Great Ideas in Theoretical Computer Science

Lecture 6: Church-Turing Thesis + Decidability

This Week

What is computation?
What is an algorithm?
How can we mathematically define them?

Last Time

A totally minimal (TM) programming language such that

- it can simulate simple bytecode
 (and therefore Python, C, Java, SML, etc…)

- it is simple to define and reason about completely mathematically rigorously
A Turing machine (TM) M is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$ where
- Q is a finite set (which we call the set of states);
- Σ is a finite set with $\sqcup \notin \Sigma$ (which we call the input alphabet);
- Γ is a finite set with $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$ (which we call the tape alphabet);
- δ is a function of the form $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ (which we call the transition function);
- $q_0 \in Q$ (which we call the start state);
- $q_{\text{acc}} \in Q$ (which we call the accept state);
- $q_{\text{rej}} \in Q$, $q_{\text{rej}} \neq q_{\text{acc}}$ (which we call the reject state);

Definition: A TM is called a **decider** if it halts on all inputs.

Definition: A language L is called **decidable (computable)** if $L = L(M)$ for some decider TM M.

Theorem: Any language that can be computed in Python, C, Java, etc. can be decided by a TM.
QUESTIONS

2 of Hilbert’s Problems

Hilbert’s 10th problem (1900)
Is there a finitary procedure to determine if a given multivariate polynomial with integral coefficients has an integral solution?

e.g. \(5x^2yz^3 + 2xy + y - 99xyz^4 = 0\)

Entscheidungsproblem (1928)
Is there a finitary procedure to determine the validity of a given logical expression?

e.g. \(\neg\exists x, y, z, n \in \mathbb{N} : (n \geq 3) \land (x^n + y^n = z^n)\)

(Mechanization of mathematics)

The quest for the right definition

input data
(mathematical statement)

\[\text{output data (True or False)}\]

“Alright, let's define this thing mathematically.”
Turing's thinking

- A (human) computer writes symbols on paper.
 (can view the paper as a sequence of squares)
- No upper bound on the number of squares.
- Humans can reliably distinguish finitely many shapes.
- Human observes one square at a time.
- Human has finitely many mental states.
- Human can change symbol,
 can change focus to neighboring square,
 based on its state and the symbol it observes
- Human acts deterministically.
- ...

Turing's legacy

The beauty of his definition:

1. simplicity

2. “clearly” captures what a human does given a set of instructions.

Simplicity

1. simplicity

a reasonable definition of computation

strong enough to capture computation the way TMs do.

(anyone who attempted to define computation could accidentally hit a correct definition)
Generality

2. “clearly” captured what a human does given a set of instructions.

Church-Turing Thesis

The intuitive notion of “computable” is captured by functions computable by a Turing Machine.

What else did Turing do in his paper?

Entscheidungsproblem (1928)

Is there a finitary procedure to determine the validity of a given logical expression?

\[\exists x, y, z, n \in \mathbb{N} : (n \geq 3) \land (x^n + y^n = z^n) \]

(Mechanization of mathematics)

Entscheidungsproblem

Are there others?

Decidable languages

Regular languages

EvenLength

Factoring

\[0^n 1^n \]

isPrime

\[: \]
What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

Do we really need a separate machine for each task?

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

A human is a universal machine:

What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

All can be encoded!
(e.g. think source code)
What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

We could use:

```python
def foo(input):
    i = 0
    STATE 0:
    letter = input[i];
    switch(letter):
        case 'a': input[i] = ' '; i++; go to STATE a;
        case 'b': input[i] = ' '; i++; go to STATE b;
        case ' ': input[i] = ' '; i++; go to STATE rej;
    STATE a:
    letter = input[i];
    switch(letter):
        case 'a': input[i] = ' '; i--; go to STATE acc;
        case 'b': input[i] = ' '; i--; go to STATE rej;
        case ' ': input[i] = ' '; i--; go to STATE rej;
```

Could you write a Python function that does this?

Code is data!
What else did Turing do in his paper?

Universal Machine
(one machine to rule them all)

This is exactly what an **interpreter** does.

![Python Interpreter](image)

output of the Python program on input x

Code is data!

The **positive** side

Universal TM

The **negative** side

Self-referencing

(can feed a machine its own code as input.)

Undecidability

1936

1912 - 1954
Perhaps Turing and others weren’t ambitious enough!

Solvable by any physical process

||| ???

Solvable by a TM

Physical Church-Turing Thesis

Physical Church-Turing Thesis
What can be computed in this universe, by any physical process or device, can be computed by a (rand.) TM.

Why should we expect this to be true?

Strong Physical Church-Turing Thesis
What can be computed **efficiently** in this universe, by any physical process or device, can be computed **efficiently** by a quantum TM (QTM).

This is the grand unification/simplification of computation!!

All types of computation

Python, Java, C, …
This is the grand unification/simplification of computation!!

Complex things can be explained by simple rules.
- physics: try to find the simple rules that give rise to the universe
- evolution: complex life forms emerge from simple beginnings and rules
- math: complex proofs arise by combining very simple deductive rules
- programming: everything boils down to super simple instructions

Implications

1. Studying the power and limits of TMs
 - Studying the power and limits of our universe
 (Can you come up with laws of physics that would allow it to compute any problem?)

2. Computation in its full generality is everywhere.
 Even in extremely simple systems!
 (What is the simplest universe you can create that has the same computational capacity of our universe?)

3. The universe may be a simulation. (a philosophical musing)

What is the simplest universe you can create that has the same computational capacity of our universe?
Conway’s Game of Life

Imagine an infinite 2D grid.

Each cell can be dead or alive.

Laws of physics

Loneliness: live cell with fewer than 2 neighbors dies.

Overcrowding: live cell with more than 3 neighbors dies.

Procreation: dead cell with exactly 3 neighbors gets born.

Conway’s Game of Life

Some Patterns

- **Stable**
 - [Image of stable patterns]

- **Periodic**
 - [Image of periodic patterns]

- **Moving**
 - [Image of moving patterns]

Conway’s Game of Life

Can a TM simulate any instance of Game of Life?

Can Game of Life simulate any TM?

Can Game of Life simulate Game of Life?
That’s all for the Church-Turing Thesis.

Let’s talk decidability.

Languages involving encodings of machines

Code is data!

There are many interesting problems where the input data is code.

Working as a TA for 15-112

Autograder program

<table>
<thead>
<tr>
<th>student submission</th>
<th>the correct program</th>
</tr>
</thead>
<tbody>
<tr>
<td>isPrime</td>
<td>isPrime</td>
</tr>
</tbody>
</table>

Do they return True on exactly the same inputs?
Does such a program exist?

i.e., can we solve the following?

\[EQ = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are TMs s.t. } L(M_1) = L(M_2) \} \]

Similar but simpler looking languages:

\[\text{ACCEPTS} = \{ \langle M, x \rangle : M \text{ is a TM and } x \in \Sigma^* \text{ s.t. } x \in L(M) \} \]

\[\text{EMPTY} = \{ \langle M \rangle : M \text{ is a TM s.t. } L(M) = \emptyset \} \]

Which ones do you think are decidable?

\[\text{ACCEPTS}_{\text{DFA}} = \{ \langle D, x \rangle : D \text{ is a DFA and } x \in \Sigma^* \text{ s.t. } x \in L(D) \} \]

\[\text{SELF-ACCEPTS}_{\text{DFA}} = \{ \langle D \rangle : D \text{ is a DFA s.t. } \langle D \rangle \in L(D) \} \]

\[\text{EMPTY}_{\text{DFA}} = \{ \langle D \rangle : D \text{ is a DFA s.t. } L(D) = \emptyset \} \]

\[\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle : D_1 \text{ and } D_2 \text{ are DFAs s.t. } L(D_1) = L(D_2) \} \]
<table>
<thead>
<tr>
<th>ACCEPTS\textsubscript{DFA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ACCEPTS}\textsubscript{DFA} = { (D, x) : D \text{ is a DFA and } x \in \Sigma^* \text{ s.t. } x \in L(D) })</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELF-ACCEPTS\textsubscript{DFA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SELF-ACCEPTS}\textsubscript{DFA} = { (D) : D \text{ is a DFA s.t. } (D) \in L(D) })</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMPTY\textsubscript{DFA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{EMPTY}\textsubscript{DFA} = { (D) : D \text{ is a DFA s.t. } L(D) = \emptyset })</td>
</tr>
</tbody>
</table>
EQ_{DFA} = \{(D_1, D_2) : D_1 \text{ and } D_2 \text{ are DFAs s.t. } L(D_1) = L(D_2)\}

Reduction

NEXT WEEK
Turing’s Legacy Continues

Undecidability