
September 14th, 2017

15-251
Great Ideas in

Theoretical Computer Science
Lecture 6:

Church-Turing Thesis + Decidability

input
data

output
data“computer”

What is computation?

What is an algorithm?

How can we mathematically define them?

This Week

Last Time

A totally minimal (TM) programming language such that

- it can simulate simple bytecode
(and therefore Python, C, Java, SML, etc…)

- it is simple to define and reason about completely
 mathematically rigorously

Last Time

a a b a t t t t tt t t t t t

q0

qacc

qrejqa qb

b 7! t,L

b 7! t,L

a 7! t,L

a 7! t,L

a 7! t,R b 7! t,R

t 7! t,L t 7! t,L

t 7! t,R

ttt

Input: aaba

0 1 2 3 4 5 6 7 8 9 10 11 12 13-1-2-3

Last Time

where
- is a finite set (which we call the set of states);Q

- q0 2 Q (which we call the start state);

MA Turing machine (TM) is a 7-tuple
M = (Q,⌃,�, �, q0, qacc, qrej)

- (which we call the accept state); qacc 2 Q

- is a finite set with
 (which we call the input alphabet);
⌃ t 62 ⌃

- is a finite set with and
 (which we call the tape alphabet);
� t 2 � ⌃ ⇢ �

- , (which we call the reject state); qrej 2 Q qrej 6= qacc

- is a function of the form �

(which we call the transition function);
� : Q⇥ � ! Q⇥ �⇥ {L,R}

Last Time

Definition: A TM is called a decider if it halts on all
inputs.

Definition: A language is called decidable (computable)
if for some decider TM .L = L(M) M

L

Theorem: Any language that can be computed
in Python, C, Java, etc. can be decided by a TM.

QUESTIONS

2 of Hilbert’s Problems

Is there a finitary procedure to determine if a given
multivariate polynomial with integral coefficients has an
integral solution?

Entscheidungsproblem (1928)
Is there a finitary procedure to determine the validity
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Hilbert’s 10th problem (1900)

e.g. 5x2
yz

3 + 2xy + y � 99xyz4 = 0

The quest for the right definition

“Alright, let’s define this thing mathematically.”

input
data

output
data

(mathematical
 statement)

(True or False)

Turing’s thinking

- A (human) computer writes symbols on paper.
(can view the paper as a sequence of squares)

- No upper bound on the number of squares.

- Humans can reliably distinguish finitely many shapes.

- Human observes one square at a time.

- Human has finitely many mental states.

- Human can change symbol,
 can change focus to neighboring square,

based on its state and the symbol it observes

- Human acts deterministically.

- …

Turing’s legacy

The beauty of his definition:

1. simplicity

2. “clearly” captures what a human does
 given a set of instructions.

Simplicity

a reasonable definiton of computation

(anyone who attempted to define computation
 could accidentally hit a correct definition)

strong enough to capture computation the way TMs do.

1. simplicity

Generality

2. “clearly” captured what a human does
 given a set of instructions.

Church-Turing Thesis
The intuitive notion of “computable” is captured by
functions computable by a Turing Machine.

What else did Turing do in his paper?

Entscheidungsproblem (1928)
Is there a finitary procedure to determine the validity
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

No!

Regular languages

Decidable languages

EvenLength
...

isPrime

0n1n

Factoring

...

Entscheidungsproblem Are there others?

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

+ isPrime Sorting DFA
|x| even?

Do we really need a separate machine for each task?

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

input
data

output
data

input
data

output
data

A human is a universal machine:

What else did Turing do in his paper?

(one machine to rule them all)

+ isPrime Sorting DFA
|x| even?

Universal Machine

All can be encoded!
(e.g. think source code)

What else did Turing do in his paper?

(one machine to rule them all)

def foo(input):
 i = 0
 STATE 0:
 letter = input[i];
 switch(letter):
 case ‘a’: input[i] = ‘ ’; i++; go to STATE a;
 case ‘b’: input[i] = ‘ ’; i++; go to STATE b;
 case ‘ ’: input[i] = ‘ ’; i++; go to STATE rej;
 STATE a:
 letter = input[i];
 switch(letter):
 case ‘a’: input[i] = ‘ ’; i--; go to STATE acc;
 case ‘b’: input[i] = ‘ ’; i--; go to STATE rej;
 case ‘ ’: input[i] = ‘ ’; i--; go to STATE rej;

hMi =

We could use:

Universal Machine

Code is data!

What else did Turing do in his paper?

(one machine to rule them all)

UNIVERSAL
MACHINE

A TM ih

x

output of the TM
on input x

this is a TM

Could you write a Python function that does this?

Universal Machine

What else did Turing do in his paper?

(one machine to rule them all)

This is exactly what an interpreter does.

Python
Interpreter

x

output of the
Python program
on input x

foo.py

Universal Machine

Code is data!

The positive side The negative side

Universal TM Self-referencing

(can feed a machine
 its own code as input.)

Undecidability

1912 - 19541936

Perhaps Turing and others weren’t ambitious enough!

Solvable by any physical process

Solvable by a TM

???

Physical Church-Turing Thesis

What can be computed in this universe, by any physical
process or device, can by computed by a (rand.) TM.

Why should we expect this to be true?

What can be computed efficiently in this universe,
by any physical process or device, can by computed
efficiently by a QTM.

Physical Church-Turing Thesis

Strong Physical Church-Turing Thesis

This is the grand unification/simplification
of computation!!

TMs

All types of computation

Python
Java, C, …

This is the grand unification/simplification
of computation!!

Complex things can be explained by simple rules.

- physics: try to find the simple rules that give rise to the universe

- evolution: complex life forms emerge from simple beginnings and rules

- math: complex proofs arise by combining very simple deductive rules

- programming: everything boils down to super simple instructions

Implications

Studying the power and limits of TMs

Studying the power and limits of our universe

Computation in its full generality is everywhere.
Even in extremely simple systems!

(Can you come up with laws of physics that would allow it to
 compute any problem?)

(What is the simplest universe you can create that has the same
computational capacity of our universe?)

1.

2.

The universe may be a simulation.3. (a philosophical musing)

What is the simplest universe you can create that has
the same computational capacity of our universe?

Conway’s Game of Life

Imagine an infinite
2D grid.

Each cell can be
dead or alive.

Laws of physics

Loneliness: live cell with fewer than 2 neigbors dies.

Overcrowding: live cell with more than 3 neighbors dies.

Procreation: dead cell with exactly 3 neighbors gets born.

Conway’s Game of Life

Some Patterns

Periodic

Stable

Moving

Conway’s Game of Life

Can a TM simulate any instance of Game of Life?

Can Game of Life simulate any TM?

Can Game of Life simulate Game of Life?

That’s all for the Church-Turing Thesis.

Let’s talk decidability.

Languages involving encodings of machines

Code is data!

There are many interesting problems
where the input data is code.

Working as a TA for 15-112

isPrime

the correct programstudent submission

isPrime

Do they return True on exactly the same inputs?

Autograder program

Working as a TA for 15-112

Does such a program exist?

returns True on
exactly same inputs?

True
or

False

Kosbie’s
version

Student
submission

i.e., can we solve the following?

EQ = {hM1,M2i : M1 and M2 are TMs s.t. L(M1) = L(M2)}

Working as a TA for 15-112

Similar but simpler looking languages:

ACCEPTS = {hM,xi : M is a TM and x 2 ⌃⇤ s.t. x 2 L(M)}

EMPTY = {hMi : M is a TM s.t. L(M) = ;}

Poll

EQDFA = {hD1, D2i : D1 and D2 are DFAs s.t. L(D1) = L(D2)}

EMPTYDFA = {hDi : D is a DFA s.t. L(D) = ;}

ACCEPTSDFA = {hD,xi : D is a DFA and x 2 ⌃⇤ s.t. x 2 L(D)}

SELF-ACCEPTSDFA = {hDi : D is a DFA s.t. hDi 2 L(D)}

Which ones do you think are decidable?

ACCEPTSDFA

ACCEPTSDFA = {hD,xi : D is a DFA and x 2 ⌃⇤ s.t. x 2 L(D)}

SELF-ACCEPTSDFA

SELF-ACCEPTSDFA = {hDi : D is a DFA s.t. hDi 2 L(D)}

EMPTYDFA

EMPTYDFA = {hDi : D is a DFA s.t. L(D) = ;}

EQDFA

EQDFA = {hD1, D2i : D1 and D2 are DFAs s.t. L(D1) = L(D2)}

Reduction

NEXT WEEK

Undecidability

Turing’s Legacy Continues

