|5-25 I
 Great Ideas in
 Theoretical Computer Science

Lecture 3:
Deterministic Finite Automaton (DFA), Part I

September 5th, 2017

This Week and Next Week

What is computation?
What is an algorithm?
How can we mathematically define them?

This Week

Introducing deterministic finite automata (DFA)

Let's assume two things about our world

I. No universal machines exist.

2. We only have machines to solve decision problems.

Simulation of a DFA

$$
\Sigma=\{0,1\}
$$

Input: 1010

1010

Simulation of a DFA

$$
\Sigma=\{0,1\}
$$

Decision: Reject

Anatomy of a DFA

DFA as a programming language

def foo(input):

$\mathrm{i}=0$;

input $=$| 0 | I | I | I | I |
| :--- | :--- | :--- | :--- | :--- |

STATE 0:
if ($\mathrm{i}==$ input.length): return False;
letter $=$ input[i];
i++;
switch(letter):
case ' 0 ': go to STATE $\mathbf{0}$;
case ' 1 ': go to STATE 1;
STATE 1:
if (i == input.length): return True; letter $=$ input[i];
i++;
switch(letter):
case ' 0 ': go to STATE 2;
case ' 1 ': go to STATE 2;
-••

Definition: Language decided by a DFA

Let M be a DFA.
We let $L(M)$ denote the set of strings that M accepts.

So, $L(M)=\left\{x \in \Sigma^{*}: M(x)\right.$ accepts. $\} \subseteq \Sigma^{*}$

If $L=L(M)$, we say that M recognizes L.

> accepts
decides
computes

DFA Examples

$L(M)=$

DFA Examples

$L(M)=$

DFA Examples

$$
L(M)=
$$

DFA Examples

$$
\Sigma=\{a, b, c\}
$$

$L(M)=$

Poll

The set of all words that contain at least three 0's
The set of all words that contain at least two 0's
The set of all words that contain 000 as a substring
The set of all words that contain 00 as a substring
The set of all words ending in 000
The set of all words ending in 00
The set of all words ending in 0
None of the above
Beats me
$L=\{110,101\}$
$L=\{0,1\}^{*} \backslash\{110,101\}$
$L=\left\{x \in\{0,1\}^{*}: x\right.$ starts and ends with same bit. $\}$
$L=\left\{x \in\{0,1\}^{*}:|x|\right.$ is divisible by 2 or 3.$\}$
$L=\{\epsilon, 110,110110,110110110, \ldots\}$
$L=\left\{x \in\{0,1\}^{*}: x\right.$ contains the substring 110. $\}$
$L=\left\{x \in\{0,1\}^{*}: 10\right.$ and 01 occur equally often in $\left.x.\right\}$

Formal definition: DFA
A deterministic finite automaton (DFA) M is a 5 -tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where

- Q
- Σ
- δ
- $q_{0} \in Q$
- $F \subseteq Q$

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

$$
Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}
$$

$\Sigma=\{0,1\}$
$\delta: Q \times \Sigma \rightarrow Q$

δ	0	1
q_{0}	q_{0}	q_{1}
q_{1}	q_{2}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{0}	q_{2}

q_{0} is the start state $F=\left\{q_{1}, q_{2}\right\}$

Formal definition: DFA accepting a string

Let $w=w_{1} w_{2} \cdots w_{n}$ be a string over an alphabet Σ.
Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
We say that M accepts the string w if there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{n} \in Q$ such that

Otherwise we say M rejects the string w.

Formal definition: DFA accepting a string

Simplifying notation

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
$\delta: Q \times \Sigma \rightarrow Q$ can be extended to $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ as follows:

$$
\text { for } q \in Q, w \in \Sigma^{*} \text {, }
$$

$\delta^{*}(q, w)=$ state we end up in when we start at q and read w

In fact, even OK to drop * from the notation.
M accepts w if $\delta\left(q_{0}, w\right) \in F$.
Otherwise M rejects w.

Definition: Regular languages

Definition:

Regular languages

Regular languages

Questions:

I. Are all languages regular?
(Are all decision problems computable by a DFA?)
2. Are there other ways to tell if a language is regular?

A non-regular language

Theorem:

The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.

Note $L=\{\epsilon, 01,0011,000111,00001111, \ldots\}$.

A non-regular language

Theorem:

The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.

Intuition:

A non-regular language

Theorem:
The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.

A key component of the proof:

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$. Input: 00000000 IIIIIII \uparrow

(4) 95

A non-regular language

Warm-up:

Suppose a DFA with 6 states decides $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$.
Input: 000000001IIIIIII
\uparrow

imagine some arbitrary transitions
q_{3}
q_{4}

A non-regular language

Theorem:

The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.
Proof: Proof is by contradiction. So suppose L is regular.
This means there is a DFA M that decides L.
Let k denote the number of states of M.
Let r_{n} denote the state M is in after reading 0^{n}.
By PHP, there exists $i, j \in\{0,1, \ldots, k\}, i \neq j$, such that $r_{i}=r_{j}$. So 0^{i} and 0^{j} end up in the same state.
For any string $w, 0^{i} w$ and $0^{j} w$ end up in the same state. But for $w=1^{i}, 0^{i} w$ should end up in an accepting state, and $0^{j} w$ should end up in a rejecting state.
This is the desired contradiction.

Proving a language is not regular

What makes the proof work:

Exercise (test your understanding):

Show that the following language is not regular:

$$
L=\left\{c^{251} a^{n} b^{2 n}: n \in \mathbb{N}\right\}
$$

($\Sigma=\{a, b, c\})$

Regular languages

Another non-regular language?

Question: Are all unary languages regular?
(a language L is unary if $L \subseteq \Sigma^{*}$, where $|\Sigma|=1$.)

Theorem:

The language $\left\{a^{2^{n}}: n \in \mathbb{N}\right\}$ is not regular.

Questions:

I. Are all languages regular?
(Are all decision problems computable by a DFA?)
2. Are there other ways to tell if a language is regular?

Next Time

Closure properties of regular languages

