

Closure properties of regular languages

Closed under complementation
Proposition: Let Σ be some finite alphabet.
If $L \subseteq \Sigma^*$ is regular, then so is $\overline{L} = \Sigma^* \backslash L$. Proof:

Closed under union

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA deciding L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be a DFA deciding L_2 . We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

More closure properties
Closed under union:
Closed under concatenation:
Closed under star:

Theorem: Let Σ be some finite alphabet. If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is L_1L_2 .
Let Σ be some finite alphabet.

$M_1 = (Q, \Sigma, \delta, q_0, F) \qquad M_2 = (Q', \Sigma, \delta', q'_0, F')$	
Q'' =	
δ'' :	
$q_0^{\prime\prime} =$	
$F^{\prime\prime} =$	