|5-25 I
 Great Ideas in Theoretical Computer Science

Lecture 28:
Quantum Computation: A gentle introduction

Dec 5th, 2017

Announcements

Please fill out the Faculty Course Evaluations (FCEs).

> https://cmu.smartevals.com

Announcements

As a "thank you" for filling it out:

You can vote to eliminte 2 topics from the final exam:

Cake Cutting
Stable Matchings
Boolean Circuits
Social Choice
Approximation Algorithms

Announcements

The Last Lecture on Thursday

Daniel Sleator

Rashmi Vinayak

Mor Harchol-Balter

Anupam Gupta

Nihar Shah

Ryan O'Donnell

Announcements

The Last Lecture on Thursday

Quantum Computation

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

Quantum computers
(practical, scientific, and philosophical perspectives)

The plan

Classical computers and classical theory of computation

What is computer/computation?

A device that manipulates data (information)

Usually

Theory of computation

Mathematical model of a computer:

Turing Machines ~ Boolean Circuits

Theory of computation

Turing Machines

Theory of computation

Boolean Circuits

gates

Theory of computation

Boolean Circuits

INPUT

n bits

Physical Realization

Circuits implement basic operations / instructions.

Everything follows classical laws of physics!

(Physical) Church-Turing Thesis

Turing Machines \sim (uniform) Boolean C universally capture all of computation.

All types of computation

(Physical) Church-Turing Thesis

Turing Machines \sim (uniform) Boolean Circuits

 universally capture all of computation.
(Physical) Church Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Strong version

Any computational problem that can be solved efficiently by a physical device, can be solved efficiently by a TM.

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

Quantum computers
(practical, scientific, and philosophical perspectives)

The plan

Quantum physics (what the fuss is all about)

One slide course on physics

Classical Physics

General Theory of Relativity

Quantum Physics

One slide course on physics

String Theory (?)

Video: Double slit experiment

http://www.youtube.com/watch?v=DfPeprQ7oGc

Nature has no obligation to conform to your intuitions.

Video: Double slit experiment

2 interesting aspects of quantum physics

I. Having multiple states "simultaneously"

e.g.: electrons can have states spin "up" or spin "down": |up \rangle or |down \rangle

In reality, they can be in a superposition of two states.

2. Measurement

Quantum property is very sensitive/fragile!
If you measure it (interfere with it), it "collapses".
So you either see $|u p\rangle$ or \mid down \rangle.

It must be just our ignorance

- Truer is no such thing as superposition.
-We donctinow the state, so we say it is in superposition.
- In reality, it is alvoys in one of the ty states.
-This is why when we morn , observe the state, we find it in one stat

Oo does not play dice with the world.

- Albert Einstein

Einstein, don't tell God what to do.

- Niels Bohr

How should we fix our intuitions to put it in line with experimental results?

Removing physics from quantum physics

mathematics underlying quantum physics generalization/extension of probability theory
(allow "negative probabilities")

Probabilistic states and evolution

 VSQuantum states and evolution

Probabilistic states

Suppose an object can have n possible states:
$|1\rangle,|2\rangle, \cdots,|n\rangle$
At each time step, the state can change probabilistically.
What happens if we start at state $|1\rangle$ and evolve?

Initial state:
$|1\rangle$
$|2\rangle$
$|3\rangle$
$|n\rangle$$\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]$

Probabilistic states

Suppose an object can have n possible states:
$|1\rangle,|2\rangle, \cdots,|n\rangle$
At each time step, the state can change probabilistically.
What happens if we start at state $|1\rangle$ and evolve?

After one time step:
$\left.\left[\begin{array}{c} \\ \text { Transition } \\ \text { Matrix }\end{array}\right] \begin{array}{c}|1\rangle \\ |2\rangle \\ |3\rangle \\ \\ \\ \\ \\ |n\rangle \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ 1 / 2 \\ 0 \\ \vdots \\ 1 / 2\end{array}\right]$

Probabilistic states

$$
\left.\left[\begin{array}{cc}
\\
\text { Transition } \\
\text { Matrix }
\end{array}\right] \begin{array}{c}
|1\rangle \\
|2\rangle \\
|3\rangle \\
|n\rangle \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 / 2 \\
0 \\
\vdots \\
1 / 2
\end{array}\right] \quad \begin{gathered}
\text { the new state } \\
\text { (probabilistic) }
\end{gathered}
$$

A general probabilistic state:

$$
\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{n}
\end{array}\right] \begin{aligned}
& p_{i}=\text { the probability of being in state } i \\
& p_{1}+p_{2}+\cdots+p_{n}=1 \\
& \left(\ell_{1} \text { norm is } 1\right)
\end{aligned}
$$

Probabilistic states

$$
\left.\left[\begin{array}{c}
\\
\text { Transition } \\
\text { Matrix }
\end{array}\right] \begin{array}{c}
|1\rangle \\
|2\rangle \\
|3\rangle \\
|n\rangle \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 / 2 \\
0 \\
\vdots \\
1 / 2
\end{array}\right] \quad \begin{gathered}
\text { the new state } \\
\text { (probabilistic) }
\end{gathered}
$$

A general probabilistic state:

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{n}
\end{array}\right]=p_{1}|1\rangle+p_{2}|2\rangle+\cdots+p_{n}|n\rangle} \\
{\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]}
\end{array}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]\right.
$$

Probabilistic states

Evolution of probabilistic states

We won't restrict ourselves to just one transition matrix.

$$
\pi_{0} \xrightarrow{K_{1}} \pi_{1} \xrightarrow{K_{2}} \pi_{2} \xrightarrow{K_{3}} \cdots
$$

Quantum states

$\left[\begin{array}{c}p_{1} \\ p_{2} \\ \vdots \\ p_{n}\end{array}\right]$

p_{i} 's can be negative.

Quantum states

$\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right]=\begin{gathered}\alpha_{i}{ }^{\prime} \text { s can be negative. (} \alpha_{i} \text { 's are called amplitudes.) } \\ \alpha_{1}|1\rangle+\alpha_{2}|2\rangle+\cdots+\alpha_{n}|n\rangle \\ \alpha_{1}^{2}+\alpha_{2}^{2}+\cdots+\alpha_{n}^{2}=1 \quad\left(\ell_{2} \text { norm is } 1\right) \\ \left(\alpha_{i} \text { can be a complex number }\right)\end{gathered}$

$$
\left[\begin{array}{c}
\text { Unitary } \\
\text { Matrix }
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right] \quad \beta_{1}^{2}+\beta_{2}^{2}+\cdots+\beta_{n}^{2}=1
$$

\longrightarrow any matrix that preserves "quantumness"

Quantum states

Evolution of quantum states

Any matrix that maps quantum states to quantum states.

We won't restrict ourselves to just one unitary matrix.

$$
\psi_{0} \xrightarrow{U_{1}} \psi_{1} \xrightarrow{U_{2}} \psi_{2} \xrightarrow{U_{3}} \cdots
$$

Quantum states

Measuring quantum states

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]=\alpha_{1}|1\rangle+\alpha_{2}|2\rangle+\cdots+\alpha_{n}|n\rangle} \\
\alpha_{1}^{2}+\alpha_{2}^{2}+\cdots+\alpha_{n}^{2}=1
\end{array}\right.
$$

When you measure the state, you see state i with probability α_{i}^{2}.

Probabilistic states vs Quantum states

Suppose we have just 2 possible states: $|0\rangle$ and $|1\rangle$
$\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]$
$\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]$
randomize a random state
\longrightarrow random state

$$
\begin{gathered}
|0\rangle \rightarrow \frac{1}{2}|0\rangle+\frac{1}{2}|1\rangle \\
\frac{1}{2}\left(\frac{1}{2}|0\rangle+\frac{1}{2}|1\rangle\right) \quad \frac{1}{2}\left(\frac{1}{2}|0\rangle+\frac{1}{2}|1\rangle\right) \\
\frac{1}{4}|0\rangle+\frac{1}{4}|1\rangle+\frac{1}{4}|0\rangle+\frac{1}{4}|1\rangle
\end{gathered}
$$

Probabilistic states vs Quantum states

Suppose we have just 2 possible states: $|0\rangle$ and $|1\rangle$
$\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
$\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$

$$
\begin{aligned}
&|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \quad \frac{1}{\sqrt{2}}\left(-\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \\
&\left.\left.\frac{1}{2}\left|\varphi \theta^{\circ}+\frac{1}{2}\right| 1\right\rangle+\quad-\frac{1}{2}|\cdot| \theta\right\rangle^{\circ}+\frac{1}{2}|1\rangle=|1\rangle
\end{aligned}
$$

Probabilistic states vs Quantum states

Classical Probability

To find the probability of an event:
add the probabilities of every possible way it can happen

Probabilistic states vs Quantum states

Quantum

To find the probability of an event:
add the amplitudes of every possible way it can happen, then square the value to get the probability.
one way has positive amplitude the other way has equal negative amplitude \longrightarrow event never happens!

Probabilistic states vs Quantum states

A final remark

Quantum states are an upgrade to:
2-norm (Euclidean norm) and algebraically closed fields.

Nature seems to be choosing the mathematically more elegant option.

The plan

Classical computers and classical theory of computation

Quantum physics (what the fuss is all about)

Quantum computers
(practical, scientific, and philosophical perspectives)

The plan

Quantum computers
(practical, scientific, and philosophical perspectives)

Two beautiful theories

Theory of computation

Quantum physics

Quantum Computation:

Information processing using laws of quantum physics.

It would be super nice to be able to simulate quantum systems.

With a classical computer this is extremely inefficient.
n state system
 complexity exponential in \mathbf{n}

Why not view the quantum particles as a computer simulating themselves?

Why not do computation using quantum particles/physics?

Representing data/information

An electron can be in "spin up" or "spin down" state.

$$
|u p\rangle \text { or } \mid \text { down }\rangle \sim|0\rangle \text { or }|1\rangle
$$

A quantum bit:

$$
\alpha_{0}^{2}+\alpha_{1}^{2}=1
$$

A superposition of $|0\rangle$ and $|1\rangle$.

When you measure:
With probability α_{0}^{2} it is $|0\rangle$.
With probability α_{1}^{2} it is $|1\rangle$.

Representing data/information

An electron can be in "spin up" or "spin down" state.

$$
|u p\rangle \text { or } \mid \text { down }\rangle \sim|0\rangle \text { or }|1\rangle
$$

A quantum bit: $\quad \alpha_{0}|0\rangle+\alpha_{1}|1\rangle, \quad \alpha_{0}^{2}+\alpha_{1}^{2}=1$ (qubit)

2 qubits:

$$
\begin{gathered}
\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle \\
\alpha_{00}^{2}+\alpha_{01}^{2}+\alpha_{10}^{2}+\alpha_{11}^{2}=1
\end{gathered}
$$

Representing data/information

An electron can be in "spin up" or "spin down" state.
$|u p\rangle$ or \mid down $\rangle \sim|0\rangle$ or $|1\rangle$

A quantum bit: $\quad \alpha_{0}|0\rangle+\alpha_{1}|1\rangle$,
$\alpha_{0}^{2}+\alpha_{1}^{2}=1$ (qubit)

3 qubits:

$$
\begin{aligned}
& \alpha_{000}|000\rangle+\alpha_{001}|001\rangle+\alpha_{010}|010\rangle+\alpha_{011}|011\rangle+ \\
& \alpha_{100}|100\rangle+\alpha_{101}|101\rangle+\alpha_{110}|110\rangle+\alpha_{111}|111\rangle
\end{aligned}
$$

$\alpha_{000}^{2}+\alpha_{001}^{2}+\alpha_{010}^{2}+\alpha_{011}^{2}+\alpha_{100}^{2}+\alpha_{101}^{2}+\alpha_{110}^{2}+\alpha_{111}^{2}=1$

Representing data/information

An electron can be in "spin up" or "spin down" state.

$$
|u p\rangle \text { or } \mid \text { down }\rangle \sim|0\rangle \text { or }|1\rangle
$$

A quantum bit: $\quad \alpha_{0}|0\rangle+\alpha_{1}|1\rangle, \quad \alpha_{0}^{2}+\alpha_{1}^{2}=1$ (qubit)

For n qubits, how many amplitudes are there?

Processing data

What will be our model?

In the classical setting, we had:

- Turing Machines
- Boolean circuits

In the quantum setting, more convenient to use the circuit model.

Processing data: quantum gates

One non-trivial classical gate for a single classical bit:

There are many non-trivial quantum gates for a single qubit.
One famous example: Hadamard gate

$$
\begin{aligned}
& |0\rangle \rightarrow H \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& |1\rangle \rightarrow H \rightarrow \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
\end{aligned}
$$

"transition" matrix:

$$
\left[\begin{array}{lc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

Processing data: quantum gates

Examples of classical gates on 2 classical bits:

A famous example of a quantum gate on 2 qubits:

controlled NOT

For
$x, y \in\{0,1\}$

Processing data: quantum circuits

A classical circuit

INPUT

OUTPUT
n bits

Processing data: quantum circuits

A quantum circuit

INPUT

n qubits

quantum gates

$$
|1\rangle-Z
$$

(acts on I qubit)
(acts on 2 qubits)

Processing data: quantum circuits

A quantum circuit

INPUT

Processing data: quantum circuits

A quantum circuit

INPUT

Processing data: quantum circuits

A quantum circuit

INPUT

OUTPUT

n qubits
$\alpha_{000000}|000000\rangle+$

$\alpha_{000001}|000001\rangle+$
$\alpha_{000010}|000010\rangle+$
$\alpha_{111111}|111111\rangle$

Processing data: quantum circuits

A quantum circuit

INPUT

OUTPUT
n qubits

Quantum
Circuit
superposition of 2^{n} possible states.
(2^{n} amplitudes)

Processing data: quantum circuits

A quantum circuit

INPUT

How do we get "classical information" from the circuit?
We measure the output qubit(s). e.g. we measure:
$\alpha_{000000}|000000\rangle+\alpha_{000001}|000001\rangle+\cdots+\alpha_{111111}|111111\rangle$

Processing data: quantum circuits

A quantum circuit

INPUT

Complexity?

number of gates \sim computation time

Practical, Scientific and Philosophical Perspectives

Practical perspective

What useful things can we do with a quantum computer?

We can factor large numbers efficiently!
203703597633448608626844568840937816105146839366593625063614044935438129976333670618339 844568840937816105146839366593625063614044935438129976333670618339928374928729109198341 992834719747982982750348795478978952789024138794327890432736783553789507821378582549871

So what?

Can break RSA!

Can we solve every problem efficiently?
No!

Practical perspective

What useful things can we do with a quantum computer?
Can simulate quantum systems efficiently!
Better understand behavior of atoms and moleculues.

Applications:

- nanotechnology
- microbiology
- pharmaceuticals
- superconductors.

Scientific perspective

To know the limits of efficient computation:
Incorporate actual facts about physics.

Scientific perspective

(Physical) Church Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine.

Strong version

Any computational problem that can be solved efficiently by a physical device, can be solved efficiently by a TM.

Strong version doesn't seem to be true!

Philosophical perspective

Is the universe deterministic ?

How does nature keep track of all the numbers ?

$$
1000 \text { qubits } \rightarrow 2^{1000} \text { amplitudes }
$$

How should we interpret quantum measurement? (the measurement problem)

Does quantum physics have anything to say about the human mind?

Quantum AI?

Where are we at building quantum computers?

When can I expect a quantum computer on my desk ?

After about 20 years and I billion dollars of funding:
Can factor 21 into 3×7. (with high probability)

Challenge: Interference with the outside world.
"quantum decoherence"

A whole new exciting world of computation.
Potential to fundamentally change how we view computers and computation.

