
CMU 15-251 Fall 2018

Midterm 2 Practice Problems

1. We recursively define a set S ⊆ N× N as follows.

• (0, 0) ∈ S;

• if (a, b) ∈ S, then (a, b+ 1) ∈ S;

• if (a, b) ∈ S, then (a+ 1, b+ 1) ∈ S;

• if (a, b) ∈ S, then (a+ 2, b+ 1) ∈ S.

Prove that S = {(x, y) ∈ N× N : x ≤ 2y}.

2. For this problem we will need to talk about polynomials. It is ok if you are not very familiar
with them; we will tell you all you need to know. A real polynomial is something that looks
like this:

P (x) = 6.1x3 − 2.8x2 + 5x+ 1.3.

(Here it would be a bit more proper if we had written 6.1x3 + (−2.8)x2 + 5x1 + 1.3x0.) In
P (x) above, x is the variable, the numbers 6.1, −2.8, 5, 1.3 standing next to the powers of x
are the coefficients (which can be any real number), and the degree of P (x) is the highest
power of x appearing in the polynomial. In the above example, the degree is 3. The degree
is always a natural number. (Special case: The polynomial 0 does not have a well-defined
degree.) We say that r ∈ R is a root of polynomial P (x) if you get 0 when you plug in x = r
and compute the result. Finally, the most glorious fact about real polynomials, which you
may freely use, is:

If P (x) is a (nonzero) real polynomial with degree d ∈ N,

then it has at most d distinct real roots.

If you have any questions about polynomials and their definitions, please do not hesitate to
ask on Diderot, since they’re not exactly the main point of this problem.

One way mathematicians like to define rational numbers is as follows: “A real number is
called rational if it is the root of some polynomial with integer coefficients and degree 1.”
(For example, the rational 22/7 is a root of 7x − 22, which is a polynomial with integer
coefficients and degree 1.) As you probably know, there exist reals that are irrational (i.e.,
not rational). The most famous one is

√
2; you probably have seen a proof that this is

irrational that requires a little number theory.

Mathematicians also made the following definition: “A real number is called algebraic if it is
the root of some polynomial with integer coefficients (and any degree d ∈ N).” (For example,√

2 is algebraic because it is a root of x2 − 2. This polynomial also shows that −
√

2 is
algebraic!) A real number that is not algebraic is called transcendental.

From the definition, it is not clear at all if transcendental numbers exist. In fact, in 1844,
Liouville used some hard-core number theory methods to show that transcendental numbers
indeed exist. This was a pretty big deal at the time!

Flex your CS muscles and prove that there exists a transcendental number. You do not need
to know any number theory or algebra for this problem!

1



3. In Turkish, the word dededen means “from grandfather”. Suppose we wish to search for this
word within some text. We will assume the text alphabet is Σ = {n, e, r, d}. Let

T = {x ∈ Σ∗ : x contains dededen as a substring}

Draw a DFA M that decides T .

[For practice, you might test out your ideas on the following text:

nerederenderendededededededededi

Well, actually that practice text ends in an i; just pretend it’s an r. By the way, this text is
a flattening of the following dramatic one-act play:

“Nerede rende?”

“Rende de dedede,” dede dedi.

Which in Turkish means:

“Where’s the grater?”

“The grater is also with grandfather,” grandfather said.]

4. Consider the following languages over the alphabet {a, b}:

L = {anw : w ∈ Σ∗, n ∈ N+, w contains at most n a’s},
K = {anw : w ∈ Σ∗, n ∈ N+, w contains at least n a’s}.

Show that one of these languages is regular and the other is not. For the proof of regularity,
all you need to do is draw or describe a DFA; a proof of correctness is not required. For the
proof of irregularity, give a complete proof.

5. Fix Σ = {a, b}. Given a word w, we let filter(w) denote w with its even-indexed characters
removed. For example, filter(a) = a, filter(ab) = a, filter(abba) = ab, and filter(ε) = ε. For a
language L ⊆ Σ∗, define

DOUBLE(L) = {x ∈ Σ∗ : filter(x) ∈ L}.

Show that if L is regular, then so is DOUBLE(L), by giving an explicit construction of a DFA
that recognizes DOUBLE(L). Give a few sentences of explanation of why your construction
recognizes DOUBLE(L) correctly.

6. (a) We say that a language L is acceptable if there exists a Turing Machine M such that
M(x) accepts for all x ∈ L and M(x) either rejects or loops for all x 6∈ L. Show that L
is decidable if and only if L and L = Σ∗\L are both acceptable.

(b) Recall that the language HALTS = {〈M,x〉 : M is a TM and M(x) halts} is undecid-
able. Show that HALTS is acceptable (and that therefore, the set of decidable languages
is a strict subset of the set of acceptable languages).

(c) Show that HALTS is not acceptable.

(d) Show that every acceptable language L reduces to HALTS.

7. (a) Fix a Turing Machine M with input alphabet Σ and consider the language LM = {x ∈
Σ∗ : M(x) halts}. Is there an M such that LM is decidable?

2



(b) Fix a string x ∈ Σ∗ and consider the language Lx = {〈M〉 : M(x) halts}. Is there an x
such that Lx is decidable?

8. Recall that for w ∈ Σ∗, wR denotes the reversal of w. For example 10111R = 11101. Show
that

K = {〈M〉 : M is a TM which accepts 〈M〉R}

is undecidable.

9. Prove that ACCEPTS ≤ EQ.

10. Prove that log n = O(nε) for any ε > 0.

11. (a) Draw a Turing Machine M which decides the language {0n1m : n,m ∈ N}.
(b) Determine the running time function TM (n) completely exactly.

(c) Prove that TM (n) = Θ(n).

(d) Although we rarely consider “best-case running time”, let’s do it in this problem. Define

UM (n) = min
instances x
of length n

{# of steps M takes on x}.

Determine the function UM (n) exactly. (Probably it will involve “cases”.)

(e) Prove that UM (n) = Θ(1).

12. Let T (n) satisfy the following recurrence relation:

T (1) = c, T (n) ≤ 3 · T (n/5) + k · n4 for n > 1,

where c and k are some constants that don’t depend on n. You can assume n is power of 5,
i.e. n = 5t for some t ∈ N.

(a) Consider the recursion tree corresponding to the above recursive relation. Determine
the total number of nodes in the tree, in terms of n, using the Θ(·) notation. Prove your
claim.

(b) Prove a tight upper bound on T (n) using the big-O notation.

13. Describe a “linear-time reduction from multiplication to squaring”. That is, suppose you are
given access to black-box that, given a number B, returns B2 to you. Show how to multiply
two n-bit numbers using time O(n) plus at most a constant (like, one or two or three) number
of calls to the squaring black-box.

(The point of this problem is to illustrate that if you didn’t know Karatsuba’s algorithm
for doing faster-than-quadratic-time multiplication, and you were trying to discover such an
algorithm, you could WLOG focus just on doing the special case of faster-than-quadratic-
squaring. In fact, both Kolmogorov and Karatsuba knew this fact, and it helped Karatsuba
discover his algorithm.)

14. Consider the following computational problem: given as input positive integers A and B with
B < A, output True if A has a factor between B and A−1 (both inclusive), and output False
otherwise. Suppose someone gives you an algorithm that solves this problem in polynomial
time i.e., O(nk) time for some constant k, where n denotes the number of bits in the binary
representation of A. You can also assume that someone gives you a polynomial-time algorithm
for division (which outputs the quotient and the remainder).

3



(a) Consider the following problem: given as input a positive integer C, output the smallest
factor of C that is not equal to 1. Given the above polynomial-time algorithms, show
how to solve this problem in polynomial time (with respect to the input length). You
do not have to give a proof of correctness for your algorithm. And you can describe it
at a high level without even writing pseudocode. However, you should argue carefully
why the running time is at most a polynomial in the input length.

(b) Consider the following problem: given as input a positive integer C, output its prime
factorization (e.g., if C = 12, the output would be (2, 2, 3)). Show how to solve this
problem in polynomial time. As before, you do not have to give a proof of correctness for
your algorithm (which you can describe at a high level), but you should argue carefully
why the running time is at most a polynomial in the input length.

15. Can we put a universal upper bound on the time complexity of all decidable languages?
For instance, is it possible that all decidable languages can be decided by a TM with time
complexity O(nk) for some constant k? If that sounds too ridiculous to be true, you are
right. It is not true. But how would you prove it? Here is another variant of this type of
question. Is it possible that there exists a constant c (maybe the constant is 15251) such that
every language that can be decided in polynomial time can be decided by a TM with time
complexity nc? In this problem, we are interested in this question.

For any k > 0, describe a language Lk which can be decided in polynomial time such that no
Turing machine with time complexity at most nk can decide L.

Note: This question is hard without any hints. If you want a real challenge, you can try to
solve it without any hints. Otherwise, take a look at the hint on the next page.

4



Hint: Review the proof that HALTS is undecidable and come up with a similar diagonalization
argument. Obviously you cannot choose HALTS as your language Lk, so consider

Lk = {〈M〉 : M(〈M〉) halts in at most n2k+1 steps}.

You may assume the following in your proof: There exists a universal TM U such that for
every 〈M,x〉 where M is a TM and x is an input to M , U(〈M,x〉) = M(x). Furthermore, if
M(x) takes t steps, then U(〈M,x〉) takes at most t2 steps.

5


