

Solving 0ⁿIⁿ in Python

def foo(input): i = 0 j = len(input) - 1 while(j >= i): if(input[i] != '0' or input[j] != '1'): return False i = i + 1 j = j - 1 return True

Actually TM[™] stands for Turing machine.

Defined by Alan Turing in a paper he wrote in 1936 while he was a PhD student.

l	

Formal definition: Turing machine	
A Turing machine (TM) M is a 7-tuple	
$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{ m acc}, q_{rej})$ where	
- Q is a finite set (which we call the set of states);	
- Σ is a finite set with $\Box \notin \Sigma$ (which we call the input alphabet);	
- Γ is a finite set with $\Box \in \Gamma$ and $\Sigma \subset \Gamma$ (which we call the tape alphabet);	
- δ is a function of the form $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$	
(which we call the transition function);	
- $q_0 \in Q$ (which we call the start state);	
- $q_{ m acc} \in Q$ (which we call the accept state);	
- $q_{ m rej} \in Q$, $q_{ m rej} eq q_{ m acc}$ (which we call the reject state);	

Formal definition: TM accepting a string	
A bit more involved to define rigorously.	
Not too much though.	
See course notes.	

Definition: decidable/computable languages
Let M be a Turing machine. We let $L(M)$ denote the set of strings that M accepts. So, $L(M) = \{x \in \Sigma^* : M(x) \text{ accepts.}\}$
What is the analog of regular languages in this setting?

Some TM subroutines and tricks
 Move right (or left) until first ⊔ encountered Shift entire input string one cell to the right
- Convert input from $x_1x_2x_3\ldots x_n$ to $\sqcup x_1\sqcup x_2\sqcup x_3\ldots \sqcup x_n$
- Simulate a big $\ \Gamma \$ by just $\{0,1,\sqcup\}$
- "Mark" cells. If $\Gamma=\{0,1,\sqcup\}$, extend it to $\Gamma=\{0,1,0^{\bullet},1^{\bullet},\sqcup\}$
- Copy a stretch of tape between two marked cells into another marked section of the tape

Some TM subroutines and tricks

- Implement basic string and arithmetic operations
- Simulate a TM with 2 tapes and heads
- Implement basic data structures
- Simulate "random access memory"
 - :
- Simulate assembly language

You could prove this $\underline{rigorously}$ if you wanted to.

<u>So what we want is:</u>

A totally minimal (TM) programming language such that

- it can simulate simple bytecode (and therefore Python, C, Java, SML, etc...)
- it is simple to define and reason about completely mathematically rigorously

A note	
You could describe a TM in 3 ways:	
Low level description	
Medium level description	
High level description	

Important Question

Is TM the right definition?

Is there a reasonable definition of "algorithm" that can compute more languages than TM-decidable ones?

