

This Week

What is computation?
What is an algorithm?
How can we mathematically define them?

Goal of this lecture:

Define Turing machines.
Understand how they work.

Goal of next lecture:

Explore physical, philosophical, historical questions surrounding Turing machines.

Let's assume two things about our world

I. No "universal" machines exist.

2. We only have machines to solve decision problems.

DFA: state diagram + input tape

1	0	1	1	1	0	I	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup
\uparrow											

DFA: state diagram + input tape

Decision: Accept

DFA as a programming language

machine \approx algorithm describing it

What is computation?
What is an algorithm?
How can we mathematically define them?

2 important observations:

Solving $0^{n} \|^{n}$ in Python

```
def foo(input):
    i = 0
    j = len(input) - 1
    while(j >= i):
            if(input[i] != '0' or input[j] != '1'):
            return False
            i= i + 1
            j=j-1
    return True
```


Solving $0^{n} I^{n}$ in C

int foo(char input[]) \{
int $\mathrm{i}=0, \mathrm{j}$;
while(input[j] != NULL) /* NULL is end-of-string character */
j++;
j-;
while($\mathrm{j}>=\mathrm{i}$)
\{
if(input[i] != ' 0 ' $|\mid$ input[j] != ' 1 ')
return 0; /* Reject */
i++;
j-;
\}
return 1; /* Accept */
\}

Should we define computable to mean what is computable by a Python function/program?

Downsides as a formal definition?

So what we want is:

A totally minimal (TM) programming language such that:

Actually $\mathrm{TM}^{\text {TM }}$ stands for Turing machine.

Defined by Alan Turing in a paper he wrote in 1936 while he was a PhD student.

Turing machine description

TM \approx DFA + infinite tape

Turing machine description

TM \approx DFA + infinite tape

TM could have been defined as a sequence of instructions, where the allowed instructions are:
$>$ Move the head left
> Move the head right
> Write a symbol a (from the alphabet)
$>$ If head is reading symbol a, GOTO step j
$>$ Halt and accept
> Halt and reject
But, we want to keep the definition as simple as possible.

Turing machine description

TM \approx DFA + infinite tape

So a TM is a sequence of steps (states), each looking like:

STATE 0:

switch(letter under the head):
case ' a ': write ' b '; move Left; go to STATE 2 ; case ' b ': write ' \sqcup '; move Right; go to STATE 0 ; case ' \sqcup ': write ' b '; move Left; go to STATE 1 ;

Turing machine description

STATE 0:

switch(letter under the head):
case 'a': write 'b'; move Left;
case ' b ': write ' \checkmark '; move Right; go to STATE 0 ;
go to STATE 2;
case ' \sqcup ': write 'b'; move Left; go to STATE $1 ;$

At each step, you have to:

- write a new symbol to the cell under the head
- move tape head Left or Right
- go to a new state

Don't want to change the symbol:
Want to stay put:
Don't want to change state:

Turing machine official picture

Input: aaba

TM as a programming language

def M(input)

$\mathrm{i}=0$
STATE 0:
letter $=$ input[i]
switch(letter):

case ' a ': input $[\mathrm{i}]=$ ' ' $; \mathrm{i}++$; go to STATE \mathbf{a};
case 'b': input[i] = ' '; i++; go to STATE b;
case ' ': input $[\mathrm{i}]=$ ' '; $\mathrm{i}++$; go to STATE rej;
STATE a:
letter = input[i];
switch(letter):
case ' a ': input $[i]=$ ' '; $i--$; go to STATE acc;
case ' b ': input $[\mathrm{i}]=$ ' '; $\mathrm{i}-$-; go to STATE rej;
case ' ': input $[\mathrm{i}]=$ ' '; $\mathrm{i}--$; go to STATE rej;
:

The machine accepts a string x if and only if:

Exercise

Let $\Sigma=\{a, b\}$.
Draw the state diagram of a TM that accepts a string iff it starts and ends with an a.

Formal definition: Turing machine

A Turing machine (TM) M is a 7-tuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{r e j}\right)
$$

where

- Q is a finite set (which we call the set of states);
- Σ is a finite set with $\sqcup \notin \Sigma$
(which we call the input alphabet);
- Γ is a finite set with $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$ (which we call the tape alphabet);
- δ is a function of the form $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ (which we call the transition function);
- $q_{0} \in Q$ (which we call the start state);
- $q_{\text {acc }} \in Q$ (which we call the accept state);
- $q_{\mathrm{rej}} \in Q, q_{\mathrm{rej}} \neq q_{\text {acc }}$ (which we call the reject state);

A bit more involved to define rigorously.
Not too much though.
See course notes.

DFAs vs TMs

Definition: decidable/computable languages

Let M be a Turing machine.
We let $L(M)$ denote the set of strings that M accepts.
So, $L(M)=\left\{x \in \Sigma^{*}: M(x)\right.$ accepts. $\}$

What is the analog of regular languages in this setting?
regular languages $\stackrel{?}{=}$ decidable languages

Turing machine that decides $0^{n} \|^{n}$
$\Sigma=\{0,1\} \quad \Gamma=\{0,1, \#, \sqcup\}$

Turing machine that decides $0^{n} 1^{n}$

Input: 00001011

Input: 00001011
Decision: reject

Some TM subroutines and tricks

- Move right (or left) until first \sqcup encountered
- Shift entire input string one cell to the right
- Convert input from

$$
x_{1} x_{2} x_{3} \ldots x_{n} \quad \text { to } \quad \sqcup x_{1} \sqcup x_{2} \sqcup x_{3} \ldots \sqcup x_{n}
$$

- Simulate a big Γ by just $\{0,1, \sqcup\}$
- "Mark" cells. If $\Gamma=\{0,1, \sqcup\}$, extend it to

$$
\Gamma=\left\{0,1,0^{\bullet}, 1^{\bullet}, \sqcup\right\}
$$

- Copy a stretch of tape between two marked cells into another marked section of the tape

Some TM subroutines and tricks

- Implement basic string and arithmetic operations
- Simulate a TM with 2 tapes and heads
- Implement basic data structures
- Simulate "random access memory"
:
- Simulate assembly language

You could prove this rigorously if you wanted to.

So what we want is:

A totally minimal (TM) programming language such that

- it can simulate simple bytecode (and therefore Python, C, Java, SML, etc...)
- it is simple to define and reason about completely mathematically rigorously

A note

You could describe a TM in 3 ways:
Low level description

Medium level description

High level description

Important Question

Is TM the right definition?

Is there a reasonable definition of "algorithm"
that can compute more languages than TM-decidable ones?

