{BC}$

Complexity of Division

Euclid's Algorithm

```
gcd(A, B):
    if B == 0, return A
    return gcd(B,A mod B)
```

Recitation or Homework or Practice
Why does it work?
Why is it polynomial time?

Major open problem in Computer Science

 Is god computation efficiently parallelizable?i.e., is there a circuit family of

- poly(n) size
- polylog(n) depth
that computes gcd?

Complexity of Division

Ok, Euclid's Algorithm tells us whether an element has an inverse. How do you find it if it exists?

Claim: An extension of Euclid's Algorithm gives us the inverse.
First, a definition:
Definition: We say that C is a miix of A and B if

$$
C=k \cdot A+\ell \cdot B
$$

for some $k, \ell \in \mathbb{Z}$.

Examples:

2 is a miix of 14 and $10: \quad 2=(-2) \cdot 14+3 \cdot 10$
7 is not a miix of 55 and 40 . (why?)

Complexity of Division

Fact: C is a mix of A and B if and only if
C is a multiple of $\operatorname{gcd}(A, B)$.
Take $C=\operatorname{gcd}(A, B) . \quad \operatorname{gcd}(A, B)=k \cdot A+\ell \cdot B$
Exercise: The coefficients k and ℓ can be found by slightly modifying Euclid's Algorithm (in poly-time).

Finding B^{-1} :
If $\operatorname{gcd}(B, N)=1$, we can find $k, \ell \in \mathbb{Z}$ such that

$$
1=\begin{aligned}
& k \cdot \beta+\ell \cdot N \\
& \text { nd } \\
& B^{-1}
\end{aligned}
$$

Complexity of Division

Summary for the complexity of division

To compute $A /{ }_{N} B=A \cdot{ }_{N} B^{-1}$, we need to compute B^{-1} (if it exists).
B^{-1} exists iff $\operatorname{gcd}(B, N)=1$ (can be computed with Euclid).

Extension of Euclid gives us (in poly-time) $k, \ell \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(B, N)=1=k \cdot B+\ell \cdot N
$$

$B^{-1}=k \bmod N$

Complexity of Exponentiation

Input: $A, E, N \in \mathbb{N}$

Output: $A^{E} \bmod N$

In the modular universe, length of output not an issue.

Can we compute this efficiently?

Complexity of Exponentiation

Example

Compute $2337^{32} \bmod 100$.
Naïve strategy:
$2337 \times 2337=5461569$
$2337 \times 5461569=12763686753$
$2337 \times 12763686753=\ldots$
: (30 more multiplications later)

Complexity of Exponentiation

Example

Compute $2337^{32} \bmod 100$.
$\underline{2}$ improvements:

- Do mod 100 after every step.
- Don't multiply 32 times. Square 5 times.

$$
2337 \longrightarrow 2337^{2} \longrightarrow 2337^{4} \longrightarrow 2337^{8} \longrightarrow 2337^{16} \longrightarrow 2337^{32}
$$

(what if the exponent is 53 ?)

Complexity of Exponentiation

Example

Compute $2337^{53} \bmod 100$.
(what if the exponent is 53 ?)
Multiply powers $32,16,4, I . \quad(53=32+16+4+1)$

$$
\begin{aligned}
2337^{53}= & 2337^{32} \cdot 2337^{16} \cdot 2337^{4} \cdot 2337^{1} \\
& 53 \text { in binary }=110101
\end{aligned}
$$

Complexity of Exponentiation

Input: $A, E, N \in \mathbb{N} \quad$ (each at most n bits)

Output: $A^{E} \bmod N$

Algorithm:

- Repeatedly square A, always mod N. Do this n times.
- Multiply together the powers of A corresponding to the binary digits of E (again, always mod N).

Running time: a bit more than $O\left(n^{2} \log n\right)$.

Complexity of Log

Input: A, B, P such that

- P is prime
- $A \in \mathbb{Z}_{P}^{*}$
- $B \in \mathbb{Z}_{P}^{*}$ is a generator.

Output: X such that $B^{X} \equiv{ }_{P} A$.

Note: $\left\{B^{0}, B^{1}, B^{2}, B^{3}, \cdots, B^{P-2}\right\}=\mathbb{Z}_{P}^{*}$

Which one corresponds to A ?
It is like we want to compute $\log _{B} A$ in \mathbb{Z}_{P}^{*}.

Complexity of Log

Input: A, B, P such that

- P is prime
- $A \in \mathbb{Z}_{P}^{*}$
- $B \in \mathbb{Z}_{P}^{*}$ is a generator.

Output: X such that $B^{X} \equiv{ }_{P} A$.

We don't know how to compute this efficiently!

Complexity of Taking Roots

Input: A, E, N such that $A \in \mathbb{Z}_{N}^{*}$
Output: B such that $B^{E} \equiv{ }_{N} A$

So we want to compute $A^{1 / E}$ in \mathbb{Z}_{N}^{*}.

We don't know how to compute this efficiently!

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
I. addition

2. subtraction
3. multiplication
4. division
5. exponentiation
6. taking roots
7. logarithm

Next Time

Cryptography

