

	Last Time			
A Turing machine (TM)	M	is a 7-ti	uple

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{rej})$

where

- Q is a finite set (which we call the set of states);
- Σ is a finite set with $\Box \notin \Sigma$ (which we call the input alphabet);
- Γ is a finite set with $\Box \in \Gamma$ and $\Sigma \subset \Gamma$ (which we call the tape alphabet);
- δ is a function of the form $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ (which we call the transition function);
- $q_0 \in Q$ (which we call the start state);
- $q_{\rm acc} \in Q\;$ (which we call the accept state);
- $q_{\mathrm{rej}} \in Q$, $q_{\mathrm{rej}}
 eq q_{\mathrm{acc}}$ (which we call the reject state);

Last Time
Definition: ATM is called a <i>decider</i> if it halts on all inputs.
Definition: A language L is called <i>decidable</i> (computable) if $L = L(M)$ for some <u>decider</u> TM M .
Theorem: Any language that can be computed in Python, C, Java, etc. can be decided by a TM.

QUESTIONS

2 of Hilbert's Problems

Hilbert's 10th problem (1900)

Is there a finitary procedure to determine if a given multivariate polynomial with integral coefficients has an integral solution?

e.g.
$$5x^2yz^3 + 2xy + y - 99xyz^4 = 0$$

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity of a given logical expression?

e.g. $\neg \exists x, y, z, n \in \mathbb{N} : (n \ge 3) \land (x^n + y^n = z^n)$

(Mechanization of mathematics)

Turing's thinking

- A (human) computer writes symbols on paper. (can view the paper as a sequence of squares)
- No upper bound on the number of squares.
- Humans can reliably distinguish finitely many shapes.
- Human observes one square at a time.
- Human has finitely many mental states.
- Human can change symbol, can change focus to neighboring square, based on its state and the symbol it observes
- Human acts deterministically.
- ...

 Turing's legacy

 The beauty of his definition:

 I. simplicity

 2. "clearly" captures what a human does given a set of instructions.

Generality

2. "clearly" captured what a human does given a set of instructions.

Church-Turing Thesis

The intuitive notion of "computable" is captured by functions computable by a Turing Machine.

What else did Turing do in his paper?

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity of a given logical expression?

e.g. $\neg \exists x, y, z, n \in \mathbb{N} : (n \ge 3) \land (x^n + y^n = z^n)$

(Mechanization of mathematics)

Perhaps Turing and others weren't ambitious enough!

Solvable by any physical process

Solvable by a TM

||| ???

- programming: everything boils down to super simple instructions

What is the simplest universe you can create that has the same computational capacity of our universe?

Conway's Game of Life

Imagine an infinite 2D grid.

Each cell can be dead or alive.

Laws of physics

Loneliness: live cell with fewer than 2 neigbors dies.

Overcrowding: live cell with more than 3 neighbors dies.

Procreation: dead cell with exactly 3 neighbors gets born.

Poll
Which ones do you think are decidable?
ACCEPTS _{DFA} = { $\langle D, x \rangle : D$ is a DFA and $x \in \Sigma^*$ s.t. $x \in L(D)$ }
$SELF\text{-}ACCEPTS_DFA = \{ \langle D \rangle : D \text{ is a DFA s.t. } \langle D \rangle \in L(D) \}$
$\text{EMPTY}_{\text{DFA}} = \{ \langle D \rangle : D \text{ is a DFA s.t. } L(D) = \emptyset \}$
$EQ_{DFA} = \{ \langle D_1, D_2 \rangle : D_1 \text{ and } D_2 \text{ are DFAs s.t. } L(D_1) = L(D_2) \}$

ACCEPTSDFA	
$ACCEPTS_{DFA} = \{ \langle D, x \rangle : D \text{ is a DFA and } x \in \Sigma^* \text{ s.t. } x \in L(D) \}$	

SELF-ACCEPTS _{DFA}		
$SELF-ACCEPTS_{DFA} = \{ \langle D \rangle : D \text{ is a DFA s.t. } \langle D \rangle \in L(D) \}$		
		_

EMPTY _{DFA}	
$\mathrm{EMPTY}_{\mathrm{DFA}} = \{ \langle D \rangle : D \text{ is a DFA s.t. } L(D) = \emptyset \}$	

EQDFA
$EQ_{DFA} = \{ \langle D_1, D_2 \rangle : D_1 \text{ and } D_2 \text{ are DFAs s.t. } L(D_1) = L(D_2) \}$

Reduction	

Turing's Legacy Continues

Undecidability