

DFA construction practice

 $L = \{110, 101\}$ $L = \{0, 1\}^* \setminus \{110, 101\}$ $L = \{x \in \{0, 1\}^* : x \text{ starts and ends with same bit.} \}$ $L = \{x \in \{0, 1\}^* : |x| \text{ is divisible by 2 or 3.} \}$ $L = \{\epsilon, 110, 110110, 110110110, \ldots\}$ $L = \{x \in \{0, 1\}^* : x \text{ contains the substring 110.} \}$ $L = \{x \in \{0, 1\}^* : 10 \text{ and 01 occur equally often in } x. \}$

Formal definition: DFA accepting a string
Simplifying notation
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
$\delta:Q imes \Sigma o Q$ can be extended to $\delta^*:Q imes \Sigma^* o Q$
as follows:
for $q\in Q, w\in \Sigma^*$,
$\delta^*(q,w) = \text{state we end up in when we start at } q \\ \text{and read } w$
In fact, even OK to drop $*$ from the notation.
M accepts w if $\delta(q_0,w)\in F$.
Otherwise M rejects w .

Definition: Regular languages
Definition:

A non-regular language
Theorem: The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular.
Note $L = \{\epsilon, 01, 0011, 000111, 00001111, \ldots\}$.

A non-regular language

Theorem:

The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is **not** regular.

Intuition:

A non-regular language
Theorem: The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular.
A key component of the proof:

A non-regular language
Theorem: The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular.
Proof: Proof is by contradiction. So suppose L is regular. This means there is a DFA M that decides L . Let k denote the number of states of M .
Let r_n denote the state M is in after reading 0^n . By PHP, there exists $i, j \in \{0, 1,, k\}$, $i \neq j$, such that $r_i = r_j$. So 0^i and 0^j end up in the same state. For any string w , $0^i w$ and $0^j w$ end up in the same state.
But for $w = 1^i$, $0^i w$ should end up in an accepting state, and $0^j w$ should end up in a rejecting state. This is the desired contradiction.

Proving a language is not regular	
What makes the proof work:	

Proving a language is not regular

Exercise (test your understanding):

Show that the following language is not regular:

$$L = \{ c^{251} a^n b^{2n} : n \in \mathbb{N} \}.$$

 $(\Sigma = \{a, b, c\})$

Regular languages

Questions:

- I. Are all languages regular? (Are all decision problems computable by a DFA?)
- 2. Are there other ways to tell if a language is regular?

