| 5-25 |
 Great Ideas in Theoretical Computer Science

Lecture 27:
 Cryptography

November 30th, 2017

What is cryptography about?

What is cryptography about?

Study of protocols that avoid the bad affects of adversaries.

- Can two parties who have never met before share a secret by only communicating publicly?
- Can we have secure online voting schemes?
- Can we use digital signatures.
- Can we do computation on encrypted data?
- Can I convince you that I have proved $\mathrm{P}=\mathrm{NP}$ without giving you any information about the proof?
:

Reasons to like cryptography

Can do pretty cool and unexpected things.

Has many important real-world applications.
Is fundamentally related to computational complexity.

In fact, computational complexity revolutionized crypto.
(exploit computationally hard problems)

There is good math (e.g. number theory).

The plan

Recall important things from modular arithmetic.

Private (secret) key cryptography.

Secret key sharing.

Public key cryptography.

Important Things to Remember from Last Time

[^0]
Euler's Theorem:

For any $A \in \mathbb{Z}_{N}^{*}, \quad A^{\varphi(N)}=1$.

1
II

A^{0}	A^{1}	A^{2}
II	II	II
$A^{\varphi\left(-\mathbb{N}^{(1)}\right.}$	$A^{\varphi\left(-N^{\prime}\right)+1}$	$A^{\text {¢ (}}$ (N) +2
II	II	II
$A^{2 \varphi(N)}$	$A^{2 \iota \varphi}(\mathbb{N})+1$	$A^{2 \varphi \boldsymbol{\varphi}(\mathbb{N})+2}$

IMPORTANT!!!
When exponentiating elements $A \in \mathbb{Z}_{N}^{*}$
can think of the exponent living in the universe $\mathbb{Z}_{\varphi(N)}$.

Complexity of Arithmetic Operations

$>$ addition $A+{ }_{N} B$
Do regular addition. Then take $\bmod N$.
$>$ subtraction $A{ }_{N} B$
$-B=N-B$. Then do addition.
$>$ multiplication $A \cdot{ }_{N} B$
Do regular multiplication. Then take $\bmod N$.
division $A /{ }_{N} B$
Find B^{-1}. Then do multiplication.
$>$ exponentiation $A^{B} \bmod N$
Fast modular exponentiation: repeatedly square and mod.
> taking roots
No known efficient algorithm exists.
$>$ logarithm
$\ln \mathbb{Z}$
$(B, E) \rightarrow \mathrm{EXP} \rightarrow B^{E}$
hard

Two inverse functions:

$$
\left(B^{E}, E\right) \rightarrow \operatorname{ROOT}_{E} \rightarrow B \quad \text { easy }
$$

$\left(B^{E}, B\right) \rightarrow \mathrm{LOG}_{B} \rightarrow E$
easy
$\ln \mathbb{Z}_{N}^{*}$
$(B, E, N) \rightarrow \mathrm{EXP} \rightarrow B^{E} \bmod N$ easy

Two inverse functions:
$\left(B^{E}, E, N\right) \rightarrow \operatorname{ROOT}_{E} \rightarrow B$

$\left(B^{E}, B, N\right) \rightarrow \mathrm{LOG}_{B} \rightarrow E \quad$| seems |
| :---: |
| hard |

seems
hard

One-way function: easy to compute, hard to invert. EXP seems to be one-way.

Private key cryptography

Parties must agree on a key pair beforehand.

Private key cryptography

there must be a secure way of exchanging the key

A note about security

Better to consider worst-case conditions.

Assume the adversary knows everything except the key(s) and the message:

Completely sees cipher text C.
Completely knows the algorithms Enc and Dec .

Caesar shift

Example: shift by 3
abcdefghijklmnopqrstuvwxyz $\downarrow \downarrow \downarrow$ defghijklmnopqrstuvwxyzabc
(similarly for capital letters)
"Dear Math, please grow up and solve your own problems."

"Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq sureohpv."
: the shift number
Easy to break!

Substitution cipher

abcdefghijklmnopqrstuvwxyz

jkbdelmcfgnoxyrs vwzatupqhi
: permutation of the alphabet

Easy to break by looking at letter frequencies!

Enigma

A much more complex cipher.

One-time pad

$$
M=\text { message } \quad K=\text { key } \quad C=\text { encrypted message }
$$ (everything in binary)

Encryption:

$$
M=0101 I 010111010100000111
$$

$\oplus K=11001100010101111000101$

$$
C=100 I 01 I 0 I 0 I I I I O I I 0000 I 0
$$

$C=M \oplus K \quad$ (bit-wise XOR)
For all $i: C[i]=M[i]+K[i] \quad(\bmod 2)$

	One-time pad
$M=$	01011010111010100000111
$+K=$	11001100010101111000101
$C=$	10010110101111011000010

One-time pad is perfectly secure:
For any M, if K is chosen uniformly at random, then C is uniformly at random.

So adversary learns nothing about M by seeing C.

Shannon's Theorem

Is it possible to have a secure system like one-time pad with a smaller key size?

Shannon proved "no".
If K is shorter than M :
An adversary with unlimited computational power could learn some information about M.

Question

What if we relax the assumption that the adversary is computationally unbounded?

Answers

We can find a way to share a random secret key. (over an insecure channel)

We can get rid of the secret key sharing part.
(public key cryptography)

And do much more!!!

Secret Key Sharing

K

DH key exchange

$(B, E, N) \rightarrow \operatorname{EXP}^{\ln \mathbb{Z}_{N}^{*}} \rightarrow B^{E} \bmod N$ easy

$\left(B^{E}, B, N\right) \rightarrow \mathrm{LOG}_{B} \rightarrow E \quad$| seems |
| :---: |
| hard |

Want to make sure for the inputs we pick, LOG is hard.
e.g. we don't want $B^{0} B^{1} B^{2} B^{3} B^{4} \ldots$
$\begin{array}{cccccc}\text { " } & \text { " } & \\ 1 & B & 1 & B & 1 & \ldots\end{array}$
Much better to have a generator B.

DH key exchange	
$\ln \mathbb{Z}_{N}^{*}$	
$(B, E, N) \rightarrow \mathrm{EXP} \rightarrow B^{E} \bmod N$	easy
$\left(B^{E}, B, N\right) \rightarrow \mathrm{LOG}_{B} \rightarrow E$	seems hard
We'll pick $N=P$ a prime number. (This ensures there is a generator in \mathbb{Z}_{P}^{*}.)	
We'll pick $B \in \mathbb{Z}_{P}^{*}$ so that it is a generator. $\left\{B^{0}, B^{1}, B^{2}, B^{3}, \cdots, B^{P-2}\right\}=\mathbb{Z}_{P}^{*}$	

DH key exchange

Secure?

Adversary sees: $P, B, B^{E_{1}}, B^{E_{2}}$
Hopefully he can't compute E_{1} from $B^{E_{1}}$.
(our hope that LOG_{B} is hard)
Good news: No one knows how to compute LOG_{B} efficiently.
Bad news: Proving that it cannot be computed efficiently is at least as hard as the \mathbf{P} vs NP problem.

DH assumption:

Computing $B^{E_{1} E_{2}}$ from $P, B, B^{E_{1}}, B^{E_{2}}$ is hard.

Decisional DH assumption:

You actually learn no information about $B^{E_{1} E_{2}}$.

To send a private message, one can use:

Note

This is only as secure as its weakest link, i.e. Diffie-Hellman.

Answers

We can find a way to share a random secret key. (over an insecure channel)

We can get rid of the secret key sharing part.

> (public key cryptography)

And do much more!!!

Public Key Cryptography

 (Cryptography After WW2)

Public Key Cryptography

Can be used to lock.
But can't be used to unlock.

$$
\begin{gathered}
\text { RSA crypto system } \\
(B, E, N) \rightarrow \operatorname{EXP}_{\ln \mathbb{Z}_{N}^{*}}^{\operatorname{EXO}} \rightarrow B^{E} \bmod N \text { easy } \\
\left(B^{E^{\prime}}, E, N\right) \rightarrow \mathrm{ROOT}_{E} \rightarrow B \quad \begin{array}{c}
\text { seems } \\
\text { hard }
\end{array}
\end{gathered}
$$

What if we encode using EXP? $\quad(M=B)$
Public key can be (E, N).

RSA crypto system

RSA crypto system

(M,E,N)

Secure?

Concluding remarks

A variant of this is widely used in practice.
From N, if we can efficiently compute $\varphi(N)$, we can crack RSA.

If we can factor N, we can compute $\varphi(N)$.

Quantum computers can factor efficiently.

Is this the only way to crack RSA?
We don't know!
So we are really hoping it is secure.

[^0]:
 $\forall A, \quad A^{4}=1 \quad \Longrightarrow \quad A^{4 k}=\left(A^{4}\right)^{k}=1$

